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Abstract. This paper presents a design of a nonlinear state observer in order to locate a blockage
in a pipeline. First, a mathematical model of the pipeline is designed using the water hammer
equations and applying the finite difference method for the solution with n sections. Then, based
on the experience obtained from the leak location with nonlinear observers, a second mathematical
model is obtained from a discretization in only two sections and a nonlinear state observer is build.
In this new model, the blockage is at the beginning of the second section of pipeline. By analytical
analysis, it is found that to achieve satisfactory the location of the blockage, the observer requires
certain specific inputs, called persistent inputs.These persistent inputs are found empirically.

Then, numerical simulations are performed with the state observer and the mathematical model
with two sections and applying both entries obtained above. A satisfactory location of the blockage
is obtained. Also simulations where measurements are subject to white Gaussian noise are done.
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1 INTRODUCTION

Nowadays, pipelines are a cheap way to transport liquids. But faults, as leaks or blockages,
can cause big and expensive problems to solve, generating a loss in money and time repairing
it. A lot of work have being done on leaks detection and location but not so much on blockages
detection and location ([5] and [3]). Particularly, in this work, the problem is solve using model
based techniques.

2 PIPELINE MODEL WITH PUNTUAL BLOCKAGE

The dynamics of the fluid in a pipeline could be described by the Water Hammer partial
differential equations considering convective changes in velocity and constant liquid density [4]:
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where H means the pressure head (m) and Q the flow rate in the pipeline (m3/s), varying in space
z (m) and time t (s). Then, the constants parameters c, g, A, D, f and L represent the wave speed
in the fluid (m/s), the gravitational acceleration (m/s2), the cross-sectional area of the pipe (m2),
the diameter of the pipe (m), the friction coefficient, and the pipe length (m) respectively. The
initial conditions for the fluid dynamics must be fixed at Q(z, 0), H(z, 0) for z ∈ [0, L] and also the
boundary conditions on Q,H, for z ∈ {0, L}. As showed in the previous figure, the pipeline input
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Figure 1: Schema of system Pump-Restriction-Pipeline-Restriction, the pipeline is dicretized in n sections.

is connected to a pump (P ) with a restriction (Rin) and the pipeline output is only connected
to a restriction (Rout). The dynamics of the pump and both restrictions are hundred time faster
than the pipeline dynamics, so the static equations could be used to describe the behavior of these
elements. The follows equations described the static relations between the pressures of the pump
and both restrictions:

Hin −Hb = APQ
2
1 +BPQ1 + CP ; Hb −H1 = RinQ

2
1; Hn −Hout = RoutQ

2
n (2)

where Hin is the pump input pressure, Hb is the pressure between the pump and the first
restriction, H1 and Hn, Q1 and Qn are the input and output pipeline pressures and flows of the
pipeline respectively, Hout is the output pressure of the second restriction and finally the constants
AP , BP , CP are the pump constants and Rin and Rout are the restrictions constants.

In order to solve numerically the partial differential equations Eq.(1) a dicretization in space
must be done. Imposing as boundary conditions H(0, t) and H(L, t) the discretized equations for
each section (i) are:



Ḣi = − c2
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where the Hi’s and Qi’s refers to the approximate values of H,Q at zi’s.
The model accuracy will depend on the number of points taken for such discretization, but for

a purpose of observer design based on this model, so in order to reduce the observer computational
burden, the minimum number of sections are would be chosen. If a punctual blockage occurs at
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Figure 2: Pipeline discretized in 2 sections with a blockage at position z2 (begin of the second section).

some position z2, the pipe cross-sectional area A would be reduced into some Ab. Three sections
are enough to include the blockage position zb, as in Fig.2 (z1 = 0, z2 = zb, and z3 = L). Finite-
difference model (3) in that case reduces to:
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As the blockage is considered punctual, the relation between the pressure before the blockage (H2)
and after (H−

2 ) could be described as an orifice plate using Bernoulli’s equation:

H−
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Q2
2
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]
− hL (5)

In this equation hL represents the pressure losses due to the blockage, as its geometry is unknown
the worst case should be considerate, that is hL equal to zero. In practice the blockage will be
smaller than the represented by this equation.

Finally the connection between the pipeline model and the pump and both restriction is done
by these two following equations:

H1 = −(Rin + CP )Q2
1 −BPQ1 − AP +Hin = FP (Hin, Q1)

H3 = RoutQ
2
2 +Hout = FR(Hout, Q2)

(6)

In the next section the equations of the state space model and the equations of the observer will
be discussed.



3 STATE SPACE MODEL AND OBSERVER EQUATIONS

Considering the following state vector:

Obs =
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− 1

2gA2
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T (7)

and the equations from the previous section (Eq.4, Eq.5 and Eq.6) the state space model is build:
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Before trying to localize the blockage, first the blockage should be detected. The detection of the
blockage could be solved if the pipeline is in steady state [3]. So, considering u1 and u2 in constant
value for a long time enough, the dynamics of the pipeline model are zero (ẋ = 0) and also the
friction losses are equal among the pipeline (f2 = f3 = f). The information of the blockage is
found solving the following equations:
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The first part of the second equation is just a first order low-pass filter to make the detection
algorithm robust respect to the output variables noise where α−1 is the time constant and x5F is
x5 filtered.

Now that the blockage is detected in steady state, an observer for the location is build. The
followed change of coordinates: ζ1 = x1

Ag
, ζ2 = 1

x4
, ζ3 = −x2

x4
with the new inputs uζ1 = y1, uζ2 = y2

produced the follow system:
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and under a persistent input u1 and γ large enough ,an exponential observer for such system is:

˙̂
ζ = Aζ(u)ζ̂ + Φ(u, ζ̂)−K(Cζ ζ̂ − ζ1)
K = PCT

ζ R
−1; P (0) > 0
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ζ R

−1CζP +Q

(13)

where Q, R and γ are positive tuning parameters, for more details see [2]. Φ needs to be Lipschitz,
assuming that the blockage position z2 is to be found within some interval [ε, L−ε] for some small
ε > 0, Φ can be extended to be Lipschitz over IR3 for the observer design. The position of the
blockage is x4 = 1

ζ2
.

With the persistent input applied the system is no more in steady state so a new way to
measure the blockage is build. The change of coordinates ξ1 = x3(L−x4)

Ag
, ξ2 = x5 and the inputs
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which is a system of type:

ξ̇ = Aξ(u)ξ +Bξ(u); yξ = Cξξ (15)

and the matrices of such system are:
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Using Eq.13 an exponential observer is build with parameters γO, RO and QO. The relation Ab
A

is
found in the same way as Eq.9 replacing x5F by ξ2

4 SIMULATIONS

In this section, the prototype described in [1] is presented as practical example where its
parameters are listed in Table.1. The simulation consist on first on a steady state operation
mode, with u1 = 6.5m and u2 = 1. Suddenly, at time t = 10s, a blockage, Ab = 0.9A appears at
z2 = 25m. When the blockage is detected, the persistent input is injected, u1 = 6.5+0.5sin(2πt)+
1.5sin(2.06πt), and the position is estimated. To show the second part of the observer, the
blockage, at time t = 500, is moved to z2 = 80m and is augmented to Ab = 0.5A. There is a
noise of some percent of the output value in the outputs of the system. The parameters of the
algorithms are: α = 1, R = 1, Q = ID, γ = 4, RO = 1, QO = ID and γO = 1. Figure.4 shows
the simulation results, the observer recovers well the position and the blockage size. Also the
simulation shows that the noise robustness augments as the obstruction augments.

g (m/s2) c (m/s) A (m2) f (s−2) L (m)
9.81 373 0.003 0.0189 85

Table 1: Pipeline parameters.
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Figure 3: Simulation of one blockage in two different positions and different sizes.

5 CONCLUSIONS AND FURTHER WORK

In this paper, a technique to detect and locate blockage in a pipeline has being proposed. Based
on a mathematical model an observer was build and the performance and accuracy were shown
on some figures of numerical simulations.

In the future, the noise robustness will be improved and also the observer will be improved to
be applied to real data.
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