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No-reference image quality assessment and blind deblurring
with sharpness metrics exploiting Fourier phase information

Arthur Leclaire · Lionel Moisan

Abstract It has been known for more than 30 years

that most of the geometric content of a digital image is

encoded in the phase of its Fourier transform. This has

led to several works that exploit the global (Fourier)

or local (Wavelet) phase information of an image to

achieve quality assessment, edge detection, and, more

recently, blind deblurring. We here propose a deeper in-

sight into three recent sharpness metrics (Global Phase

Coherence, Sharpness Index and a simplified version of

it), which all measure in a probabilistic sense the sur-

prisingly small total variation of an image compared to

that of certain associated random-phase fields. We ex-

hibit several theoretical connections between these in-

dices, and study their behavior on a general class of sta-

tionary random fields. We also use experiments to high-

light the behavior of these metrics with respect to blur,

noise and deconvolution artifacts (ringing). Finally, we

propose an application to isotropic blind deblurring and

illustrate its efficiency on several examples.

Keywords phase coherence, total variation, Fourier

transform, random phase noise, no-reference image

quality assessment, image sharpness, blind deblurring,

oracle deconvolution filter

1 Introduction

In several mathematical fields, the Fourier transform

has shown to be a useful tool of analysis and processing.

Most linear filtering operations, which are constantly

used in signal and image processing, are expressed in

spectral domain as simple multiplications. However, if

the modulus part of the Fourier coefficients of an im-

age is quite well understood (in particular because of
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the link that exists between the regularity of a signal

and the decrease rate of its Fourier coefficients at in-

finity), the argument part (the phase information) is

much more difficult to apprehend. In 1981, Oppenheim

and Lim [30] showed that the loss of the phase infor-

mation of an image entails the destruction of the image

geometry. This suggests that the precision of the image

geometry (and thus, in some sense, the image quality)

could be assessed through the coherence of the Fourier

phase information.

Quality indices divide into three categories : full-

reference, reduced-reference, and no-reference, depend-

ing on whether a supposedly ideal version of the im-

age is assumed to be fully or partially known. As con-

cerns the no-reference case (which is the one we are

interested in), the introduction of Chapter 4 of [38]

points out the difficulty to design generic image qual-

ity measures, concluding (in 2006) that “the design of

application-specific no-reference quality assessment sys-

tems appears to be much more approachable than the

general, assumption-free no-reference image quality as-

sessment problem.” Nevertheless, several interesting no-

reference quality measures have been proposed in the

literature (see the recent review [7]). Some of them try

to assess the quality through the direct analysis of edges

[26] or through the gradient singular values [40]. Others

use a perceptual analysis of certain image features, like

in [13]. The concept of local phase coherence, originally

introduced and developed in [29,19,20] for edge detec-

tion purposes, was later linked to the perception of blur

by Wang and Simoncelli [39], which ultimately led to

the definition of a no-reference image quality index [17].

Closer to our work lies the index [37] which combines

some spectral and spatial characteristics.

In 2008, a notion of global phase coherence was pro-

posed [3], and related to image sharpness. The idea was
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to use a kind of a contrario framework1 [10] to quan-

tize how much the regularity of the image (more pre-

cisely, its total variation) was affected by the destruc-

tion of the phase information. As a sharp (or noise-free)

image is much more sensitive to phase degradations

than a blurry (or noisy) image, such a characterization

of phase coherence is directly related to image qual-

ity. This approach led to the definition of three phase

coherence measures, namely the Global Phase Coher-

ence [3], the Sharpness Index [4], and the index S [22].

The present paper gives a more detailed and merged

discussion about these global phase coherence indices.

Starting from their construction in Section 2, we estab-

lish some of their mathematical properties in Section 3.

Section 4 discusses several practical aspects of these in-

dices, including their validation as no-reference quality

measures, and finally Section 5 describes a way to use

these indices to address the blind deblurring problem.

2 Three Phase Coherence Indices

This Section presents the detailed construction of the

phase coherence indices introduced in [3,4,22].

2.1 Main notations

In all the following, we consider discrete M ×N images

defined on the rectangular domain

Ω = Z2 ∩
([
−M

2
,
M

2

)
×
[
−N

2
,
N

2

))
A gray-level image is thus a map u : Ω → R, the real

number u(x) referring to the gray level at pixel x. The

Ω-periodization of u is the image u̇ : Z2 → R defined

by

∀(k, l) ∈ Z2, ∀(x, y) ∈ Ω, u̇(x+kM, y+ lN) = u(x, y) .

In the sequel, we will use a gradient scheme computed

with periodic boundary conditions,

∇u(x, y) =

(
∂xu̇(x, y)

∂yu̇(x, y)

)
=

(
u̇(x+ 1, y)− u̇(x, y)

u̇(x, y + 1)− u̇(x, y)

)
,

and the corresponding (periodic) Total Variation (TV)

of u

TV(u) =
∑
x∈Ω
|∂xu̇(x)|+ |∂yu̇(x)| ,

1 The principle of a contrario methods is to detect struc-
tures as the cause of measurements that could hardly be ob-
served in random data.

which measures in some sense how much the function

u̇ oscillates. Precisely, TV (u) is the l1-norm of the gra-

dient of u, and thus it assigns small values (relatively

to the l2-norm) to images whose gradient is sparse (in

particular cartoon images). Algorithms based on TV

minimization have been used for a long time to address

image processing tasks, for example, denoising [32,6].

The discrete Fourier transform (DFT) of u is the

Ω-periodic complex function û : Z2 → C defined by

∀ξ ∈ Z2, û(ξ) =
∑
x∈Ω

u(x)e−i〈ξ,x〉 ,

where 〈ξ,x〉 = 2π
(
x1ξ1
M + x2ξ2

N

)
for ξ = (ξ1, ξ2) and

x = (x1, x2). The function |û| will be called modulus of

u. A phase function for u is any function ϕ : Z2 → R
such that for all ξ ∈ Z2, û(ξ) = |û(ξ)|eiϕ(ξ). If û(ξ) 6= 0,

the phase coefficient ϕ(ξ) is uniquely defined modulo 2π

while any arbitrary value can be chosen if û(ξ) = 0.

Among useful properties of the DFT, we have the

reconstruction formula

∀x ∈ Z2, u̇(x) =
1

MN

∑
ξ∈Ω

û(ξ)ei〈ξ,x〉 . (1)

Also, the circular convolution of two images u and v

defined by

∀x ∈ Ω, u ∗ v(x) =
∑
y∈Ω

u̇(x− y)v(y) ,

satisfies û ∗ v = ûv̂.

We shall also need the (non-necessarily integer) Ny-

quist frequencies denoted by ηx = (−M2 , 0) , ηy =

(0,−N2 ), ηxy = (−M2 ,−
N
2 ) . When integer, these are

(with zero) the only points ξ ∈ Ω which are equal to

−ξ modulo (M,N). This allows us to define precisely

the notion of random phase with

Definition 1 ([16]) A (uniform) random phase func-

tion is a function ψ : Ω → R such that

• ψ is odd

• ∀ξ ∈ Ω \{0,ηx,ηy,ηxy}, ψ(ξ) is uniform on [−π, π)

• ∀ξ ∈ {0,ηx,ηy,ηxy}, ψ(ξ) is uniform on {0, π}
• for every subset S of Ω that does not contain two

symmetrical points, the random variables (r.v.) ψ(ξ),

ξ ∈ S are independent.

Finally, we will also use the Gaussian tail distribu-

tion defined by

∀t ∈ R, Φ(t) =
1√
2π

∫ +∞

t

e−s
2/2ds . (2)
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2.2 Global Phase Coherence

As noticed in [30], most of the geometry of an image

is encoded in its phase coefficients. In Fig. 1, we repro-

duce the experiment which consists in exchanging the

moduli of two images: as can be seen, the geometry of

the image whose phase was kept persists. From there, in

an a contrario framework, the authors of [3] define the

global phase coherence (GPC) by measuring how much

the geometry is affected when the phase information is

lost.

More precisely, given u and a random phase function

ψ (in the sense of Definition 1), one can define a random

real-valued image uψ by

∀ξ ∈ Ω, ûψ(ξ) = |û(ξ)|eiψ(ξ) .

or equivalently, using the reconstruction formula (1), by

∀x ∈ Ω, uψ(x) =
1

MN

∑
ξ∈Ω

|û(ξ)|ei〈x,ξ〉+iψ(ξ) . (3)

The random image uψ is the random-phase noise (RPN)

associated with u [36,16]. Equation (3) can also be writ-

ten with cosine functions only. For example, if M and

N are odd integers (to get rid of Nyquist frequencies),

one has

∀x ∈ Ω, uψ(x) = |û(0)|(−1)ε0

+
1

MN

∑
ξ∈Ω+

2|û(ξ)| cos(ψ(ξ) + 〈x, ξ〉) ,

where ε0 = 1ψ(0)=π, and Ω+ is a subset of Ω \ {0} that

contains one point from each pair of symmetrical points

of Ω, so that Ω = {0}∪Ω+∪(−Ω+) is a partition of Ω.

This formula shows that the phase randomization shifts

the placement of the cosine components of the signal so

that some oscillations will appear in the regions where

the original image was flat. Thus, it becomes natural to

expect the TV to increase greatly after phase random-

ization. This effect is striking on the one-dimensional

example given in Fig. 2. The authors of [3] derive from

this observation the following

Definition 2 (Global Phase Coherence [3]) The

global phase coherence of an image u is the number

GPC(u) = − log10 P(TV(uψ) ≤ TV(u)) . (4)

In other words, the higher the GPC, the smaller the

probability for TV to decrease by phase randomization.

Notice that this probability can be very small (10−1000

and even less), and thus out of reach of most computer

representations of floating point numbers (arithmetic

underflow). This is why the log10 function is introduced

in the definition (another reason is the nice interpreta-

tion of (minus) the logarithm of a probability in Infor-

mation Theory). Experimentally, it has been observed

that corrupting an image with blur or noise tend to de-

crease its GPC. Intuitively, when an image u is blurred,

its high-frequency components are attenuated, so that

the oscillations of the RPN realizations are smoother;

therefore, the TV increase entailed by the phase ran-

domization is expected to be less dramatic than in the

sharp case. Now, in a noisy image, the flat regions are

corrupted (by the noise) with high frequency variations

leading to a TV value which is already high, so that

the TV increase produced by the phase randomization

is smaller than in a clean image. For now, we have no

theoretical justification that goes beyond these heuris-

tic remarks, but they will be confirmed by a practical

study in Section 4.4.

The major drawback of Definition 2 is that no closed-

form formula is available to compute GPC(u) as an

explicit function of u, so that one has to use a com-

putationally heavy Monte-Carlo procedure to estimate

it. Assuming the distribution of TV(uψ) to be approx-

imately Gaussian, the authors of [3] suggested to ap-

proximate GPC(u) by (“ga” stands for Gaussian ap-

proximation)

GPCga(u) = − log10 Φ

(
µ0 − TV(u)

σ0

)
, (5)

where µ0 = E(TV(uψ)) , σ2
0 = Var(TV(uψ)) , (6)

and Φ is defined by (2). The values of µ0 and σ0 can be

estimated through N Monte-Carlo samples

TV
(
u
(1)
ψ

)
,TV

(
u
(2)
ψ

)
, . . . ,TV

(
u
(N)
ψ

)
of the r.v. TV(uψ), which leads to a numerical approx-

imation of GPC(u). Unfortunately, due to the fact that

each Monte Carlo sample requires the computation of a

Fourier transform, the resulting algorithm is quite slow

(even with a good C implementation, it takes about

one minute to obtain a merely decent estimate of the

GPC of a 512 × 512 image on a standard 3Ghz lap-

top). Let us mention that the Gaussian approximation

of TV(uψ) is analyzed theoretically in Appendix A and

Appendix B. From a numerical point of view, the qual-

ity of the Gaussian approximation can be evaluated by

a Monte-Carlo approach. Using N samples of uψ, one

can compute FN , the empirical estimate of the tail dis-

tribution of TV(uψ), and compare it to its Gaussian

counterpart Φ. We checked for N = 10, 000 and several

different images that ‖FN − Φ‖∞ < 0.01 .
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(a) House (b) Lena phase of (a) with modulus of (b)

Fig. 1 Phase and perceived geometric content. When an image is built (in Fourier domain) with the phase of an image
(a) and the modulus of an image (b), the perceived geometry is that of (a). This famous experiment of Oppenheim and Lim
[30] shows that the geometry of an image is mostly encoded in the phase component.
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Step function: TV = 2 After phase randomization: TV = 17.4

Fig. 2 Phase randomization of a step function. Notice the large increase of TV caused by phase randomization.

2.3 Sharpness Index

In a later work [4], a new measure of phase coherence

was introduced. It was noticed that when replacing the

random model uψ by u ∗W , that is, the convolution of

u with a Gaussian white noise W , the expectation and

variance of TV(u ∗W ) could be computed explicitly

as a function of u. Thus, with the same framework as

above, one can define

SI(u) = − log10 P(TV(u ∗W ) ≤ TV(u)) (7)

and, assuming as in [4] that the r.v. TV(u ∗W ) is ap-

proximately Gaussian,

Definition 3 (Sharpness Index [4]) The Sharpness

Index (SI) of an image u is

SI(u) = − log10 Φ

(
µ− TV(u)

σ

)
(8)

where Φ is defined by (2),

µ = E(TV(u ∗W )) , σ2 = Var(TV(u ∗W )) , (9)

and W is a Gaussian white noise with standard devi-

ation |Ω|−1/2 (that is, the r.v. W (x),x ∈ Ω are inde-

pendent with distribution N (0, |Ω|−1)).

There are several reasons to expect GPC and SI to

behave in the same way. First, the corresponding ran-

dom image models (RPN for GPC, Gaussian for SI)

are known to be close, both mathematically (they only

differ by a Rayleigh noise on the Fourier modulus) and

perceptually (see [16]). Second, it has been noticed ex-

perimentally in [4] that the values of µ0 (Equation (6))

and µ (Equation (9)) were very close in general (a rel-

ative error below 1%). In Appendix A, we confirm this

experimental observation by a precise asymptotic result

(Theorem 3) based on Berry-Esseen theorem.

The fact that TV(u ∗W ) is nearly Gaussian (which

is used without formal justification in [4]) can again be

confirmed by a Monte-Carlo estimation of the distribu-

tion of TV(u ∗W ). We also give an asymptotic proof

in Appendix B using a particular central limit theorem

devoted to sums of non-independent random variables

controlled by a dependency graph.

The great interest of SI over GPC is that it can

be computed with explicit formulae instead of a costly

Monte-Carlo simulation, as shown in

Theorem 1 ([4]) Let u : Ω → R be an image and

W : Ω → R be a Gaussian white noise with mean 0 and

standard deviation |Ω|−1/2. Then the first two moments

of TV(u ∗W ) (see (9)) are given by

µ = (αx + αy)

√
2

π

√
|Ω| , (10)
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σ2 =
2

π

∑
z∈Ω

α2
x · ω

(
Γxx(z)

α2
x

)
+ 2αxαy · ω

(
Γxy(z)

αxαy

)
+ α2

y · ω
(
Γyy(z)

α2
y

)
, (11)

where

α2
x = ‖∂xu̇‖22 =

∑
(x,y)∈Ω

|u̇(x+ 1, y)− u̇(x, y)|2 ,

α2
y = ‖∂yu̇‖22 =

∑
(x,y)∈Ω

|u̇(x, y + 1)− u̇(x, y)|2 ,

∀t ∈ [−1, 1], ω(t) = t arcsin(t) +
√

1− t2 − 1 , (12)

Γ (z) =

(
Γxx(z) Γxy(z)

Γyx(z) Γyy(z)

)
=
∑
y∈Ω
∇u̇(y) · ∇u̇(y + z)T .

Proof A short proof was given in [4]. In order not to

break the discussion about the different definitions of

phase coherence, we postpone the complete proof to

Appendix C. �

Remark: What happens if we replace the TV (l1-norm

of gradient) by the H1-norm (l2-norm of gradient) in

the definition of SI? With Parseval’s formula, one can

see that the H1-norm only depends on the Fourier mod-

ulus, so that it is not affected by the phase randomiza-

tion. Hence, the corresponding indices obtained with

the H1-norm are trivial. Considering another W 1,p-

norm (that is, the lp-norm of gradient) could be in-

teresting, but it is likely that the easiest calculations

are obtained with TV (p = 1).

2.4 A Simplified Version of SI

In [22], we suggested to approximate the denominator

of the fraction appearing in (8), which led us to a new

index (written S) that is analytically close to SI but

can be computed much faster. We will see empirically

later in Section 3 and Section 4 that S also behaves like

SI with respect to basic image transformations.

2.4.1 Definition of S

Lemma 1 The function ω defined by (12) satisfies

∀t ∈ [−1, 1],
1

2
t2 ≤ ω(t) ≤ 1

2
t2 + ct4 , (13)

where c = π−3
2 ≈ 0.0708 is the optimal (that is, mini-

mal) constant in (13).

Proof One has for all t ∈ [−1, 1],

ω′(t) = arcsin(t) =
∑
n≥0

(2n)!

22n(n!)2

(
1

2n+ 1

)
t2n+1 ,

(note that the series is absolutely convergent for |t| = 1

thanks to Stirling’s formula). After term-by-term inte-

gration, one can write

ω(t) =
∑
n≥0

(2n)!

22n(n!)2

(
1

2n+ 1

)(
1

2n+ 2

)
t2n+2 .

Noticing that t 7→ 1
t4 (ω(t) − 1

2 t
2) is an even function

which is increasing on [0, 1], the result follows by taking

c =
∑
n≥1

(2n)!

22n(n!)2

(
1

2n+ 1

)(
1

2n+ 2

)

= lim
t→1

ω(t)− 1
2 t

2

t4
= ω(1)− 1

2
=
π − 3

2
. �

The term (11) can thus be approximated by replac-

ing ω(t) by t2

2 . This leads to

σ2
a =

1

π

(
‖Γxx‖22
α2
x

+ 2 · ‖Γxy‖
2
2

αxαy
+
‖Γyy‖22
α2
y

)
, (14)

and to

Definition 4 (S index [22]) The simplified sharpness

index associated to an image u is

S(u) = − log10 Φ

(
µ− TV(u)

σa

)
,

where σa is given by (14), Φ by (2), and µ by (10).

2.4.2 Fast calculation

Since the last formula is now free of ω, the index S

is, compared to SI, simpler to understand (it only de-

pends on the autocorrelation gradient matrix through

its energy) and faster to compute. In Algorithm 1, we

can notice that the most costly step is the FFT com-

putation (2.a): once û is computed, the FFTs of the

two derivatives follow immediately (step 2.b), and the

FFTs of the cross-correlation of the derivatives (step

2.c) follow from, e.g.,

Γxx = ∂xu̇ ∗ ∂̃xu̇ ⇒ |Γ̂xx| = |∂̂xu̇|2 , (15)

with the convention that w̃(x) = w(−x). In the end,

the computation of S(u) requires only 1 FFT, whereas

3 more FFTs are required for SI(u). In both cases, how-

ever, the complexity is the same, O(MN log(MN)).
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Algorithm 1 : Computation of S(u)

1. Compute the derivatives ∂xu̇, ∂yu̇ and deduce their l1

and l2 norms

TV(u) , αx = ‖∂xu̇‖2 , αy = ‖∂yu̇‖2 .

2. Compute (in Fourier domain) the components of the
autocorrelation gradient matrix Γ :
2.a Compute the FFT û of u.
2.b Deduce the FFTs of the derivatives using∣∣∣∂̂xu̇(ξ)

∣∣∣2 = 2 sin2

(
πξ1

M

)
|û(ξ)|2 ,

∣∣∣∂̂yu̇(ξ)
∣∣∣2 = 2 sin2

(
πξ2

N

)
|û(ξ)|2 .

2.c Compute the moduli of the FFTs of Γxx, Γxy and
Γyy using

|Γ̂xx| = |∂̂xu̇|2, |Γ̂xy| = |∂̂xu̇||∂̂yu̇|, |Γ̂yy| = |∂̂yu̇|2.

3. Compute µ and σa with

µ = (αx + αy)

√
2

π

√
MN and

σ2
a =

1

πMN

(
‖Γ̂xx‖22
α2
x

+ 2 ·
‖Γ̂xy‖22
αxαy

+
‖Γ̂yy‖22
α2
y

)
.

4. Finally compute

S(u) = − log10 Φ

(
µ− TV(u)

σa

)
using, if required, the logerf function detailed in [21,
Algorithm 1].

2.4.3 Theoretical comparison with SI

We here investigate the quality of the approximation of

SI by S, showing that the fraction

va(u) =
µ− TV(u)

σa

is a good approximation of

v(u) =
µ− TV(u)

σ
.

Proposition 1 We have

0 ≤ va(u)− v(u)

va(u)
≤ 1− 1√

π − 2
≈ 0.064 . (16)

Proof We first show that

0 ≤ σ2 − σ2
a

σ2
a

≤ 2c = π − 3 ≈ 0.142 . (17)

With the expressions of σ and σa, one can write

σ2 − σ2
a =

2

π

∑
x∈Ω

α2
x

[
ω

(
Γxx(x)

α2
x

)
− 1

2

(
Γxx(x)

α2
x

)2
]

+2αxαy

[
ω

(
Γxy(x)

αxαy

)
− 1

2

(
Γxy(x)

αxαy

)2
]

+α2
y

[
ω

(
Γyy(x)

α2
y

)
− 1

2

(
Γyy(x)

α2
y

)2
]
.

Using Lemma 1, we thus obtain

∀t ∈ [−1, 1] , 0 ≤ ω(t)− 1

2
t2 ≤ ct4 ≤ ct2 ,

which implies

0 ≤ σ2 − σ2
a

≤ 2c

π

∑
x∈Ω

α2
x ·
(
Γxx(x)

α2
x

)2

+ 2αxαy ·
(
Γxy(x)

αxαy

)2

+ α2
y ·
(
Γyy(x)

α2
y

)2

,

and the right-hand term equals 2cσ2
a, which proves (17).

Now, since

v(u)

va(u)
=

(
1 +

σ2 − σ2
a

σ2
a

)−1/2
,

we get (16) as expected. �

Notice that (16) provides a simple universal bound

on the relative error va(u)−v(u)
va(u)

. Using the same tech-

nique, it could be possible to derive a sharper bound

depending on u.

To end this Section, let us recall the definitions of

SI, SI, and S.

SI(u) = − log10 P(TV(u ∗W ) ≤ TV(u))

SI(u) = − log10 Φ

(
µ− TV(u)

σ

)
S(u) = − log10 Φ

(
µ− TV(u)

σa

)
where Φ is given by (2), µ by (10), σ by (11),

and σa by (14).

3 Mathematical Properties

3.1 First properties

Proposition 2 The functions GPC, SI, SI, S are non-

negative and invariant with respect to affine contrast

changes, that is, for f ∈ {GPC,SI,SI, S}, one has

∀a, b ∈ R, a 6= 0, f(a · u+ b) = f(u) .
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Proof These properties directly result from the defini-

tions. �

Let us now explore the Fourier representation of the

random field u∗W . Its DFT is ûŴ . Since W is a Gaus-

sian white noise, Ŵ is a complex Gaussian white noise.

In particular, one can write

Ŵ (ξ) = |Ŵ (ξ)|eiψ(ξ)

where ψ is a random phase function in the sense of

Definition 1. Denoting by T the random image such

that T̂ = |Ŵ |, one has

u ∗W = uϕ+ψ ∗ T

where ϕ+ψ is also a random phase. Therefore, in com-

parison to the phase randomization model, the opera-

tion u 7→ u∗W also includes a convolution by an image

T whose Fourier transform is |Ŵ |. Following [11], we

can say that T is the white noise texton. Proposition 1

of [11] shows that, statistically, T looks like a Dirac

mass in zero (up to a factor
√
π/2). Hence, one can

expect that this convolution will not drastically mod-

ify the statistical properties of the model, and, subse-

quently, that SI(u) behaves like GPC(u). Incidentally,

the discussion above brings an interesting remark, for-

mulated by the following

Proposition 3 GPC(u), SI(u), SI(u), and S(u) only

depend on the modulus and the TV of u.

Proof For GPC(u) and SI(u), this is because the distri-

butions of uψ and u ∗W only depend on |û|. For SI(u)

and S(u) this is because the gradient autocorrelation

and energy only depend on |û|. �

Thus, all these indices measure the global phase co-

herence of an image u only by its impact on the TV,

in a way (a “scale”) that is determined by the modulus

of u. As we shall see later in Section 4, when an image

is filtered by a symmetrical kernel that has a positive

Fourier Transform (e.g., a Gaussian kernel), its phase

is not changed but the indices above tend to decrease

(with the exception of the Dirac image that will be dis-

cussed in Section 4.5).

Notice also that since we are using a periodic scheme

for TV, these indices take the same values on u and on

the periodic translation τ(a,b)u defined by

∀(x, y) ∈ Z2, τ(a,b)u(x, y) = u̇(x− a, y − b) .

3.2 Regularity, Analytical Difficulties

The expression for SI(u) in Theorem 1 is not defined

when u is a constant image. In that case, Equation (7)

implies that SI(u) is zero. It is not a big issue because

natural images are never really constant. Apart from

these singular points, one can state the following

Proposition 4 Let us introduce

D = {u ∈ RΩ , ‖∂xu̇‖2 6= 0 and ‖∂yu̇‖2 6= 0} and

D′ = {u ∈ RΩ , ∀x ∈ Ω, ∂xu̇(x) 6= 0 and ∂yu̇(x) 6= 0} .

The functions SI and S are defined and continuous on D

and infinitely differentiable on D′.

Proof Let us consider an image u ∈ D. Thanks to (15)

we have ‖Γxx‖2 6= 0, and similarly ‖Γxy‖2 6= 0 and

‖Γyy‖2 6= 0. Consequently, σ and σa are non-zero, and

SI(u) and S(u) are well-defined. Moreover, the conti-

nuity of SI and S follows from the one of αx, αy, Γ

and TV. For the second part, we simply notice that the

functions αx, αy, σ and σa are smooth on D, so the

singular points of SI and S are those of TV, that is, the

images that do not belong to D′. �

The fact that SI have singular points would not be

very embarrassing in an optimization perspective. In-

deed, several techniques are available to optimize non-

smooth quantities, in particular for convex functions

[12]. Unfortunately, the function SI is neither convex

nor concave, as shown in Fig. 3. For those reasons,

applying classical optimization techniques (like gradi-

ent or sub-gradient descent schemes) on SI may not

be efficient. We will overcome this difficulty in Sec-

tion 5 by considering simple generic algorithms relying

on stochastic optimization.
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Fig. 3 A one-dimensional profile of SI. This graph of
the function λ 7→ SI(λu1 + (1−λ)u2) (where u1 and u2 refer
to the images Lena and Barbara respectively) shows that SI
is neither convex nor concave.
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3.3 Distribution of GPC on a random phase field

We continue with an explicit statement that generalizes

a property mentioned (without proof) in [3].

Proposition 5 If U is a random image such that its

phase is uniform (in the sense of Definition 1) and in-

dependent of its modulus, then

∀t > 0, P(GPC(U) ≥ t) ≤ 10−t . (18)

Furthermore, if conditionally on |Û |, the r.v. TV(U)

admits a probability density function, then

∀t > 0, P(GPC(U) ≥ t) = 10−t , (19)

that is, 10−GPC(U) is uniform on [0, 1].

A consequence of (18) is that a texture obtained as

the realization of a RPN model or a stationary Gaussian

model is expected to have a small GPC value (that is,

below 3 or 4 in general), which is in accordance with the

fact that such texture models do not carry any phase

information. As concerns the hypothesis required for

the second part of Proposition 5, it may be satisfied as

soon as U is not constant almost surely, but we did not

find the proof of such a statement yet.

Proposition 5 can be obtained from the following

two Lemmas by considering conditional distributions

given |Û |. Lemma 2 is a general result about cumulative

distribution functions that is the key of the proof of

Lemma 3.

Lemma 2 If Y is a r.v. and F (v) = P(Y ≤ v), then

∀s ∈ [0, 1], P(F (Y ) ≤ s) ≤ s ,

and the equality holds for all s as soon as Y admits a

probability density function.

Proof This is a reformulation of Lemma 1 of [14].

Lemma 3 If u is an image and if ψ is a random phase

function (in the sense of Definition 1), then

∀t > 0, P(GPC(uψ) ≥ t) ≤ 10−t .

Furthermore, if the r.v. TV(uψ) admits a probability

density function, then

∀t > 0, P(GPC(uψ) ≥ t) = 10−t .

Proof Let us denote by Fu the cumulative distribution

function of the r.v. TV(uψ), defined by

∀t ∈ R, Fu(t) = P(TV(uψ) ≤ t) .

The definition of GPC implies that for any image u,

GPC(u) = − log10 Fu(TV(u)) .

Since the distribution of TV(uψ) only depends on the

modulus of u, we have Fu = Fuχ for any phase func-

tion χ. In particular, if ψ is a random phase function,

one can write

GPC(uψ) = − log10 Fuψ (TV(uψ)) = − log10 Fu(TV(uψ))

so that for all t > 0,

P(GPC(uψ) ≥ t) = P
(
Fu(TV(uψ)) ≤ 10−t

)
.

Because Fu is the cumulative distribution function of

TV(uψ), Lemma 2 allows us to conclude that this prob-

ability is smaller than 10−t. The equality case is ob-

tained similarly from the equality case of Lemma 2. �

Now we provide a similar result for the approxima-

tion GPCga of GPC defined in (5).

Proposition 6 Let u be an image and ψ a random

phase function (in the sense of Definition 1). Write

µ0 = E(TV(uψ)), σ2
0 = Var(TV(uψ)), and denote by

F̃u the tail distribution of the normalized r.v.

T =
µ0 − TV(uψ)

σ0
,

and by Gu the cumulative distribution function of the

r.v. 10−GPCga(uψ). If TV(uψ) admits a probability den-

sity function then

sup
s∈[0,1]

|Gu(s)− s| ≤ sup
t∈R
|F̃u(t)− Φ(t)| (20)

Proposition 6 shows that, in terms of the L∞ distance

between the cumulative distribution functions, the ap-

proximation of 10−GPCga(uψ) by the uniform distribu-

tion on [0, 1] is at least as good as the Gaussian approx-

imation of TV(uψ).

Proof One can remark that

10−GPC(u) = P
(
µ0 − TV(uψ)

σ0
≥ µ0 − TV(u)

σ0

)
= F̃u

(
µ0 − TV(u)

σ0

)
.

Moreover, we have by definition

10−GPCga(u) = Φ

(
µ0 − TV(u)

σ0

)
.

Since F̃u, µ0 and σ0 depend on u only through its mod-

ulus, we also have

10−GPC(uψ) = F̃u

(
µ0 − TV(uψ)

σ0

)
and 10−GPCga(uψ) = Φ

(
µ0 − TV(uψ)

σ0

)
.
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In particular,∣∣∣10−GPC(uψ) − 10−GPCga(uψ)
∣∣∣ ≤ ε ,

where ε = supt∈R |F̃u(t)−Φ(t)|. Since we assumed that

TV(uψ) admits a probability density function, Lemma 3

ensures that the r.v. X = 10−GPC(uψ) follows the uni-

form distribution on (0, 1). So we have almost surely∣∣∣X − 10−GPCga(uψ)
∣∣∣ ≤ ε ,

where X is uniform on (0, 1), which implies the inequal-

ity (20) for the cumulative distribution functions. �

Notice that the result of Proposition 5 does not ex-

tend to SI. Actually, one can see empirically in Fig. 4

that it neither extends to SI or S. Let us try to under-

stand this by considering the distribution of

SI(uψ) = − log10 Φ

(
µ− TV(uψ)

σ

)
where µ = E(TV(u ∗W )) and σ = Var(TV(u ∗W )).

Once more, one can assume that TV(uψ) is nearly Gaus-

sian. Concerning the first moment, it has been observed

numerically in [4] that E(TV(uψ)) ≈ E(TV(u ∗ W ))

(this approximation is mathematically investigated in

Appendix A). Concerning the variance of TV(uψ), how-

ever, numerical simulations indicate that it significantly

differs (by a factor 7-8 in general [4]) from that of

TV(u∗W ). A consequence is that the r.v.G =
µ−TV(uψ)

σ

has a distribution close to N (0, s2) for some s that is

not close to 1. Therefore, one cannot expect the distri-

bution of Φ(G) = 10−SI(uψ) to be close to the uniform

distribution on (0, 1). However, one can see in Fig. 4

that the sharpness values of random phase fields is in

general concentrated around 0.3.

To end this subsection, we mention (without proof)

another result concerning the RPN model.

Proposition 7 If u is an image and ψ a discrete ran-

dom phase field (in the sense of Definition 1), then

P(SI(uψ) ≥ SI(u)) = P(SI(uψ) ≥ SI(u))

= P(TV(uψ) ≤ TV(u)) = 10−GPC(u) . (21)

4 Phase Coherence Indices and No-Reference

Quality Assessment

This Section is devoted to the practical study of the

phase coherence indices. Since the computation of S is

the fastest of all, we led the experiments on it, but the

major part of what follows extends to GPC and SI.

4.1 Periodization

The index S deals more with the periodized image u̇

than with u itself. Actually, since a periodic translation

of u has no effect on S(u), a discontinuity of u on the

boundary has the same effect as if it were positioned in

the middle of the image. So the index S is affected, and

actually biased, by the discontinuities that generally

occur between two opposite boundaries of an image.

In [3], the authors suggest to compute the phase co-

herence index not on u, but on its periodic component

[28]. This operation subtracts from the original image

a smooth component that cancels border-to-border dis-

continuities.

Let us also mention that it is possible to replace in

Equation (1) the gradient, the TV, and the autocorre-

lation by their non-periodic counterparts. It leads to a

“Local Sharpness Index” [23] which is a little slower to

compute but naturally insensitive to border effects.

4.2 Quantization

Another classical operation that can bias the phase co-

herence is quantization. The gray levels of 8-bits natural

images are generally quantized on {0, 1, . . . , 255}, and

this quantization process creates artificially flat regions.

The contribution of those regions to the TV is exactly

zero, whereas it should be a small (but non-zero) num-

ber. To avoid that undesirable effect of quantization,

as suggested in [3], before computing these indices, one

can apply a sub-pixel translation of vector (1/2, 1/2),

with the following definition for the sub-pixel transla-

tion of vector (α, β),

∀ξ ∈ Ω, τ̂(α,β)u(ξ) = e−2iπ(αξ1M +
βξ2
N )û(ξ) . (22)

More generally, one could consider the sub-pixel-transla-

tion-invariant sharpness index

inf
(α,β)∈R2

S(τ(α,β)u) . (23)

Since τ(a,b)u and u have the same modulus, the vector

(α, β) corresponding to the minimum value of S(τ(α,β)u)

is actually the one that realizes the maximum value of

TV(τ(α,β)u). In practice, one can observe that, for most

natural images, this vector is usually near (1/2, 1/2),

which justifies the use of τ = τ(1/2,1/2) alone.

Another way to avoid the quantization bias on the

sharpness indices would be to consider

min
‖v−u‖∞≤q/2

S(v) , (24)

where q is the quantization step (q = 1 for integer-

valued images). Unfortunately, S may have a lot of local
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Fig. 4 Phase coherence indices of random phase fields. Each graph represents the estimated distributions (using the
same 10,000 samples) of the r.v. GPC(U), SI(U) and S(U). The size of the random image U is, respectively, 32 × 32 for the
left column, 128 × 128 for the middle column and 512 × 512 for the right column. For the first line, U is the random phase
noise (RPN) associated to the image Lena. For the second line, U is the asymptotic discrete spot noise (ADSN) u∗W where u
is again the image Lena. And for the third line, U is simply a white Gaussian noise (WGN). First, we observe as predicted by
Proposition 5 that the distribution of GPC(U) has density t 7→ log(10)10−t1t>0. Furthermore, we can also observe that the
distributions of SI(U) and S(U) appear similar but that they do not coincide with the one of GPC(U). Last, we can see that
on the RPN and ADSN models, the distributions of SI and S depend on the size of the random field, whereas they apparently
do not for the WGN model. However, the mean values of SI(U) and S(U) remain close to 0.3.

minima in the neighborhood {‖v−u‖∞ ≤ q/2} of u, and

it seems difficult to solve (24) by standard optimization

techniques.

To end this subsection, we would like to mention

that it makes sense to penalize the quantization through

the aliasing it produces in the image. The ideal solu-

tion to that would be to replace in our construction the

simple discrete TV by another TV operator which is

invariant by sub-pixel translation. Integrating such an

operator (for example, the one suggested in [27]) in our

model would be an interesting development. Consider-

ing (23) gives an alternative solution which, if u is a

natural image, can be approximated by S(τ(u)). Ulti-

mately, the (1/2, 1/2)-sub-pixel translation is a precise

and efficient solution to avoid the quantization bias.

In the experiments that are presented in the

following Sections, before computing the indices

SI and S, we extracted the periodic component

[28] of the image and applied to it a sub-pixel

translation of vector (1/2,1/2). Since the DFT of

the periodic component of u can be computed with one

FFT (see [28]), including these two preprocessing steps

yields an overall computation cost of 5 FFTs for SI and

2 FFTs for S.

4.3 Variations of S on natural images

Before we explore the links between the S index and

the perceived sharpness of an image, we give in Fig. 5

some examples of the values obtained for typical natural

images. Several observations can be made from these

examples, which are confirmed on larger image sets:

– the S index attains higher values for images that

present sharp edges and smooth regions at the same

time; conversely, out-of-focus images tend to pro-

duce relatively low values of S;
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– spectrally concentrated textures (in particular, pe-

riodic patterns like stripes) lead to surprisingly low

values of S, even if the texture patterns are made of

sharp edges;

– in general, S rapidly increases with the size of im-

ages, but since it is very content-dependent, coun-

terexamples (image parts whose S-value is greater

than the S-value of the whole image) can be found.

4.4 Influence of blur and noise

In [3] and [4], experiments show that even if the values

assigned to an image by GPC and SI can be quite dif-

ferent, both indices decrease when an image is degraded

with noise and/or blur. We here check that the same

property holds for the S index. Given an initial image

u, we computed S(κρ ∗ u + σn) for several values of ρ

(the level of blur) and σ (the level of noise), where the

Gaussian blur kernel κρ is defined in Fourier domain by

∀ξ ∈ Ω, κ̂ρ(ξ) = e−
1
2ρ

2‖ξ‖2 (25)

with ‖ξ‖2 = 4π2
(
ξ21
M2 +

ξ22
N2

)
, and n is a realization of a

white Gaussian noise with unit variance. The obtained

values were then averaged over 10 noise realizations,

yielding an estimate of the expectation map

(σ, ρ) 7→ E
(
S(κρ ∗ u+ σn)

)
.

The resulting blur-noise diagrams are displayed in Fig. 6

for the images Barbara and Lighthouse using a repre-

sentation by level curves (isovalues of S). We can ob-

serve that the S index, like GPC and SI, smoothly de-

creases with blur and noise, These diagrams are also

interesting because they show that S induces an (image-

dependent) equivalence between blur and noise. In the

case of Barbara for example, we can see that a Gaus-

sian blur of 1.5 pixel is, according to S, equivalent to a

Gaussian noise with standard deviation 12.6.

4.5 The Dirac paradox

Although it seems that for all natural images the value

of S decreases when the image is blurred, we found an

exceptional case where the opposite phenomenon hap-

pens for a very small level of blur. Indeed, if we con-

sider a Dirac image (a single bright pixel on a constant

background) and examine the evolution of S when it is

blurred by a Gaussian kernel with parameter ρ (as de-

fined in Equation (25)), it happens that S first increases

as ρ departs from 0, then decreases when ρ increases

further (Fig. 7). So far, we have not found a theoret-

ical explanation of this phenomenon. We can remark,
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Fig. 7 The Dirac paradox. Evolution of S and SI (vertical
axis) for a discrete Dirac image convolved with a Gaussian
kernel of width ρ (horizontal axis). Surprisingly, S and SI only
decrease after a certain critical value of ρ, which shows that
the Gaussian kernel that reaches the maximum value of S is
not the Dirac, but a slightly blurrier kernel (ρ ≈ 0.4 pixels).

however, that it is not really incompatible with the idea

that S is linked to image quality and our perception of

sharpness: since a Dirac image is aliased, one could con-

sider that a slightly smoother (and hence less aliased)

version is sharper (in the sense: more geometrically ac-

curate).

This kind of paradox raises interesting questions

linked to the aliasing-ringing-blur trade-off that must

face any image reduction (zoom out) algorithm [2]. What

is, among the images that represent a single light source

(in a sense to be defined), the one that maximizes the

value of S? (the experiment reported in Fig. 7 proves

that this is not a Dirac image). What is the unimodal

(increasing, then decreasing) one-dimensional signal that

maximizes the value of S? Notice that these questions

may be addressed numerically by using the stochastic

optimization framework that we describe in Section 5.

4.6 Sensitivity to ringing, parametric deconvolution

Suppose that we observe a blurry image v that is the

result of the convolution of a clean (unobserved) image

u0 with a Gaussian kernel (25), plus some (unknown)

noise. We can try to invert this blurring process by

using the special case of the Wiener filter obtained with

H1 regularization in a variational setting. Indeed, there

is a unique image uλ,ρ that minimizes the convex energy

‖κρ ∗ u− v‖22 + λ‖u‖2H1 , (26)

and it is explicitly given (thanks to Parseval’s formula)

in Fourier domain by

∀ξ ∈ Ω, ûλ,ρ(ξ) = v̂(ξ) · κ̂ρ
∗
(ξ)

|κ̂ρ|2(ξ) + λ‖ξ‖2
. (27)
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(a) SI = 943, S = 955 (b) SI = 679, S = 689 (c) SI = 115, S = 116

(d) SI = 155, S = 156 (e) SI = 31.0, S = 31.3 (f) SI = 709, S = 722 (g) SI = 4.80, S = 4.85 (h) SI = 333, S = 340

Fig. 5 Examples of values of SI and S for some natural images. One can observe that the values of SI and S are very
close, and tend to be small for out-of-focus images like (e) and in the case of a strong high-frequency spectral component (g).
Also, the order of magnitude of SI and S grows with the image size (compare the values for the 512× 512 images of the first
row to those of the 256× 256 images of the second row), but it may happen that a sub-part of an image has a larger value of
S (or SI) than the whole image, as in (c) and (h).
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Fig. 6 Blur-noise diagrams. Each diagram displays the isolevel curves of S obtained when a given image (Barbara on the
left, Lighthouse on the right) is degraded with a certain amount of blur (vertical coordinate) and noise (horizontal coordinate).
As expected, the largest value of S is obtained in each case at the origin (no blur, no noise), and decreases smoothly (in a
rather similar way) as the levels of blur and noise increase.

This deconvolution method has two parameters λ and ρ.

The first one λ, sets the importance of the regulariza-

tion term ‖u‖2H1 of (26) in comparison to the fidelity

term ‖κρ ∗ u− v‖22, so that if λ increases, the image is

more regularized. The balance between fidelity and reg-

ularization is an interesting problem which is encoun-

tered in several image processing tasks, but we will not

discuss it here. We decided to set λ = 0.01 which, in

our simulations, always gave satisfying results.

The second parameter ρ, however, is critical. If ρ

is underestimated, some blur remains; if it is overesti-

mated, spurious oscillations (called ringing) appear. As

we can see in Fig. 8, SI and S can be used in a very

simple way to design an automatic procedure that se-
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Fig. 8 Blur-ringing trade-offs. These diagrams plot the
values of SI (in green) and S (in red) of the H1 regularization
uλ,ρ defined by (27) with λ = 0.01, as functions of the param-
eter ρ (in pixels) for images Yale (left) and Barbara (right). SI
and S attain their maximum value for a very similar value of
ρ, which corresponds in each case to a good trade-off between
blur and ringing for these images (see Fig. 9).

lects an optimal value of ρ (in the sense of the quality of

the deconvolved image), because SI(uλ,ρ) and S(uλ,ρ)

are maximal for a value of ρ that corresponds very well

to the transition between blur and ringing (see Fig. 9).

This is quite a remarkable property, for classical im-

age quality indices (including the metric Q presented

below) are not sensitive to ringing artifacts in general

(see [5]).

4.7 Comparison with Zhu and Milanfar’s Q metric

In [40], Zhu and Milanfar proposed a sharpness met-

ric Q based on the singular values of the local gradient

field of the image. Given a patch p of the image, they

consider the two eigenvalues s1 ≥ s2 ≥ 0 of the gradi-

ent covariance matrix2 of p, and define from it the co-

herence R(p) = s1−s2
s1+s2

(linked to the anisotropy of the

patch p) and the image content metric Q(p) = s1R(p)

(which represents the energy in the local dominant ori-

entation). Then, from a set of nonoverlapping patches,

a subset P of anisotropic patches is extracted by thresh-

olding the coherence R, and the metric Q of the whole

image is defined as the mean value of Q(p) for p ∈ P.

Notice that when comparing the values of Q on different

(possibly noisy, blurred or restored) versions of a partic-

ular image, the same set of anisotropic patches must be

used. Since P is extracted from a set of nonoverlapping

patches, the computation time for Q is O(MN).

In particular, Zhu and Milanfar used Q to select

an optimal number of iterations in the steering ker-

nel regression (SKR) denoising algorithm of Takeda et

al. [35]. We reproduced the same experiment and com-

pared the effects of the Q and the S indices in Fig. 10.

2 The gradient covariance matrix of an image u is the value
at z = 0 of the gradient autocorrelation matrix Γ defined in
Theorem 1.
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(right) computed on the H1 regularization uλ,ρ defined by
(27) with fixed λ = 0.01 and varying ρ (horizontal axis), for
Lena image. One can see that S admits an optimal value
whereas Q does not. Therefore, contrary to S, the metric Q
cannot be used for parametric blind deblurring, as it does not
consider that ringing artifacts decrease image quality. This
limitation of Q is studied more deeply in [25].

Interestingly enough, the global behavior of both in-

dices is the same: as the level of denoising (that is,

the number of iterations in [35]) increases, both indices

grow, attain a maximal value, then decrease. However,

it can be observed that the S index attains its maxi-

mum value for a smaller number of iterations (8, versus

14 for Q). This effect is confirmed on other experiments

(not displayed here): the S index seems to consider that

at some point, the denoising structures left by the SKR

algorithm are sharp details and leads to a lower de-

noising level. This general behavior will be discussed

further in Section 4.8: an image process that creates

phase-coherent artifacts may increase the S index.

As the sharpness metrics SI and S, the Q metric is

sensitive to blur and noise. However, it is not sensitive

to ringing, so that the parametric deconvolution process

described in Section 4.6 cannot be achieved with the Q

index, as shown in Fig. 11. This is a crucial difference

between these two indices.

4.8 Perceptual sharpness and Visual Summation

Even if GPC, SI and S are sensitive to noise, blur and

ringing, we should not forget that they were initially

designed to measure phase coherence, and that it only

appears that they can be interpreted as image qual-

ity indices. Thus, contrary to image quality metrics de-

signed on purpose, there is no reason a priori that these

indices reflect accurately our visual perception of sharp-

ness. An interesting illustration of this is brought by

image compression. For example, JPEG compression is

known to produce artificial edges (in particular along

the boundaries of the 8× 8 blocks used for DCT), and

as these edges require global phase coherence, one can

logically expect them to produce high values of GPC,

SI and S. Fig. 12 confirms this analysis. Note, how-
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Original Wiener deconvolution (ρ = 0.7) Wiener deconvolution (ρ = 1)

Fig. 9 Parametric blind deconvolution using sharpness indices. On the first row, we can see the original Yale image
(left), and two Wiener-H1 deconvolution results obtained with a kernel width of ρ = 0.7 (middle) and ρ = 1 (right). Close-up
views of these three images are shown on the second row. The value ρ = 0.7, which maximizes the sharpness indices SI and S
(see Fig. 8), corresponds surprisingly well to the desired critical value that rules the transition between blur and ringing.
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Fig. 10 Parameter selection in SKR denoising: Q versus S. The plots on the left report the evolution of Q and S as
functions of the number of iterations in the SKR denoising. The input is the image Cheetah corrupted by a white Gaussian
noise with standard deviation 18. Both indices are able to select an optimal number of iterations, and the resulting images
are shown in the middle column (with some close-up views on the right). Note that the residual phase-coherent artifacts left
by the SKR algorithm are considered as sharp by the S index, which thus selects a number of iterations that is significantly
smaller. In that particular application, the Q metric is best suited to denoise uniform zones, while the S index leads to better
texture preservation.
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Fig. 12 Sharpness indices and JPEG compression.
These diagrams show the evolution of SI (in green) and S
(in red) when an image (respectively, Barbara on the left,
and House on the right) is compressed using the JPEG stan-
dard. The horizontal scale refers to the JPEG quality pa-
rameter. One can see that S and SI do not reflect our per-
ception of image quality in this case: they increase as the
image compression rate increases. This phenomenon, due to
the artificial phase coherence brought by the image uncom-
pression scheme, could be avoided by considering instead, for
a given compressed image, the minimum sharpness of all pos-
sible original images.

ever, that one could probably adapt the sharpness in-

dices we defined to reflect more accurately the quality

of compressed images. One possible solution would be

to define the sharpness SC(a) of a compressed image

a = C(u) (here C denotes the compression operator)

by the minimum sharpness found among all possible

uncompressed versions of a, that is

SC(a) = min
v,C(v)=a

S(v).

Such a definition could reflect more accurately our per-

ception of image quality, and would in particular satisfy

the desirable property SC(C(u)) ≤ S(u) (that is, com-

pression cannot increase image quality).

If we follow the idea of relating the sharpness in-

dices GPC, SI and S to perceptual sharpness, the issue

of normalization with respect to image size must be ad-

dressed. As we saw in Section 4.3, these indices tend to

grow rapidly with the size of an image, which does not

really correspond to our visual perception. One possi-

bility to deal with this problem could be to use a “visual

summation” principle [37], and define the overall sharp-

ness of an image as the maximal sharpness of all its

fixed-size (say, 32× 32) sub-parts. A less extreme vari-

ant could be to weight the sharpness of each sub-part

by some sort of saliency measure. These solutions would

solve the size-dependence issue, and thus probably in-

crease the similarity between the proposed indices and

our visual perception of sharpness. However, the ob-

tained indices would be analytically more complicated

and probably less stable when addressing restoration

problems like the blind deblurring application we con-

sider in the next Section.

5 An Application to Blind Deblurring

In Section 4.6, we saw that the S index could be used

to select a parameter in a deconvolution process. In

this Section, we will show that it can drive much more

general blind deblurring algorithms. Blind deblurring

consists in sharpening an image without knowing pre-

cisely the blurring process involved in the image acqui-

sition. We here focus on linear and spatially-invariant

blur, which can be modeled by a convolution operator.

There is an abundant literature on that subject, and

regular advances. We will compare the results we ob-

tain with the method recently proposed by Levin et al.

[24], which can produce impressive results.

To design blind deblurring algorithms based on the

S index, we will follow the general scheme proposed

in [4]. Let us denote by u0 the image to recover, by ϕ an

unknown convolution kernel and by n an additive noise.

Instead of trying to recover the kernel ϕ and then invert

the image formation process u = ϕ ∗ u0 + n, we will se-

lect a restoration kernel k that maximizes S(k ∗ u), the

sharpness of the restored image k∗u. In this framework,

k can be interpreted as a regularized inverse of ϕ that is

supposed to mitigate the effects of the noise. Of course,

the linearity of the deblurring process is a limitation of

this approach, but as we shall see, a well-chosen linear

filter may perform surprisingly well compared to more

sophisticated non-linear image transforms. Moreover,

linearity has several advantages like stability, computa-

tional efficiency, and the fact that deconvolution arti-

facts (and in particular the effect on noise) are much

better understood in the linear case.

5.1 Remarks on k 7→ S(k ∗ u)

As mentioned above, the idea underlying the algorithms

that will follow is the maximization of the function

Fu : k 7→ S(k ∗ u) (28)

on a given set K of deconvolution kernels. Since the

function S is quite singular, it is worth discussing the

existence of maxima. First, Proposition 4 ensures that,

as soon as the set {k ∗ u , k ∈ K} does not contain any

image which is constant in the x or y direction, Fu is

continuous onK. Moreover, since S(λk∗u) = S(k∗u) for

any λ 6= 0, the maximization of Fu can be equivalently

realized on the bounded set

K′ = {k/‖k‖2, k ∈ K}.

Thus, if K′ is closed (which is an easily achievable con-

dition), Fu has to be maximized on a compact set and

we can thus guarantee the existence of a solution. It



16 Sharpness metrics exploiting Fourier phase information

seems difficult to obtain any guarantee of uniqueness

in general (recall that the function S is not concave),

but we can at least hope to design algorithms that con-

verge to an interesting local maximum of Fu. Among

them, Algorithm 2 below (a direct adaptation of the

algorithm proposed in [4]) is very flexible since it can

handle various types of kernels, as we will see in the

next Subsections.

Algorithm 2

– Begin with k = δ0
– Repeat n times

B Define k′ from a random perturbation of k

B If S(k′ ∗ u) > S(k ∗ u) then k ← k′

– Return k and k ∗ u

5.2 Kernels with compact support

A first interesting case is the set of symmetric kernels

with a fixed support, e.g. a 11 × 11 square . One pos-

sible perturbation strategy at each iteration consists

in adding a random number uniformly distributed in

[−α, α] (say, α = 0.05) to a randomly chosen coeffi-

cient of the kernel (see [4]). As shown in Fig. 13, this

simple stochastic algorithm already gives interesting

sharpening results. However, it may also lead to fail-

ure cases, in particular when the image contains some

high-frequency structured textures [22]. We believe that

these failure cases are mostly due to the fact that this

set of kernels contains candidates which are not plausi-

ble as deconvolution kernels.

5.3 Kernel with a radial-unimodal Fourier transform

To cope with the failure cases of fixed support kernels,

we suggested in [22] to consider another class of kernels,

whose shape is built in Fourier domain by rotating a

radial profile defined by d values

r(0) = 1, r(1), r(2), . . . , r(d− 2), r(d− 1) = 0.

More precisely, we consider the deconvolution kernel kr
defined in Fourier domain by

k̂r(ξ1, ξ2) = Lr

(
(d− 1)

√
2

(( ξ1
M

)2
+
( ξ2
N

)2) )
,

where Lr : [0, d − 1] → R denotes the piecewise affine

interpolation of r. We also suggested to constrain the

discrete profile r to be unimodal, which means that

there exists a value m such that

∀i < m, r(i+ 1) ≥ r(i) , and ∀i ≥ m, r(i+ 1) ≤ r(i) .

Fig. 13 Blind deblurring results obtained by running Al-
gorithm 2 on the set of 11× 11 kernels. The original (unpro-
cessed) images are shown on the left column (from top to bot-
tom: Yale, Caps (cropped), Room), and the sharpened images
are displayed on the right column. In the first two cases, the
output image is sharper than the original one and presents
a limited quantity of ringing artifacts. However, the result is
not satisfactory for the Room image.

The set U of unimodal profiles is rich enough to provide

interesting deblurring kernels, and constrained enough

to limit distortions in Fourier domain (as large differ-

ences in the amplification factor applied to neighbor-

ing frequencies tend to produce ringing artifacts). In

practice, enforcing the unimodality constraint (by per-

forming a projection on U for example) appeared to be

rather inefficient in terms of convergence, and we chose

to relax the constraint by incorporating the Euclidean

distance3 d(r, U) between r and the set U in the objec-

tive function. We also decided to constrain the profile

r to be smooth with the additional term

‖r‖2H1 =

d−2∑
i=0

(
r(i+ 1)− r(i)

)2
.

3 See Appendix D for the numerical computation of d(r, U).
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Finally, the function to optimize is

Fu(r) = S(kr ∗ u)− λum d(r, U)− λreg ‖r‖2H1 , (29)

where λum and λreg are two weighting parameters. The

maximization of Fu is realized with Algorithm 3.

Algorithm 3

– Initialize r with the piecewise affine profile de-

fined by r(0) = 1, r(minit) = 2, and r(d−1) = 0.

– Repeat n times

B Pick a random index i ∈ {1, 2, . . . d− 2}
B Draw a uniform random value ε ∈ [−a/2, a/2]

B Set r′ ← r, and then r′(i)← r(i) + ε

B If Fu(r′) > Fu(r) then r ← r′

– Return r, kr and kr ∗ u

We observed in practice that Algorithm 3 reached a

stable state in less than 10000 iterations (which, on a

512×512 image takes about 4 minutes with a parallel C

implementation using a dual-core processor). Although

Fu may have several local maxima, several realizations

of the algorithm would always return approximately the

same profile r, which demonstrates its stability.

Algorithm 3 involves several constants (λum, λreg,

d, minit, n, a), but in practice only λreg is a real pa-

rameter. The value d can be set to 20, which achieves

a goof trade-off between the dimension of the param-

eter space and the accuracy of the radial profile. The

setup a = 0.1 led to an efficient proposition strategy

in all cases. As mentioned before, the value n = 10000

seems to be sufficient for convergence, in the sense that

the average rate of convergence
∥∥∥ rnew−roldrold

∥∥∥
∞

was in

general less than 10−3 after 10000 iterations. To force

r to be as close to unimodal as possible, we affected to

λum a high value (10000 in our experiments); we could

have made it grow to +∞ in the last iterations. As con-

cerns minit (the initial mode index), we observed that

the different possibilities of initialization (any integer

between 1 and d − 2) could lead to two (or three in a

few cases) different radial profiles. A systematic strat-

egy would be to try all these indices and select the one

leading to the maximum value of Fu. In practice, we

observed that this maximum value was obtained for an

index minit ∈ [d/4, 3d/4]. Besides, in the case where

2 or 3 different radial profiles were obtained (depend-

ing on the initialization), we observed that they lead

to similar deblurring results. For the sake of simplicity,

all the experiments shown in this paper were run with

minit = d/4 (that is, 5).

In Fig. 14, we show some results obtained with Al-

gorithm 3 (for λreg = 0) on the original images Yale

and Barbara (no blur or noise added). In both cases,

the resulting image is clearly sharper than the origi-

nal one and the edges are nicely enhanced, even on the

image Barbara which is a difficult case for it contains

high-frequency textures.

To assess more precisely the performances of Algo-

rithm 3, we also ran it on artificially degraded images.

We transformed each original image u0 into a blurry

and noisy image

u = κ1 ∗ u0 + n , (30)

where κ1 is the Gaussian kernel (25) obtained for ρ = 1

and n is a realization of a Gaussian white noise with

standard deviation σ = 1. This setup allowed us to

build two oracle deblurring filters: the Wiener filter (27)

associated to the (supposedly unknown) kernel κ1, and

the oracle radial filter minimizing the expected l2 risk,

defined by

k0 = arg min
kr

E
(
‖u0 − kr ∗ (κ1 ∗ u0 +W )‖2

)
, (31)

where W is a white Gaussian noise with variance σ2 = 1

and the arg min is taken over all kernels kr obtained

from an arbitrary radial profile r with d points4.

A comparison of the effect of these filters (including

Algorithm 3 with several values of the λreg parame-

ter) is shown on Parrots image in Fig. 15. We can see

that Algorithm 3 manages to find a kernel that is close

to the Wiener filter associated to the true level of blur

(ρ = 1). The oracle output reveals slightly more details,

but also leaves on the image some undesirable struc-

tured noise (which is not costly for the l2 risk function

that it optimizes). The comparison with [24] is also in-

teresting: compared to Algorithm 3, it manages to clean

uniform zones better, but tends to reveal less details in

more complex areas (geometric structures or textures).

In terms of PSNR (which use is questionable since the

original image itself could be noisy and blurry), Algo-

rithm 3 performs better (for λreg = 10) that [24] and

the Wiener oracle, but does not attain the ultimate per-

formance given by the oracle radial filter.

To end this Section, we now discuss the influence

of the regularity parameter λreg. As expected, increas-

ing λreg tends to smooth the radial profile r (see Fig.

15 and 16). One can also see that this regularity prior

constrains the overall energy of the kernel, so that when

λreg increases, the kernel values tend to decrease. The

Room image (see Fig. 16) is difficult to process because

it contains different high-frequency textures that are

likely to produce ringing artifacts. In this particular

4 The computation of this oracle kernel is detailed in Ap-
pendix E.
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Fig. 14 Blind deblurring of unprocessed images. Algorithm 3 is applied (with λreg = 0, and n = 10000 iterations) to
the images Yale (top 2 rows) and Barbara (bottom rows). In each case, the obtained radial profile r is displayed, as well as
the Fourier transform of the corresponding deconvolution kernel kr. It is interesting to observe the stability of the proposed
algorithm: the deblurred images are much sharper than the original ones, but do not present ringing artifacts or excessive noise
amplification. Notice also how the deconvolution kernel adapts itself to each image, leading, in the case of Barbara, to a quite
irregular profile.
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Fig. 15 Blind deblurring of a blurry and noisy version of Parrots. The first row displays the degraded image (used
as input), and the deblurred image obtained with Levin et al. algorithm [24]. Each other row is devoted to a different linear
algorithm based on a radial kernel (in each case, the radial profile and the Fourier transform of the kernel are displayed). The
PSNR values are computed with respect to the original Parrots image. The result obtained with Levin et al. algorithm is
cleaner in uniform regions, but slightly less detailed than the one obtained with Algorithm 3 when λreg = 10. Notice also the
similarity between the filter obtained with λreg = 10 and the Wiener oracle filter. Algorithm 3 was used with 10000 iterations.
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case, the regularity constraint is mandatory: the dis-

appointing result obtained for λreg = 0 is greatly im-

proved for λreg = 100. For the other images we consid-

ered (and that are not displayed here), we noticed that

the choice λreg = 100 always led to visually satisfying

results, and λreg ∈ [0, 25] gave even better results with

images that were not too prone to ringing artifacts.

6 Perspectives

In this paper, we discussed and compared the phase

coherence indices GPC, SI and S, and provided some

mathematical results as well as several experiments de-

monstrating their usefulness for no-reference image qual-

ity assessment and blind deblurring. The more explicit

and simple variants SI and S are clearly an improve-

ment over the original GPC, but many questions re-

main. The decrease of these indices with respect to

noise and blur is easy to check numerically, but a math-

ematical proof is still to be established. Also, it would

be interesting to understand, from an analytical (non-

probabilistic) point of view, why the formulae obtained

for SI and S are efficient for image quality assessment

and blind deblurring. This could be a way to design

non-probabilistic variants, very different from classi-

cal analytical regularizers like TV or more generally

sparsity-promoting priors. The optimization of S also

brings interesting issues, and it seems very likely that

the simple iterative stochastic optimization we proposed

could be greatly improved, which should increase even

further the attractiveness of these indices.

Software resources

Source codes to compute the GPC, SI and S metrics

and images files used in the experiments are freely avail-

able on the web page

http://www.mi.parisdescartes.fr/∼moisan/sharpness/

Appendices

A Estimation of the mean TV of a RPN

We saw in Theorem 1 (Equation (10)) that

E(TV(u ∗W )) = (αx + αy)

√
2

π

√
MN . (32)

The right-hand term of (32) appears to be a good approx-
imation of E(TV(uψ)), that is, the mean TV in the RPN
model. As noticed in [4], for most images the relative error

is around 1% or below. In this Appendix, we will exhibit an
upper bound of the absolute difference.

With the definition of TV, one can write

E(TV(uψ)) =
∑
x∈Ω

E|∂xu̇ψ(x)|+ E|∂yu̇ψ(x)|

so that it is sufficient to show that E|∂xu̇ψ(x)| ≈ αx
√

2
πMN

for each x ∈ Ω. This will follow from a Gaussian approxima-
tion of ∂xu̇ψ(x) which implies

E(|∂xu̇ψ(x)|) ≈
√

2

π

√
E((∂xu̇ψ(x))2) (33)

(notice that the equality holds for a zero-mean Gaussian r.v.,
as shown by Lemma 4 of Appendix C).

With the Fourier reconstruction formula, one can write
that for all x ∈ Ω,

∂xu̇ψ(x) =
1

MN

∑
ξ∈Ω

|û(ξ)|eiψ(ξ)ei〈x,ξ〉(e
2iπx1
M − 1) . (34)

For any x ∈ Ω, the set (eiψ(ξ)ei〈x,ξ〉)ξ∈Ω is a random phase
field. It follows that the r.v. |∂xu̇ψ(x)| are identically dis-
tributed, but they are not independent a priori. This is why
we cannot use the central limit theorem directly on the sum∑

x∈Ω |∂xu̇ψ(x)| . Instead we will use a Gaussian approxi-
mation of each ∂xu̇ψ(x) in order to derive a bound for the
Gaussian approximation of

∑
x∈Ω |∂xu̇ψ(x)|.

The Gaussian approximation of ∂xu̇ψ(x) will be precised
with a Berry-Esseen theorem. First, to cope with the Hermi-
tian dependence, we have to introduce a subset Ω+ of Ω that
contains exactly one point in each pair of symmetrical points,
that is, such that

Ω \ {0,ηx,ηy,ηxy} = Ω+ ∪ (−Ω+)

and the union is disjoint. To make the following proof lighter,
we will assume that if they exist, the Nyquist coefficients
û(ηx), û(ηxy), and û(ηy) are equal to zero (in general, in
natural images these coefficients are very small). Then we
can write

uψ(x) = |û(0)|(−1)ε0 +
1

MN

∑
ξ∈Ω+

2|û(ξ)| cos(ψ(ξ)+ 〈x, ξ〉) ,

and therefore

uψ(x1 + 1, x2)− uψ(x1, x2) =
1

MN

∑
ξ∈Ω+

Xξ ,

where we set for all ξ ∈ Ω+,

Xξ = 2|û(ξ)|
(

cos
(
ψ(ξ) + 〈x, ξ〉+

2πξ1

M

)
− cos

(
ψ(ξ) + 〈x, ξ〉

))
= −4|û(ξ)| sin

(
ψ(ξ) + 〈x, ξ〉+

πξ1

M

)
sin
(πξ1
M

)
.

Since the Xξ are independent and centered r.v., we can ap-
ply the following generalization of Berry-Esseen Theorem (for
non identically distributed r.v.):

Theorem 2 (Berry-Esseen, 1942) Let X1, . . . , Xn be in-
dependent and centered r.v. in L3. Let us denote σ2

i = E(X2
i )

and ρi = E(|Xi|3). Let Fn be the cumulative distribution
function of

X1 + . . .+Xn

(σ2
1 + . . .+ σ2

n)1/2
.
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Fig. 16 Blind deblurring of the original Room image for three different levels of regularization of the Fourier profile.
On the top row, we display a close-up of the result of the blind deblurring Algorithm 3, which selects (and applies) an optimal
radial convolution filter (the corresponding radial profile is shown on the bottom row in each case). The strong ringing artifacts
that appear for λreg = 0 (left column) are greatly attenuated for λreg = 25 (middle) and disappear almost completely for
λreg = 100. On this kind of images presenting a strong high-frequency content (here, the stripes of the piece of clothing in
particular), the parameter λreg plays a crucial role. Algorithm 3 was used with 10000 iterations.

Then there exists a positive universal constant C0 such that

∀t ∈ R, |Fn(t)− P(Y ≤ t)| ≤ C0ψ0

where Y ∼ N (0, 1) and ψ0 =

(
n∑
i=1

σ2
i

)−3/2( n∑
i=1

ρi

)
.

Concerning the value of C0, some recent papers (e.g. [33])
have shown that the best constant C0 is below 0.56.

Let us apply this theorem to the r.v. Xξ, ξ ∈ Ω+. Remark
that if the r.v. U is uniformly distributed on [0, 2π], then
E(sin2(U)) = 1

2
and E(| sin(U)|3) = 4

3π
. Thus, we have for all

ξ ∈ Ω+,

σ2
ξ := E(X2

ξ) = 8|û(ξ)|2 sin2

(
πξ1

M

)
,

ρξ := E(|Xξ|3) =
44

3π
|û(ξ)|3

∣∣∣∣ sin(πξ1M
)∣∣∣∣3 .

Consequently,∑
ξ∈Ω+

σ2
ξ =

∑
ξ∈Ω+

8|û(ξ)|2 sin2

(
πξ1

M

)

=
∑
ξ∈Ω

4|û(ξ)|2 sin2

(
πξ1

M

)
=
∑
ξ∈Ω

|û(ξ)|2
∣∣∣e 2iπξ1

M − 1
∣∣∣2 =

∥∥∂̂xu̇∥∥22 = MN‖∂xu̇‖22 ,

and∑
ξ∈Ω+

ρξ =
44

3π

∑
ξ∈Ω+

|û(ξ)|3
∣∣∣∣ sin(πξ1M

)∣∣∣∣3 =
128

3π

∥∥∂̂xu̇∥∥33 .

Hence, noticing that

1
√
MN‖∂xu̇‖2

∑
ξ∈Ω+

Xξ =

√
MN

‖∂xu̇‖2
∂xu̇ψ(x) ,

and setting

ψ0 =
K(u)

(MN)3/2
with K(u) =

128
3π

∥∥∂̂xu̇∥∥33
‖∂xu̇‖32

,

Theorem 2 ensures that for all t ∈ R,∣∣∣∣∣P
( √

MN

‖∂xu̇‖2
∂xu̇ψ(x) ≥ t

)
− P(Y ≥ t)

∣∣∣∣∣ ≤ C0K(u)

(MN)3/2
. (35)

Now, we write

E

( √
MN

‖∂xu̇‖2
|∂xu̇ψ(x)|

)
=

∫ +∞

0

P

( √
MN

‖∂xu̇‖2
|∂xu̇ψ(x)| ≥ t

)
dt ,

and E(Y ) =

∫ +∞

0

P(Y ≥ t) dt ,

and we split the integral into two parts :
∫+∞
0

=
∫A
0

+
∫+∞
A

.
Inequality (35) can be integrated between 0 and A to give

an upper bound of
∫A
0

, whereas the tail
∫+∞
A

can be treated
using Bienaymé-Tchebitchev inequality:

P

( √
MN

‖∂xu̇‖2
|∂xu̇ψ(x)| ≥ t

)
≤

1

t2MN‖∂xu̇‖22
E

 ∑
ξ∈Ω+

Xξ

2

=
1

t2MN‖∂xu̇‖22

∑
ξ∈Ω+

σ2
ξ =

1

t2
.
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Putting the two terms together, we have for all A > 0,∣∣∣∣∣E
( √

MN

‖∂xu̇‖2
|∂xu̇ψ(x)|

)
− E(|Y |)

∣∣∣∣∣ ≤ 2C0K(u)

(MN)3/2
A+

2

A
,

and then, choosing the best A,∣∣∣∣∣E
( √

MN

‖∂xu̇‖2
|∂xu̇ψ(x)|

)
−
√

2

π

∣∣∣∣∣ ≤ 4

√
C0K(u)

(MN)3/4
.

Therefore, for all x,∣∣∣∣∣E(√MN |∂xu̇ψ(x)|
)
− αx

√
2

π

∣∣∣∣∣ ≤ Cx(u)

(MN)3/4
,

where Cx(u) = 4
√
C0

√√√√ 128
3π

∥∥∂̂xu̇∥∥33
‖∂xu̇‖2

.

Recalling that αx = ‖∂xu̇‖2, one has∣∣∣∣∣E(‖∂xu̇ψ‖1)− αx√MN

√
2

π

∣∣∣∣∣
≤

1
√
MN

∑
x∈Ω

∣∣∣∣∣E(√MN |∂xu̇ψ(x)|
)
− αx

√
2

π

∣∣∣∣∣
≤

1
√
MN

∑
x∈Ω

Cx(u)

(MN)3/4
,

and thus,∣∣∣∣∣E(‖∂xu̇ψ‖1)− αx√MN

√
2

π

∣∣∣∣∣ ≤ Cx(u)

(MN)1/4
. (36)

Finally, we obtain the following

Theorem 3 If ψ is a discrete random phase field, then∣∣∣∣∣E(TV(uψ)
)
− (αx + αy)

√
MN

√
2

π

∣∣∣∣∣ ≤ Cx(u) + Cy(u)

(MN)1/4
,

where ∀a ∈ {x, y}, Ca(u) = 32

√
2C0

3π

√√√√∥∥∂̂au̇∥∥33
‖∂au̇‖2

.

Theorem 3 provides an explicit bound on the absolute
error between the mean TV of a RPN and the exact formula
(32) obtained for the associated Gaussian field, but this error
bound depends on the considered image and all terms tend
to increase with the image size. We can write a normalized
inequality by dividing (36) by αx

√
2MN/π, so that∣∣∣∣∣E

(
‖∂xu̇ψ‖1

)
αx
√
MN

√
π

2
− 1

∣∣∣∣∣ ≤ cx(u) , (37)

where the relative error bound is now

cx(u) :=
32

(MN)3/4

√
C0

3

√√√√∥∥∂̂xu̇∥∥33
‖∂xu̇‖32

= 32

√
C0

3

√√√√∥∥∂̂xu̇∥∥33∥∥∂̂xu̇∥∥32
(of course, one would obtain a similar inequality for the y
component).

Taking C0 = 0.56, one can compute values of cx for dif-
ferent natural images. For example, cx(u) ≈ 1.025 for the
512×512 Lena image, while cx(u) ≈ 0.337 for the 13 Mpixels

Lotriver image5. The bound is quite useless for Lena, and still
far from sharp for Lotriver (numerical computations seem to
indicate that the true values of the left-hand term of (37) are
below 10−4 for these two images).

Even if it does not provide an accurate error bound, The-
orem 3 remains interesting because it indicates that (32) pro-
vides the correct asymptotical estimate of the mean TV of
a RPN when the image size tends to infinity. Indeed, it has
been known for a long time that natural images statistically
exhibit a power-law Fourier spectrum (see [8] and other ref-
erences in [31]), that is,

|û(ξ)| ∝ |ξ|−α (38)

in average, where α is a bit larger than 1 in general. Using
(38) in the expression of cx above, one easily obtains that
for a R × R image, cx ∝ R−1/2 as R → ∞, provided that
α < 5/3. This suggests that the bound cx tends to decrease
to 0 when the size of the considered image increases.

B Gaussian approximation of TV(W )

We would like to prove that TV(uψ) and TV(u∗W ) approxi-
mately (or asymptotically) follow Gaussian distributions. Un-
fortunately, as we already said in the previous Appendix, we
cannot apply a classical central limit theorem because the
r.v. appearing in the TV formula are not independent. These
dependencies introduce a lot of difficulties and this is why
we shall here focus on a much simpler problem, that is, the
asymptotical distribution of TV(W ) (which is the TV of the
Gaussian model in the particular case u = δ0).

Proposition 8 Let (Ωn)n≥0 be a sequence of rectangular
domains of Z2 such that |Ωn| → ∞ when n tends to ∞,
and let (Wn(x))x∈Ωn be a set of i.i.d. r.v. with distribution
N
(
0, |Ωn|−1/2

)
. Then one has

TV(Wn)− E(TV(Wn))
d−→ N (0, σ2) , where

E(TV(Wn)) =
4|Ωn|1/2√

π
and σ2 =

8

π

(
ω(1) + 6 · ω

(1

2

))
.

To prove this result, we will use the central limit theorem
given in [18], which applies to a set of r.v. whose dependencies
are controlled through their dependency graph.

Definition 5 ([18]) A graph Γ is a dependency graph for a
set of r.v. if the following two conditions are satisfied:

1. There exists a one-to-one correspondence between the r.v.
and the vertices of the graph.

2. If V1 and V2 are two disjoint sets of vertices of Γ such
that no edge of Γ has one endpoint in V1 and the other
in V2, then the corresponding sets of r.v. are independent.

Now we can recall the

Theorem 4 (Janson [18]) Suppose, for each integer n,
that (Xn,i)i=1,...,Nn

is a set of r.v. satisfying |Xn,i| ≤ An
a.s. for all i. Suppose further that Γn is a dependency graph
for this set and let Mn be the maximal degree6 of Γn (un-
less Γn has no edges at all, in which case we set Mn = 1).

5 This image is available on the web site
http://www.mi.parisdescartes.fr/∼moisan/sharpness/
6 We recall that the maximal degree of a graph is the max-

imal number of edges incident to a single vertex.
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Let Sn =
∑Nn

i=1Xn,i and σ2
n = Var(Sn). If there exists an

integer m such that(
Nn

Mn

)1/m MnAn

σn
→ 0 as n→∞ , (39)

then
Sn − E(Sn)

σn
→ N (0, 1) in distribution as n→∞.

First, we will clarify the remark following this theorem
in [18]. It states that we can replace the boundedness hy-
pothesis

∀n, ∀i, |Xn,i| ≤ An a.s.

by
Mn

σ2
n

Nn∑
i=1

E(X2
n,i1|Xn,i|>An)→ 0 as n→∞ . (40)

Indeed, assume that (40) is true. We use the truncation ar-
gument suggested in [18] and set

XTn,i = Xn,i 1|Xn,i|≤An ,

STn =

Nn∑
i=1

XTn,i , and (σTn )2 = Var(STn ) .

It is clear that the variables XTn,i have the same dependency
degree than the Xn,i. We will see that (39) is still true for
σTn so that Janson’s Theorem will give

STn − E(STn )

σTn

d−→ N (0, 1) .

But first let us explain how we control the residual sum. One
can write

Sn − E(Sn)

σn
−
STn − E(STn )

σn

=
1

σn

Nn∑
i=1

(
Xn,i 1|Xn,i|>An − E(Xn,i 1|Xn,i|>An)

)
.

For a fixed n, setting

Ti = Xn,i 1|Xn,i|>An − E(Xn,i 1|Xn,i|>An)

(which again have a dependency degree smaller than Mn)
and writing i ∼ j if Ti and Tj are not independent, one can
write

E

((∑
i

Ti

)2
)

=
∑
i,j

E(TiTj)

=
∑
i

∑
j∼i

E(TiTj)

≤
1

2

∑
i

∑
j∼i

E(T 2
i ) + E(T 2

j )

=
1

2

∑
i

∑
j∼i

E(T 2
i ) +

1

2

∑
j

∑
i∼j

E(T 2
j )

≤ (Mn + 1)
∑
i

E(T 2
i )

≤ 2Mn

∑
i

E(T 2
i ) ,

which gives

E

 1

σ2
n

(
Nn∑
i=1

Xn,i 1|Xn,i|>An − E(Xn,i 1|Xn,i|>An)

)2


≤2
Mn

σ2
n

Nn∑
i=1

Var(Xn,i 1|Xn,i|>An)

≤2
Mn

σ2
n

Nn∑
i=1

E(X2
n,i 1|Xn,i|>An) .

Therefore, (40) gives that

Sn − E(Sn)

σn
−
STn − E(STn )

σn

L2

−−→ 0 . (41)

To conclude, it remains to show that
σT
n

σn
→ 1 as n tends

to∞. Indeed, it is thus equivalent to check condition (39) for
σn or σTn so that we are able to apply Janson’s theorem to
obtain

STn − E(STn )

σTn

d−→ N (0, 1) . (42)

Moreover it implies that the distributional convergence of
STn − E(STn )

σTn
is equivalent to the one of

STn − E(STn )

σn
. To

show that σn and σTn are equivalent, notice that (41) and
the reverse Minkowski inequality (in L2) give∥∥∥∥Sn − E(Sn)

σn

∥∥∥∥
L2

−
∥∥∥∥STn − E(STn )

σn

∥∥∥∥
L2

→ 0 ,

which is exactly

1−
σTn
σn
→ 0 . (43)

Finally, putting together (41), (42), (43), we obtain that

Sn − E(Sn)

σn

d−→ 0 . �

Let us now get into the details of the application to the
TV of a white Gaussian noise. For x ∈ Ωn, we will set

Zn,x = |Ẇn(x+1, y)−Ẇn(x, y)|+ |Ẇn(x, y+1)−Ẇn(x, y)| ,

so that TV(Wn) =
∑

x∈Ωn Zn,x . With these notations, we
will be able to apply Janson’s theorem on this sum with
Mn = 6. Indeed, for a fixed x = (x, y) ∈ Ωn, the variables
Ẇn(x + 1, y), Ẇn(x, y + 1) and Ẇn(x, y) appear in Zn,x.
These two variables also appear in Zn,(x−1,y), Zn,(x−1,y+1),
Zn,(x,y−1), Zn,(x+1,y−1), Zn,(x+1,y), Zn,(x,y+1), and do
not appear in any other Zn,x, x ∈ Ωn. That is why we can
set Mn = 6.

Next, to apply the theorem, we also need to know the
variance of the sum. It is actually independent of n and given
by Theorem 1:

σ2 = σ2
n = Var(TV(Wn)) =

8

π
(ω(1) + 6 · ω(1/2)) .

Notice that the theorem also gives

E(TV(Wn)) =
4
√
π
|Ωn|1/2 .
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Now, it remains to find a sequence An which satisfies both
(39) and (40). Since in our case Mn and σn are constant, we
must find An and an m such that

|Ωn|1/mAn → 0 and
∑

x∈Ωn

E(Z2
n,x1|Zn,x|>An)→ 0

as n→∞. Since all the Zn,x follow the Gaussian distribution
with standard deviation 2|Ωn|−1/2, the second condition is
equivalent to

E
(
Z21|Z|>An|Ωn|

)
→ 0 .

Hence, it suffices to find An and an m such that

|Ωn|1/mAn → 0 and An|Ωn| → ∞ .

We can take m = 3 and An = |Ωn|−1/2. The two conditions
are satisfied, and with Janson’s theorem we obtain the result
of Proposition 8. �

Remark: One can point out that we applied a powerful
central limit theorem in order to prove a very specific case. In
fact, one can adapt the preceding proof to show that, as soon
as u has compact support in Ωn with |Ωn| → ∞, we have
normal convergence of E(TV(u∗W )) after centralization and
normalization.

C Proof of Theorem 2.1

Before proving Theorem 1, let us give two lemmas about
Gaussian random vectors.

Lemma 4 Let X be a Gaussian r.v. with zero mean and

variance σ2. Then E(|X|) = σ

√
2

π
.

Proof Since X ∼ N (0, σ2), one can write

E(|X|) =
1

σ
√

2π

∫ +∞

−∞
|x|e−

x2

2σ2 dx =
2

σ
√

2π

∫ +∞

0

xe−
x2

2σ2 dx

=
2

σ
√

2π

[
−σ2e−

x2

2σ2

]+∞
0

= σ

√
2

π
. �

Lemma 5 Let Z = (X,Y )T be a Gaussian random vector
with zero mean and covariance matrix

E(ZZT ) =

(
a2 ab sin θ

ab sin θ b2

)
,

with θ ∈ [−π
2
, π
2

]. Then, one has

E(|XY |) =
2|ab|
π

(cos θ + θ sin θ) .

Proof If a = 0 or b = 0, then E(XY ) = 0 so there is nothing
more to prove. Hence we can assume that ab 6= 0 and set
X′ = X/a, Y ′ = Y/b, so that

E|XY | = |ab| · E|X′Y ′| , (44)

where the covariance of Z′ = (X′, Y ′)T is

C = E(Z′Z′T ) =

(
1 sin θ

sin θ 1

)
.

If | sin θ| = 1, then Y ′ = X′ sin θ almost surely, so that
E|X′Y ′| = EX′2 = 1 and E|XY | = |ab| by (44). Hence,
we assume in the following that |θ| < π

2
. Now we have

C−1 =
1

cos2 θ

(
1 − sin θ

− sin θ 1

)
,

so that E|X′Y ′| equals

1

2π cos θ

∫
R2

|xy| exp

(
−
x2 + y2 − 2xy sin θ

2 cos2 θ

)
dxdy .

Using symmetry considerations, this formula can be rewritten
under the form

E|X′Y ′| =
I(θ) + I(−θ)

π cos θ
(45)

with I(θ) =

∫ +∞

0

∫ +∞

0

xy exp

(
−
x2 + y2 − 2xy sin θ

2 cos2 θ

)
dxdy.

Using polar coordinates, we then get

I(θ) =

∫ +∞

0

∫ π

2

0

r2 cosϕ sinϕ

exp

(
−

r2

2 cos2 θ
(1− 2 cosϕ sinϕ sin θ)

)
r drdϕ

=

∫ π

2

0

(
cosϕ sinϕ

∫ +∞

0

r3e−α(ϕ)r2

dr

)
dϕ ,

with α(ϕ) =
1− 2 cosϕ sinϕ sin θ

2 cos2 θ
≥ 0 .

Integrating by part the inside integral yields∫ +∞

0

r3e−α(ϕ)r2

dr

=

[
r2 ·

1

−2α(ϕ)
e−α(ϕ)r2

]+∞
0

−
1

−2α(ϕ)

∫ +∞

0

2re−α(ϕ)r2

dr

=
1

2α(ϕ)2
.

Thus we have

I(θ) =

∫ π

2

0

cosϕ sinϕ ·
(2 cos2 θ)2

2(1− 2 cosϕ sinϕ sin θ)2
dϕ

= 2 cos4 θ ·
∫ π

2

0

tanϕ

(cos−2 ϕ− 2 tanϕ sin θ)2
dϕ

cos2 ϕ

= 2 cos4 θ ·
∫ +∞

0

t

(1 + t2 − 2t sin θ)2
dt (t = tanϕ)

= 2 cos4 θ ·
∫ +∞

0

t

((t− sin θ)2 + cos2 θ)2
dt

= 2 cos4 θ ·
∫ +∞

− sin θ

u+ sin θ

(u2 + cos2 θ)2
du (u = t− sin θ) .

Now usual integration formulae give (for a > 0),∫
u

(u2 + a2)2
du =

−1

2(u2 + a2)

and

∫
1

(u2 + a2)2
du =

1

2a3
arctan

u

a
+

u

2a2(u2 + a2)
,
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so that I(θ) equals

I(θ) = 2 cos4 θ

([
−1

2(u2 + cos2 θ)2

]+∞
− sin θ

+ sin θ

[
1

2 cos3 θ
arctan

u

cos θ
+

u

2 cos2 θ(u2 + cos2 θ)

]+∞
− sin θ

)

= 2 cos4 θ

(
1

2
+ sin θ

(
π

2 cos3 θ
+

θ

2 cos3 θ
+

sin θ

2 cos2 θ

))
= cos4 θ + π sin θ cos θ + θ sin θ cos θ + sin2 θ cos2 θ

= cos2 θ + π sin θ cos θ + θ sin θ cos θ .

Then, I(θ) + I(−θ) = 2 cos θ(cos θ + θ sin θ) and we conclude
by (44) and (45) that

E|XY | =
2|ab|
π

(cos θ + θ sin θ) . �

Proof of Theorem 1

Writing U = u ∗W , we have by linearity

∂xU̇ = (∂xu̇) ∗W ,

so that the discrete random field ∂xU̇ is a stationary Gaus-
sian field whose marginal distributions have zero mean and
variance

E((∂xU̇(x))2) =
1

MN

∑
y∈Ω

(∂xu̇(x− y))2 =
α2
x

MN
.

From Lemma 4, we hence get that for any x ∈ Ω,

E(|∂xU̇(x)|) =
αx√
MN

√
2

π
,

and by using a similar reasoning on ∂yU̇ , we obtain (10).

We now consider the variance of TV(U). We have

E(TV(U)2) =
∑

x,y∈Ω
E|∂xU̇(x)∂xU̇(y)|+ E|∂xU̇(x)∂yU̇(y)|

+ E|∂yU̇(x)∂xU̇(y)|+ E|∂yU̇(x)∂yU̇(y)| .

Writing z = y − x and using the stationarity of ∇U̇ , the
quantity E(TV(U)2) can be rewritten

MN
∑

x∈Ω,y∈Ω
E|∂xU̇(0)∂xU̇(z)|+ E|∂xU̇(0)∂yU̇(z)|

+ E|∂yU̇(0)∂xU̇(z)|+ E|∂yU̇(0)∂yU̇(z)| . (46)

Each term of this sum can be written under the form E|XY |
where (X,Y ) is a zero-mean 2-dimensional Gaussian vector
with covariance matrix(
E(X2) E(XY )
E(XY ) E(Y 2)

)
.

For the second term of (46) for example, we have X = ∂xU̇(0)
and Y = ∂yU̇(z), thus

E(XY ) = E

 ∑
x∈Ω,y∈Ω

∂xu̇(−x)∂yu̇(z− y)W (x)W (y)


=

1

MN

∑
x∈Ω

∂xu̇(x)∂yu̇(z + x) =
1

MN
Γxy(z)

and the covariance matrix of (X,Y ) is

1

MN

(
α2
x Γxy(z)

Γxy(z) α2
y

)
,

so that thanks to Lemma 5 we obtain

E|XY | =
2αxαy

πMN
· ω̃
(
Γxy(z)

αxαy

)
,

with ω̃(t) = t arcsin t +
√

1− t2 = ω(t) + 1. Combining all
terms arising from (46), we finally obtain that

E(TV(U)2) =
2

π

∑
z∈Ω

α2
xω̃

(
Γxx(z)

α2
x

)
(47)

+ 2αxαyω̃

(
Γxy(z)

αxαy

)
+ α2

yω̃

(
Γyy(z)

α2
y

)

and the announced result follows from

Var(TV(U)) = E(TV(U)2)− (E(TV(U)))2 ,

which simply amounts to change ω̃ into ω in (47). �

D Unimodal regression

In this appendix, we detail an algorithm to compute the dis-
tance from a signal s = (s(1), s(2), . . . , s(n)) ∈ Rn to the set
U of unimodal signals of size n, defined by

U =
⋃

1≤i≤n

Ci ∩Di ,

where Ci = {p ∈ Rn, p(1) ≤ p(2) ≤ . . . ≤ p(i)}

and Di = {p ∈ Rn, p(i) ≥ p(i+ 1) ≥ . . . ≥ p(n)}

(with the natural convention C1 = Dn = Rn). The algorithm
we use is due to Frisen [15]. It is based on the fact that U can
also be written

U =
⋃

1≤i≤n−1

Ci ∩Di+1 ,

which entails d(s, U) = min1≤i≤n−1 di with

d2i = min
p∈Ci∩Di+1

‖p− s‖22

= min
p∈Ci

i∑
k=1

(p(k)− s(k))2 + min
q∈Di+1

n∑
k=i+1

(q(k)− s(k))2 .

These two monotone regression problems are independent,
and can be solved in time O(n) using the simple Pool Adja-
cent Violators algorithm described in [1] (see Algorithm 4).
Thus, the computation of d(s, U) can be realized in time
O(n2) (Algorithm 5). Note that in fact the unimodal regres-
sion problem can be solved in time O(n) with a more sophis-
ticated algorithm (see [34]), but considering the small value
of n we use in Section 5.3 (n = 20), the gain obtained with
this algorithm would be negligible compared to other steps
(e.g., Fourier transforms) of the deblurring process.
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Algorithm 4: Monotone regression [1]

– Inputs: s ∈ Rn, ε ∈ {−1, 1}
– Output : non-decreasing (case ε = 1) or non-increasing

(case ε = −1) regression p of s.
– k ← 1
– For each i = 1, . . . , n
B σk ← s(i)
B nk ← 1

B While k > 1 and
(
σk−1

nk−1
− σk
nk

)
ε > 0

· σk−1 ← σk−1 + σk
· nk−1 ← nk−1 + nk
· k ← k − 1

B k ← k + 1
– i← 1
– For l = 1, . . . , k, repeat nl times the steps
B p(i)← σl
B i← i+ 1

Algorithm 5: Unimodal regression distance [15]

– Input: s ∈ Rn
– Output: d(s, U)
– For each i = 1, . . . , n
B p← non-decreasing regression of (s(k))1≤k≤i
B q ← non-increasing regression of (s(k))i+1≤k≤n

B d2i ←
i∑

k=1

(s(k)−p(k))2+

n−k−1∑
k=1

(s(i+1+k)−q(k))2

– return min
i
di.

E Oracle deconvolution filter

Consider a blurry and noisy image v = κ ∗ u0 + n, obtained
from an image u0 after a convolution by a kernel κ and the
addition of a Gaussian white noise n with standard deviation
σ2. In this appendix, we show how to compute the oracle
kernel k0 which provides, in average with respect to n, the
best linear estimate of u0 that can be computed from v. This
oracle kernel is defined by

k0 = arg min
k

E
(
‖u0 − k ∗ (κ ∗ u0 +W )‖22

)
, (48)

where W is a Gaussian white noise with variance σ2. The
arg min can be taken over various kernel spaces, here we con-
sider the set of kernels obtained by rotating a radial linearly
interpolated profile, that is

∀ξ ∈ Ω, k̂(ξ) = r(b|ξ|c)(d|ξ|e − |ξ|) + r(d|ξ|e)(|ξ| − b|ξ|c) ,

where (r(0), . . . , r(d− 1)) ∈ Rd,

|ξ|2 = 2(d− 1)2
(
ξ21
M2

+
ξ22
N2

)
=

2(d− 1)2

4π2
‖ξ‖2 ,

and btc and dte denote respectively the lower and upper inte-

ger part of t ∈ R (we also set k̂(ξ) = 0 when |ξ| > d−1). This
interpolation formula naturally involves the disjoint subsets

Ω̂l = {ξ ∈ Ω, l ≤ |ξ| < l + 1} . (49)

Since W is a white Gaussian noise, the cost function of
(48) can be written

‖u0 − k ∗ κ ∗ u0‖22 + σ2MN‖k‖22

=
1

MN

∑
ξ∈Ω

|û0(ξ)|2|1− k̂(ξ)κ̂(ξ)|2 + σ2MN |k̂(ξ)|2 , (50)

which, when k̂ is radial and when κ is supposed to be sym-
metrical, transforms into

1

MN

d−1∑
l=0

∑
ξ∈Ω̂l

|û0(ξ)|2
(

1− κ(ξ)r(l)(l + 1− |ξ|)

− κ(ξ)r(l + 1)(|ξ| − l)

)2

+σ2MN

(
r(l)(l + 1− |ξ|) + r(l + 1)(|ξ| − l)

)2

.

This is a quadratic function in r, and its unique minimum
is characterized by the vanishing-gradient condition, which
can be written Ar = b, where A = ((ak,l))0≤k,l≤d−1 and
b = (bl)0≤l≤d−1 are defined by

al,l =
∑

ξ∈Ω̂l

(l + 1− |ξ|)2(|κ(ξ)|2|û0(ξ)|2 + σ2MN)

+
∑

ξ∈Ω̂l−1

(|ξ| − l + 1)2(|κ(ξ)|2|û0(ξ)|2 + σ2MN)

al,l+1 =
∑

ξ∈Ω̂l

(l + 1− |ξ|)(|ξ| − l)(|κ(ξ)|2|û0(ξ)|2 + σ2MN)

al,l−1 =
∑

ξ∈Ω̂l−1

(|ξ| − l + 1)(l − |ξ|)(|κ(ξ)|2|û0(ξ)|2 + σ2MN)

al,m = 0 for |l −m| > 1

bl =
∑

ξ∈Ω̂l

(t+ 1− |ξ|)2(|κ(ξ)||û0(ξ)|2)

+
∑

ξ∈Ω̂l−1

(|ξ| − l + 1)2(|κ(ξ)||û0(ξ)|2) .

This linear system associated to the tridiagonal matrix
A can be solved with standard numerical techniques. The
solution is the oracle radial profile r0, from which the DFT
of the oracle kernel k0 can be defined by

∀l,∀ξ ∈ Ω̂l, k̂0(ξ) = r0(l)(l + 1− |ξ|) + r0(l + 1)(|ξ| − l) .

Remark: One can also consider the minimization prob-
lem (48) on the set of all kernels k. It is easy to deduce
from (50) that the corresponding oracle kernel is given in
Fourier domain by

∀ξ ∈ Ω, k̂(ξ) =
κ̂(ξ)∗ |û0(ξ)|2

|κ(ξ)|2|û0(ξ)|2 + σ2MN
.

One can notice that, making the assumption |û(ξ)|2 = c‖ξ‖−2

(see the discussion at the end of Appendix A), and setting
λ = σ2MN/c, the corresponding filter is exactly the one that
optimizes the criterion (26).
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