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ON THE DESIGN OF A NONLINEAR STATE OBSERVER FOR THE LOCATION OF A BLOCKAGE IN A PIPELINE
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This paper presents a design of a nonlinear state observer in order to locate a blockage in a pipeline. First, a mathematical model of the pipeline is designed using the water hammer equations and applying the finite difference method for the solution with n sections. Then, based on the experience obtained from the leak location with nonlinear observers, a second mathematical model is obtained from a discretization in only two sections and a nonlinear state observer is build. In this new model, the blockage is at the beginning of the second section of pipeline. By analytical analysis, it is found that to achieve satisfactory the location of the blockage, the observer requires certain specific inputs, called persistent inputs.These persistent inputs are found empirically.

Then, numerical simulations are performed with the state observer and the mathematical model with two sections and applying both entries obtained above. A satisfactory location of the blockage is obtained. Also simulations where measurements are subject to white Gaussian noise are done.

INTRODUCTION

Nowadays, pipelines are a cheap way to transport liquids. But faults, as leaks or blockages, can cause big and expensive problems to solve, generating a loss in money and time repairing it. A lot of work have being done on leaks detection and location but not so much on blockages detection and location ( [START_REF] Wang | Detection and location of a partial blockage in a pipeline using damping of fluid transients[END_REF] and [START_REF] Besanc ¸on | Observer-based detection and location of partial blockages in pipelines[END_REF]). Particularly, in this work, the problem is solve using model based techniques.

PIPELINE MODEL WITH PUNTUAL BLOCKAGE

The dynamics of the fluid in a pipeline could be described by the Water Hammer partial differential equations considering convective changes in velocity and constant liquid density [START_REF] Chaudry | Applied Hydraulic Transients[END_REF]:

∂H ∂t + c 2 gA ∂Q ∂z = 0, ∂Q ∂t + Ag ∂H ∂z + f Q|Q| 2DA = 0 (1) 
where H means the pressure head (m) and Q the flow rate in the pipeline (m 3 /s), varying in space z (m) and time t (s). Then, the constants parameters c, g, A, D, f and L represent the wave speed in the fluid (m/s), the gravitational acceleration (m/s 2 ), the cross-sectional area of the pipe (m 2 ), the diameter of the pipe (m), the friction coefficient, and the pipe length (m) respectively. The initial conditions for the fluid dynamics must be fixed at Q(z, 0), H(z, 0) for z ∈ [0, L] and also the boundary conditions on Q, H, for z ∈ {0, L}. As showed in the previous figure, the pipeline input

Bomba H in H out H 1 H 2 H n Q 1 Q 2 R in H 3 H b R out Q n P Figure 1: Schema of system Pump-Restriction-Pipeline-Restriction, the pipeline is dicretized in n sections.
is connected to a pump (P ) with a restriction (R in ) and the pipeline output is only connected to a restriction (R out ). The dynamics of the pump and both restrictions are hundred time faster than the pipeline dynamics, so the static equations could be used to describe the behavior of these elements. The follows equations described the static relations between the pressures of the pump and both restrictions:

H in -H b = A P Q 2 1 + B P Q 1 + C P ; H b -H 1 = R in Q 2 1 ; H n -H out = R out Q 2 n (2)
where H in is the pump input pressure, H b is the pressure between the pump and the first restriction, H 1 and H n , Q 1 and Q n are the input and output pipeline pressures and flows of the pipeline respectively, H out is the output pressure of the second restriction and finally the constants A P , B P , C P are the pump constants and R in and R out are the restrictions constants.

In order to solve numerically the partial differential equations Eq.( 1) a dicretization in space must be done. Imposing as boundary conditions H(0, t) and H(L, t) the discretized equations for each section (i) are:

Ḣi = - c 2 gA Q i+1 -Q i z i+1 -z i ; Qi = -Ag H i -H i-1 z i -z i-1 - f i Q i |Q i | 2DA (3) 
where the H i 's and Q i 's refers to the approximate values of H, Q at z i 's.

The model accuracy will depend on the number of points taken for such discretization, but for a purpose of observer design based on this model, so in order to reduce the observer computational burden, the minimum number of sections are would be chosen. If a punctual blockage occurs at
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Pipeline discretized in 2 sections with a blockage at position z 2 (begin of the second section).

some position z 2 , the pipe cross-sectional area A would be reduced into some A b . Three sections are enough to include the blockage position z b , as in Fig. 2 (z 1 = 0, z 2 = z b , and z 3 = L). Finitedifference model [START_REF] Besanc ¸on | Observer-based detection and location of partial blockages in pipelines[END_REF] in that case reduces to:

Q1 = -Ag H 2 -H 1 z 2 -z 1 - f 2 Q 1 |Q 1 | 2DA Ḣ2 = - c 2 gA Q 2 -Q 1 z 3 -z 2 Q2 = -Ag H 3 -H - 2 z 3 -z 2 - f 3 Q 2 |Q 2 | 2DA (4)
As the blockage is considered punctual, the relation between the pressure before the blockage (H 2 ) and after (H - 2 ) could be described as an orifice plate using Bernoulli's equation:

H - 2 = H 2 - Q 2 2 2gA 2 A A b 2 -1 -h L (5) 
In this equation h L represents the pressure losses due to the blockage, as its geometry is unknown the worst case should be considerate, that is h L equal to zero. In practice the blockage will be smaller than the represented by this equation.

Finally the connection between the pipeline model and the pump and both restriction is done by these two following equations:

H 1 = -(R in + C P )Q 2 1 -B P Q 1 -A P + H in = F P (H in , Q 1 ) H 3 = R out Q 2 2 + H out = F R (H out , Q 2 ) (6) 
In the next section the equations of the state space model and the equations of the observer will be discussed.

Considering the following state vector:

Obs = A A b 2 -1 2gA 2 ; x T = [Q 1 , H 2 , Q 3 , z 2 , Obs] T (7) 
and the equations from the previous section (Eq.4, Eq.5 and Eq.6) the state space model is build:

ẋ1 = -Ag x 2 -F P (u 1 , x 1 ) x 4 - f 2 x 1 |x 1 | 2DA ẋ2 = - c 2 gA x 3 -x 1 x 4 ẋ3 = -Ag F R (u 2 , x 3 ) -x 2 + x 2 3 x 5 L -x 4 - f 3 x 3 |x 3 | 2DA y = [x 1 , x 3 ] T (8)
Before trying to localize the blockage, first the blockage should be detected. The detection of the blockage could be solved if the pipeline is in steady state [START_REF] Besanc ¸on | Observer-based detection and location of partial blockages in pipelines[END_REF]. So, considering u 1 and u 2 in constant value for a long time enough, the dynamics of the pipeline model are zero ( ẋ = 0) and also the friction losses are equal among the pipeline (f 2 = f 3 = f ). The information of the blockage is found solving the following equations:

x 5 = F R (u 2 , y 2 ) -F P (u 1 , y 1 ) y 2 2 + f L 2DA 2 g |y 2 | y 2 ẋ5F = α(x 5 -x 5F ); A b A = 1 1 + 2gA 2 x 5F (9) 
The first part of the second equation is just a first order low-pass filter to make the detection algorithm robust respect to the output variables noise where α -1 is the time constant and x 5F is x 5 filtered. Now that the blockage is detected in steady state, an observer for the location is build. The followed change of coordinates:

ζ 1 = x 1 Ag , ζ 2 = 1 x 4 , ζ 3 = -x 2
x 4 with the new inputs u ζ1 = y 1 , u ζ2 = y 2 produced the follow system:

ζ1 = F P (u 1 , u ζ1 )ζ 2 + ζ 3 - f 2 u ζ1 |u ζ1 | 2DA 2 g ; ζ2 = 0; ζ3 = c 2 Ag (u ζ2 -u ζ1 )ζ 2 2 (10)
which is a system of type:

ζ = A ζ (u)ζ + Φ ζ (ζ, u); y ζ = C ζ ζ (11)
with the matrices:

A ζ (u) =   0 F P (u 1 , u ζ1 ) 1 0 0 0 0 0 0   , Φ ζ (u, ζ) =    -f 2 2DA 2 g u ζ1 |u ζ1 | 0 c 2 Ag (u ζ2 -u ζ1 )ζ 2 2    , C ζ = 1 0 0 (12)
and under a persistent input u 1 and γ large enough ,an exponential observer for such system is:

ζ = A ζ (u) ζ + Φ(u, ζ) -K(C ζ ζ -ζ 1 ) K = P C T ζ R -1 ; P (0) > 0 Ṗ = γP + A ζ P + P A T ζ -P C T ζ R -1 C ζ P + Q (13) 
where Q, R and γ are positive tuning parameters, for more details see [START_REF] Besanc ¸on | Nonlinear Observers and applications[END_REF]. Φ needs to be Lipschitz, assuming that the blockage position z 2 is to be found within some interval [ε, L -ε] for some small > 0, Φ can be extended to be Lipschitz over IR 3 for the observer design. The position of the blockage is

x 4 = 1 ζ 2 .
With the persistent input applied the system is no more in steady state so a new way to measure the blockage is build. The change of coordinates ξ 1 = x 3 (L-x 4 ) Ag , ξ 2 = x 5 and the inputs

u ξ1 = y 1 , u ξ2 = y 2 , u ξ3 = -ζ3 ζ2 , u ξ4 = 1 ζ2 result in the system: ξ1 = -F R (u 2 , u ξ2 ) + u ξ3 -u 2 ξ2 ξ 2 - f 3 (L -u ξ4 ) 2DA 2 g u ξ2 |u ξ2 |; ξ2 = 0 (14)
which is a system of type:

ξ = A ξ (u)ξ + B ξ (u); y ξ = C ξ ξ (15) 
and the matrices of such system are:

A ξ (u) = 0 -u 2 ξ2 0 0 , B ξ (u) = u ξ3 -F R (u 2 , u ξ2 ) - f 3 (L-u ξ4 ) 2DA 2 g u ξ2 |u ξ2 | 0 , C ξ = 1 0 (16) 
Using Eq.13 an exponential observer is build with parameters γ O , R O and Q O . The relation A b A is found in the same way as Eq.9 replacing x 5F by ξ 2

SIMULATIONS

In this section, the prototype described in [START_REF] Begovich | Online implementation of a leak isolation algorithm in a plastic pipeline prototype[END_REF] is presented as practical example where its parameters are listed in Table .1. The simulation consist on first on a steady state operation mode, with u 1 = 6.5m and u 2 = 1. Suddenly, at time t = 10s, a blockage, A b = 0.9A appears at z 2 = 25m. When the blockage is detected, the persistent input is injected, u 1 = 6.5+0.5sin(2πt)+ 1.5sin(2.06πt), and the position is estimated. To show the second part of the observer, the blockage, at time t = 500, is moved to z 2 = 80m and is augmented to A b = 0.5A. There is a noise of some percent of the output value in the outputs of the system. The parameters of the algorithms are: [START_REF] Chaudry | Applied Hydraulic Transients[END_REF] shows the simulation results, the observer recovers well the position and the blockage size. Also the simulation shows that the noise robustness augments as the obstruction augments.

α = 1, R = 1, Q = I D , γ = 4, R O = 1, Q O = I D and γ O = 1. Figure.
g (m/s 2 ) c (m/s) A (m 2 ) f (s -2 ) L (m)
9.81 373 0.003 0.0189 85 

CONCLUSIONS AND FURTHER WORK

In this paper, a technique to detect and locate blockage in a pipeline has being proposed. Based on a mathematical model an observer was build and the performance and accuracy were shown on some figures of numerical simulations.

In the future, the noise robustness will be improved and also the observer will be improved to be applied to real data.

Figure 3 :

 3 Figure 3: Simulation of one blockage in two different positions and different sizes.

Table 1 :

 1 Pipeline parameters.
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