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SPINORS AND ISOMETRIC IMMERSIONS OF SURFACES IN
4-DIMENSIONAL PRODUCTS

JULIEN ROTH

ABSTRACT. We prove a spinorial characterization of surfaces isometrically immersed into
the 4-dimensional product spaces M3(c) x R and M?(c) x R?, where M™(c) is the n-
dimensional real space form of curvature c.

1. INTRODUCTION

In [4], Friedrich gave a spinorial characterization of surfaces in Euclidean 3-space. Namely,
he proved that the existence of a so-called generalized Killing spinor 1 on surface (M?2, g),
that is

where A is a symmetric (1, 1)-tensor, is equivalent to the Gauss and Codazzi equations and
therefore to an isometric immersion of (M?, g) into R® with —2A as shape operator. Later
on, Morel generalized in [9] this result for surfaces of the sphere S? and the hyperbolic
space H? and we give in [12] an analogue for 3-dimensional homogeneous manifolds with
4-dimensional isometry group, as well as for surfaces into pseudo-Riemannian space forms
[6] and Lorentzian products [13]. In a more recent work [2], we studied with Bayard and
Lawn the spinorial characterization of surfaces into 4-dimensional space forms. A similar
result was proved by Bayard for spacelike surfaces into the 4-dimensional Minkowski space
[1].

In this paper, we extend this spinorial characterization for surfaces in the product spaces
M?3(c) x R and M?(c) x R?, where M"(c) is the n-dimensional real space form of constant
sectional curvature ¢ # 0.

First we characterize immersions of surfaces into these product spaces by the existence of
special spinor fields satisfying an appropriate generalized Killing-type equation, that is an
equation involving the spinorial connection (see Theorem 3.1). Then, we show that this
equation is equivalent to the corresponding Dirac equation with an additional condition on
the norm of the spinor field (see Proposition 4.1 and Corollary 4.2).

2. PRELIMINARIES

In this section of preliminaries, we will first recall some basics about surfaces into the
product spaces M?(c) x R? and M?3(c) x R. In particular, we will recall the compatibility
equations assuring that a surface is isometrically immersed into one of these spaces. Then,
we will give some facts about restrictions of spinors on a surface into a 4-dimensional space
and deduce the particular spinor fields with which we will work in the sequel.
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2 J.ROTH

2.1. Compatibilty equations. Let (M2, g) be a Riemannian surface isometrically im-
mersed into the product space P = M?(c) x R? or M?(c) x R, endowed with the product
metric g. We denote by F' product structure of P. The map F' : TP — T'P is defined by
F(X1 4 X2) = X1 — X3, where X7 belongs to the first factor (TM?(c) or TM?(c)) and
X5 belongs to the second factor (T]R2 or TR). Obviously, F satisfies

(1) F?=1d (and F # Id),
2 gFX,Y)=g(X,FY),
3) VF =0.

Moreover, we recall that the curvature of (P, g) is given by

R(X,)Y)Z = Z Y, Z)X — (X, 2)Y + (FY,Z)FX — (FX,Z) FY

(4) +(Y,Z)FX —(X,Z)FY + (Y,FZ) X — (X,FZ)Y

This product structure F' induces the existence of the following four operators
f:T™ —TM, h:TM — NM, s: NM — TM andt: NM — NM

defined for any X € T'M and £ € NM by

5) FX=fX+hX and F¢=s€+tE.

From Equations (1) and (2), f and ¢ are symmetric and we have the following relations
between these four operators

(6) f?X = X — shX,

(7) 12§ = & — hst,

®) fs&+stE =0,

9) hfX + thX =0,

(10) 9(hX, &) = g(X, s§),

forany X € I'(T'M) and £ € I'(INM). Moreover, from Equation (3), we have
(1D (Vx )Y = Spy X + s(B(X,Y)),

(12) Vx(hY) = h(VxY) = t(B(X,Y)) - B(X, fY),

(13) VH(t€) — t(Vx€) = —B(s€, X) — h(SeX),

(14) Vx(s§) = s(Vx§) = —F(SeX) + Sie X,

where B : TM x TM — N M is the second fundamental form and for any £ € T'M, S¢
is the Weingarten operator associated with £ and defined by g(S¢X,Y) = g(B(X,Y),¢)
for any vectors X, Y tangent to M.
Finally, from (4), we deduce that the Gauss, Codazzi and Ricci equations are respectively
given by

c

R(X,Y)Z = 1 Y, Z2)X — (X, Z2)Y +(fY,Z2) fX —(fX,Z) fY

Y, Z) fX (X, Z) fY + (Y, fZ) X — (X, fZ2)Y

(15) +Sp,2)X — Spx,2)Y,



(VxB)(Y.Z) — (VyB)(X,Z) = [<fY,Z> hX — (JX.Z)hY

=0

(16) +(Y,Z)hX — (X, Z)hY |,

an RY (X Y)E = 5
Conversely, let (M?,g) a Riemannian surface endowed with a rank 2 vector bundle E
endowed with a metric and a compatible connectionV-. Assume that there exist some
tensors f, h, s, t and B satisfying Equations (6)-(13) (note that (14) is not required since
it is the dual equation of (12)) and the Gauss-Codazzi-Ricci equations (15)-(17). Moreover
we define the operator F' : TM & E — TM & FE by relations (5). If in addition the
operator F' satisfy that the ranks of the maps F+TM and F_Tld are 2 and 2 (resp. 3 and 1),
then Kowalczyk [5] and De Lira-Tojeiro-Vitdrio [8] proved independently that there exists
an isometric immersion from (M, g) into M (c) x R? (resp. M?(c) x R) with E as normal
bundle, B as second fundamental form and such that the product structure of M?(c) x R?
(resp. M3(c) x R) coincide with F' over M. Note that this was previously proven in a more
abstract way by Piccione and Tausk [11].

(hY,€) hX — (hX, €) hY} + B(S:Y, X) — B(SeX,Y).

2.2. Spinors on surfaces of P. For details about the recalls of this section, the reader can
refer to [3] for instance. Let (M?, g) be an oriented Riemannian surface, with a given spin
structure, and F an oriented and spin vector bundle of rank 2 on M. We consider the spinor
bundle ¥ over M twisted by E and defined by

Y =¥YM®XE,

where > M and X F are the spinor bundles of M and F respectively. We endow X with the
spinorial connection V defined by

V=V*"M@ Idsg + Idsy ® V7P,
We also define the Clifford product - by
Xp=X-,a)®c ifXecl(TM)

X p=a® (X ,0) ifXel(F)

forall p = a® o € XM ® X E, where -,, and -, denote the Clifford products on XM
and on X F respectively and where @ = ¢ — ¢~ for the natural decomposition of X E =
YTE ® X~E. Here, ¥t E and X~ E are the eigensubbundles (for the eigenvalue 1 and
—1) of X F for the action of the normal volume element w,; = i&; g &2, where {1, &} is
a local orthonormal frame of E. Note that YT M and ¥~ are defined similarly by for the
tangent volume element w = e - 57 e2. We finally define the Dirac operator D on I'(X) by

D@:el 've1%p+e2'v€2¢7

where {e1, e3} is an orthonormal basis of T'M.

We note that ¥ is also naturally equipped with a hermitian scalar product (.,.) which is
compatible to the connection V, since so are XM and 2 F, and thus also with a compatible
real scalar product Re(.,.). We also note that the Clifford product - of vectors belonging
to T'M @ E is antihermitian with respect to this hermitian product. Finally, we stress that
the four subbundles £** := %+ M ® L+ E are orthogonal with respect to the hermitian
product. We will also consider X7 = X7T @ X7~ and ¥~ = ¥*~ @ ¥~ +.Throughout
the paper we will assume that the hermitian product is C—linear w.r.t. the first entry, and
C—antilinear w.r.t. the second entry.

Now, let (P,g) be a 4-dimensional spin manifold. It is a well-known fact that there
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is an identification between the spinor bundle X P, of I? over M, and the spinor bundle
of M twisted by the normal bundle ¥ := XM ® ¥ E. Moreover, we have the spinorial
Gauss formula: for any ¢ € I'(X) and any X € TM,

~ 1
(18) VX@ZVXSD+§ Z ej - B(X,ej) ¢
j=1,2

where V is the spinorial connection of ¥ P and V is the spinoral connection of ¥ defined
as above and {ej, e2} is a local orthonormal frame of 7'M . We will also use this notation
and {&1, &>} for a local orthonormal frame of E. Here - is the Clifford product on P.
From now on, we will take P = M?(c) x R? or M?(c) x R. By restriction of a parallel
spinor of the Euclidean space R® if ¢ > 0 or the Lorentzian space R*! if ¢ < 0, we obtain
on P a spinor field ¢ satisfying

Vxp=aX-¢p if X eD(TM2(c)) or I(TM3(c)),
Vxe=0 if X eT(TR?) or T(TR(c)),
with o € C so that 4a? = c. In other words, for any X € I'(T'P), we have
Vxp=S(X+FX) .

Hence, by the spinorial Gauss formula (18), the restriction of ¢ on M satisfies

a
(19) Vxp =X +fX+hX)-o+n(X)- o,
12
where n(X) = —§Zej - Blej, X).
j=1

3. MAIN RESULT

Now, we have the ingredients to state the the main result of this note.

Theorem 3.1. Letc € R, ¢ # 0 and o € C such that 4o = c. Let (M?, g) be an oriented
Riemannian surface and E an oriented vector bundle of rank 2 over M with scalar product
< -, >p and compatible connection V¥. We denote by ¥ = XM @ X E the twisted spinor
bundle. Let B : TM x TM — FE a bilinear symmetric map and

f:T™M —TM,h:TM — FE, s: E—TMandt: E — FE

e . F+Id
satisfying Equations (6)-(13). Moreover we assume that the rank of the maps =5~ and

£214 s 2 and 2 (resp. 3 and 1), where F : TM & E — TM @ E is defined from f,h, s
and t by relations (5). Then, the two following statements are equivalent

(1) There exists an isometric immersion of (M?,g) into P = M?(c) x R? (resp.
M?3(c) x R) with E as normal bundle and second fundamental form B such that
over M the product strcuture is given by f, h,t and s.

(2) There exists a spinor field p in X satisfying for all X € X(M)

a
VX90:§(X+fX+hX)'<P+77(X)'<P,

such that o+ and o~ never vanish.

Proof: First, we remark that the fact that (1) implies (2) has been proved in the discussion
of Section 2. The work consists in proving that (2) implies (1). The computations are in
the same spirit as in [2], with some techinical difficulties due to the terms arising from
the product structure. We will emphasize on these differences. We have to compute the
spinorial curvature of the particular spinor ¢. For this, let us compute R(eq, €2)p, where



5

(e1, e2) is alocal orthonormal frame of 7'M . We also denote by (e3, e4) alocal orthonormal
frame of E. Then, we have

Rler,ea)p = dVnler,es) -+ (nlea) - nler) — nlen)n(esz)) - ¢
—% (V@el V., (fer) + ij(hel)) Lo
3

Veies+ Ve, (fea) + V& (he2) ) -

+——(e2 + fea + heg) - (e1 + fer + her) - ¢

——(e1 4 fe1 + hey) - (ea + fea + hes) - @

(ner) - (ea+ fea + hea) = (e + fea + hea) -n(er)) - &
(77(62) (ex+ fer 4 her) = (e1 + fer + hea) -n(ea)) - o

([e1, e2] + fler, e2] + hler,e2]) - ¢

where we denote dVn(X,Y) = Vx(n(Y)) — Vy (n(X)) — n([X,Y]). First, by a straight-
forward computation, we see that the term

5 (nler) - (ea + fea + hea) = (ea + fea + hea) -n(en)) -

—%(77(62) -(e1 + fer + her) — (e1 + fer + her) '77(62)) @

vanishes. Moreover, by Equations (11) and (12) and the fact that the Levi-civita is torsion-
free, the term

« «o

= (velez + Ve, (fea) + V& (he2)) v -2 (vme1 + Ve, (fer) + VL (hel)) o
«

—5 (ler,e2] + fler, ea] + her, e2]) - 0

also vanishes. Hence, we get

Rler,ea)p = dVnler,e2) ¢+ (n(e2) - (e1) — nler)n(e2)) - ¢
2

+%(<f€1,€2>2 —(fer,e1) <f62762>)€1 ey

a2

+7(<h€2,63> (fei,eq) — (hey,es) (hea, eq) )63 ceqp

2
+%(f€2'h61 —fel'h€2—€2'h€1+61'h62) -

But, as computed in [2], we have

1 1
(20) Rer,e2)p = —§K€1'€2'¢— §KN63'64'<P,

@1 dvn( Zej (VXB (Y,e5) — WYB)(X,ej))7

where V stands for the natural connection on T*M @ T*M ® E, and

nez) -nler) —nler) -nle2) = %(\B(el,ezﬂz — (B(e1,e1), Blea, ea)) )er - 2
(22) —l—% ((Sey © Sey — Se, 0 Se;) (1), €2) €3 - eq.

Therefore, we have
G- o+R-o+C- =0,
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where G, R and C are the 2-forms defined by

G = |:K-‘r <B(61,€1),B(€2,62)> — |B(€1,€2)|

+a? (1 — (fer,e2)” + (fer,e1) (fea, 62)) } e1 - e,
where K is the Gauss curvature of (M, g),

R = [KE 4 ((Sey © Ser — Sex 0 Sey) (€1), €2)

+a? ((hey, e3) (hea, eq) — (her, eq) (fea, 63>):|63 - ey,

where K g is the curvature of the bundle £, and

C = den(el, es) + a? (fea-hey — fer - hea + ea - hey — ey - hey).
As proved in [2], if T is a 2-form such that T' - o = 0 with ¢ and ¢~ nowhere vanishing,
then T" = 0. Moreover, since GG belongs to A2M®1,R belongs to 1 ® A2FE and C is of
mixed type, that is, belongs to TM & FE, then each of these three parts are zero. But G = 0
is nothing else but
K+ (B(e1, 1), Blez, e2)) — |B(e1, e2)| =

Cc

2 (1 — (fer,e2)” + (fer, 1) <f€2,€2>) :
that is the Gauss equation. Similarly, R = 0 is equivalent to

Kp+((Se; 0 Sey — Sey 0 5e,) (e1), €2) = —2 ((he1, es) (hea, e4) — (he1, eq) (fea, €3))
That is the Ricci equation. Finally C' = 0, gives the Codazzi equations. Indeed, since

2
1 _ _
(X, Y) = =5 ¢+ (VxB)(Yoe)) = (Vy B)(X.c)).
j=1
Thus, from C' = 0, we deduce for j = 1,2

(Ve, B)(e2,e5) — (Ve, B)(e1,e5) =

=~

|:<f€2, 6j> h@l — <f61, €j> h€2

(23) =+ <€2, 6j> h61 — <61, 6j> h€2:| ,

which are the Coazzi equations. Since in addition, we have assumed Equations (6)-(12), by
the theorem of Kowalczyk and De Lira-Tojeiro-Vitério, we get that (M?2, g) is isometrically
immersed into P with B as second fundamental form and f, h, s and ¢ coming from the
product structure F' of P. This concludes the proof. (|

Remark 3.2. Note that in the proof, we only use Equations (11) and (12) in the computa-
tions. The other Equations (6)-(10) and (13)-(13) are only needed to apply the theorem of

Kowalczyk and De Lira-Tojeiro-Vitori, as well as the hypothesis on the rank of the maps
Fild 0 F—1d
2 2 -

4. THE DIRAC EQUATION

Let ¢ be a spinor field satisfying Equation (19), then it satisfies the following Dirac equation

(24) D<p=ﬁ-<p—%[(2+tr(f))w—ﬁ-<p},

2

where (3 is the 2-form defined by 5 = Z e;-he; = Z hije;-€;, where h; ; = (he;, &;).
i=1,2 i,j=1

As in [2], we will show that this equation with an appropiate condition on the norm of both

T and ¢~ is equivalent to Equation (19), where the tensor B is expressed in terms on the
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spinor field ¢ and such that tr(B) = 2H . Moreover, from Equation (19) we deduce the
following conditions on the derivatives of [p*|? and |~ |2. Indeed, after decomposition
onto X7 and ¥, (19) becomes

Vxp* = %(XJerJth) T (X)) o
From this we deduce that
(25) X(J*?) = Re (a(X + fX +hX) - T, 0%)

Now, let ¢ a spinor field solution of the Dirac equation (24) with ¢ and ¢~ nowhere
vanishing and satisying the norm condition (25), we set for any vector fields X and Y
tangentto M and £ € E

(26)
<B+(X,Y),§>: lerP[g<(X.fY—|—Y.fX).¢_+(X-hY+Y.hX).@—’§,<p+>
+<X~Vycp+—|—o¢<X,Y>Lp_,£~cp+>],
and
27)
1
(B~(X,Y),§) = w[Z<(X-jY+Y-jX).(p++(X~hY—|—Y.hX).(p+7£.@>

+<X-Vy<p_+a<X,Y>cp+,§-<p_>].

Finally, we set B = BT + B~ . Then, we have the following
Proposition 4.1. Let ¢ € T'(X) satisfying the Dirac equation (24)
- @
Dso:pr—g[(?Hr(f))so—ﬂwp}
such that
X(l¢*P) = Re(a(X + fX +hX)-oT,0%)
then ¢ is solution of Equation (19)

a
VX¢:§(X+fX+hX)'<P+T7(X)'<P»

2
1
where 1 is defined by n(X) = ~3 Zej - B(ej, X).

j=1

For the sake of clarity, the proof of this proposition will be given in the next section. Now,
combining this proposition with Theorem 3.1, we get the following corollary.

Corollary 4.2. Letc € R, ¢ # 0 and o € C such that 4a® = c. Let (M?, g) be an oriented
Riemannian surface and E an oriented vector bundle of rank 2 over M with scalar product
< -,- >p and compatible connection V. We denote by ¥. = XM ®@ L. E the twisted spinor
bundle. Let f, h, s and s be some maps

f:TM —TM, h:TM — FE, s:E—TMandt: E — FE

. . F+Id
satisfying Equations (6)-(10). Moreover we assume that the rank of the maps =5~ and

—F;Id are 2 and 2 (resp. 3 and 1), where F' : TM & E — T'M @ E is defined by relations
(5). Then, the two following statements are equivalent
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(1) There exists an isometric immersion of (M?, g) into M?(c) x R? (resp. M3(c) xR)
with E as normal bundle and mean curvature H such that over M the product
strcuture is given by f, h,t and s.

(2) There exists a spinor field p in X solution of the Dirac equation

Dyp=H- <p—§[(2+tr(f))so—6-<p

such that ¢ and ¢~ never vanish, satisfy the norm condition (25) and such that
the maps f, h, s,t and the tensor B defined by (26) and (27) satisfy relations (11)-
(13).

5. PROOF OF PROPOSITION 4.1

First, we decompose the Dirac equation (24) on the four spinor subbundles ¥+, ¥=—,
¥+~ and X~F. We get the following four equations

Dp== =H- o™ — g2+ u(f)p"~ + 58071,
Dgtt =B = 2 () + 45
Dyt~ =H- =" = §(2+t(f)p™ " + 569",

D=t =H- ot~ —52+te(f)e™ + 58 907
Now, we fix a point p € M, and consider e3 a unit vector in E, so that the mean curvature
vector is given by H= |FI les at p. We complete e3 by e4 to get a positively oriented and
orthonormal frame of E,. First, we assume that ¢~ ~, ™, ¢~ and ¢~ do not vanish

at p. It is easy to see that
O
er-e3- €€z
o=~ o=

is an orthonormal frame of X for the real scalar product Re (-, -). Indeed, we have
Re(er e3¢ ,ea-e3-9 ) = Re(p ,ez-e1-ex-€3-¢0 )
Re (il |*) = 0.

Of course, by the same argument,

+- +—
¥ ¥
oo e )

are orthonormal frames of X~ ~, ¥~ and ¥~ respectively. We define the following bi-
linear forms

F++(X7Y):E)%6<chp+'*',Y-e3-c,o">7
F_ (X,Y):%€<VXQD77,Y~€3~§0++>,
Fy_ (X,Y):9‘{6<Vx<p+_,Y~eg~ga_+>,
F i (X,)Y)=Re(Vxe Y -e3-017),

and

1

B++(X, Y) = —59%6 <OZ(X + fX) . Sﬁ_+ + ahX - 80+_;Y c €3¢ SD__>7
1

B__(X,Y) = - Re(a(X + fX) ¢ +ahX p7" Y 5 o*),

1
By (X,Y) = —Re(a(X + fX) ¢ +ahX 977,V o507 ),



1
B_((X,)Y)= —iiﬁe (a(X+ fX) o " +ahX - o™ Y e3-97T).
‘We have this first lemma:

Lemma 5.1. We have

(1) tr(Frs) = —[Hllp™ | + $9Re(a@+ ()¢ +aB ¢*es- 07,
@) tr(F_) = —[H|lp* 2 + $Re(a(2+ ()" +aB o eg 9,
® t(Fy) = —[Allg~ P + i%e{a(@+u(f) e +af ¢ e o),
@ t(F_y) = —|Hlp 7 + ie(a(2+ ()™ +af o e o),

Proof: We only compute the trace of F';, the computations for the three others forms
F__,F,_ and F_, are the same. We have

tr(Fiq) = Fii(er,er) + Fii(e2, e2)
= %6<V61gp++,el-63-<p__>+9‘ie<V€2g0++,eg-eg-<p">
—SRe <€1 . Velcp++,eg . 30**> —Re <62 . Ve2g0++, es - 90*7>
= —fRe <D<p++,63 . <p">

Since Dptt = H -7~ — 2(2+tr(f))p~+ + 28 - ¢, we get

tr(Fyy) = —Ne <ﬁ 7 %(2 +tr(f)e~t + %6 T es <p“>
= —Re(|Hles-¢ " ,es-¢ ) +Sﬁe<%(2 +tr(f))p™ " - %/3 cT T es %077>
= |l P+ gRe(a(2+ t(H)e +aB gt e o)

This concludes the proof. O

TNow, we have this second lemma which gives the defect of symmetry:

Lemma 5.2. We have

(1) Fyi(er,e2) = Fyi(ez,e1) — %9%<(2 +tr(f)e t —aB- ot ey <P”>,
@ F-(e1,e2) = F—(ez,e1) = $9e( 2+ ()¢t —aB o ea- ),
(3) Fy_(e1,e2) = Fy_(ez,e1) + %9{€<(2 +tr(f)) et —aB o e <P+7>,
(4) F_y(e1,e2) = Fy(ea,e1) + %m€<(2 +tr(f))e " —aB- ot ey <P_+>

Proof: As for the proof of the previous lemma, we only give the details for F'; | . We have

Fii(ene2) = Re(Ve,o' ez ez-977)
= Re(er Ve, ere2-e3-977)

— e’ (6% _ —
= Re <H T g2 u()eT T+ 5B 0T —er Vet e e ese >
The first term is

Re <I-7 “p~ T ,e1-ea-e3- @77>

—Re <€3'ﬁ'9077761 '62'8077>
= 9{6<I—7-63-¢",i@">

= —%e (il l¢ ) =0,
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where we have use that te; - es - ¢~ = —p~ ", thatis, e; - ez - o=~ = i@~ ~ and
H = |H|es. Moreover, we have
—Re <€2 Ve, 0Tt €1 €33+ g0**> = fRe <V62(p++,62 -ey-eg-e3- 50**>
= fRe <V62<p++, e1-e3- 90">
= Fii(ez,e1).
Finally, since o=~ € X1, we have wy - ¢~ = ¢~ —, which implies €1 - e - €3 - o=~ =

—eyq -~ and we get
1 _ _ _—
Fii(er,e2) = Fiy(ea,e1) — §%€<a(2 +tr(f)e T —aB- 9T e >
The proof is similar for the three other forms. (]

By analogous computations, we also get the following lemmas. We do not give the proof
which is similar to the two previous ones.

Lemma 5.3. We have

(1) tr(Bss) = —3%e(a(2+ () g +aB- " e 7 ),
Q) tr(B__) = — %D%e<a(2+tr(f))<p+_ +afB - +,63-<,0++>,
(3) tr(By-) = %%€<a(2+tr(f))<p+++a5-<p ‘,es~s0‘+>,
@) tr(B_y) = —3%e(a(2+ u())p™ +aB- ot es ot )

Lemma 5.4. We have

(1) Byi(e1,e2) = Byy(ez,e1) + %9‘{@<(2 +tr(f)e T —aB- ot ey 50__>,
(2) B__(e1,e3) = B__(ea,e1) + %936<(2 + tr(f))gp+_ —aB-p T, e4 <p++>,
(3) Bi—(er.e2) = B (en,e1) = $%e( (24 6:()) ¢+ —af- o™ ea- gt
(4) B_y(e1,e2) = By (ez,e1) — %9{6<(2 +tr(f)e " —aB- ot ey 807+>-
Now, we set
App:=Fiy + Biy,
A__=F _+B__,
Ay =F,_+By_,
Ay =F +B 4,
and
Apy A__ Ay A4
F, = — and F_ = — .
T e JetTP [ N e

From the last four lemmas we deduce immediately that F, and F_ are symmetric and
trace-free. Moreover, by a direct computation using the conditions (25) on the norms of
and ¢~ , we get the following lemma:

Lemma 5.5. The symmetric operators F™ and F~ of T M associated to the bilinear forms
F and F_, defined by

FT(X)=F.(X,e1)e1 +F(X,ea)es and F~(X)=F_(X,e1)e1+F_(X,e2)ez
forall X € TM, satisfy

() Re (FH(X) ez 0™, =0,
(2) Re (F~(X) -e3- o~ T,077) =0.



Proof. First, we have

Ap(XY) =Re (Vxep™" —a(X + X)o7 T +ahX 0" Y e3¢ 7),

Since (el -e3 - z,,l,eg -e3 - |£,,|) is an orthonormal frame of ¥+, we have

6] _ « _
Re <Vx<p++ (X +fX) T+ ShX o7 7<p++>

2
A++ - 4+ A++ - Tt
= |¢__|2(X761)m6<61'63'50 2 >+|¢__|2(X762)m6<62'63'90 2 >
Similarly,
_ @ _ o _ __
Re (Vxp *§(X+fX)'<P+ +§hX‘SD 7T
A ++ o= A ++ o
= ‘¢++|2(X,€1)m€ (e1-€3- 077,07 7) + W(X,@) Re(e2-e3- 077,07 7)
:—A__ (X,e1) Re {eg - ez -~ ++>—7A__ (X, e2) Re lea-e3-p~ ,ptT)
|S0++|2 » €1 1 3@ ) P |§0++‘2 s €2 2 3@ ) P .
Summing these two formulas imply that

e e
Re (FH(X) e3¢0 7,97 ") =Re (Vxp" = (X + fX) -9~ + ShX 07, 07).

By the condition (25) on the derivative of the norm of o , this last expression is zero. The
proof of the second relation is similar. (]

Hence, the operators F'* and F'~ are of rank at most < 1. Since they are symmetric and
trace-free, they vanish identically.

Using again that (61'63' |$,:|,eg-eg . %) is an orthonormal frame of X1+,

we have

Vxett =Fi (X, er)er -es- £y Fip(X,ez)es - e3- |::;7—\

o=~
Since F, = A, — B and denoting by A™" and B™ the operators of T'M associated
to A4+ and B, and defined by

ATHX) = Ao (X, e1)er+A4 (X, ea)ea, BTT(X) = Boy (X, e1)er+B1 (X, e2)ea,
we get

_ 1
e
Similarly, we denote by A~ and B~ the operators of 7'M associatedto A__ and B__.
Thus, we have

(28) Vxpt™

[ATF(X) e3-¢77 =BT (X) ez 7]

— 1 _ _
(29) Vxe :W[A (X)-e3-¢™t—B (X)‘€3'<P++]-
Moreover, we easily get
1
B (X) e3¢ = —i\w"lz(a(X +[X) ¢ +ahX - w*’)

and
1
B 7 (X)-e3-ptt = —§|cp++|2(a(X +fX) 0T +ahX - g0_+).

Hence,

1 __ o _ « _

VXSD+ = |¢,,‘2A++(X)'63'90 +§(X+fX)(p ++§hXSD+
1

_’_7

|t

ATT(X) eg T+ DX+ fX) T+ ShX o
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Now, we set AT = AT+ + A=~ From the definition of ATt and A=~ and since F'+ = 0,
T+ -

we have ﬁ = W‘fﬂiﬂz. Bearing in mind that [T |2 = |2 + |~ |?, we get finally

A+ At++ A

(30) _ _ ,
let? o=~ [2  Jett]?
So, we have
1
(31) Vxet = SAT(X) ez 0" +a(X + fX+hX) ¢ .

It

Analogouslly, we set AT~ and A~ the operators of 7'M associated to Ay and A_,
and we denote A~ = AT~ + A~T. Using the fact that '~ = 0 we get

1
Vxe~ = |¢+_|2A‘+(X) ezt F X+ fX) ot fahX T
+ #/ﬁ*(X) ez T+ g(X +fX)- 0o+ Chx - et
lp=*? 2 2
1

(32)

«

We now observe that formulas (31) and (32) also hold if ¢ or o=, (resp. o+~ or o= 1)
vanishes at p : indeed, assuming for instance that ¢+ (p) = 0, and thus that o=~ (p) # 0
since ¢ (p) # 0, equation (28) holds, and, from the norm condition in (25), we have

oY oY
Re <Vx<p** - §(X+fX) et + ghX : g0*+,g0**> =0.

Since (\i:l o0 ‘i: ‘) is an orthonormal basis of %~ ~, we deduce that
o} Q . T
Vxp = (X4 X) 9"+ ThX ot = zd(X)%

for some real 1-form 6. Moreover, since ¢ = 0 at p, we have
D™~ +a2+tr(f))e" " +aB-p T =0,

which implies

(5(61)61 + 5(62)62) . % = 0,
and thus that § = 0. We thus get Vxo ™~ = §(X + fX) - o7~ 4+ $hX - ¢~ instead of

(29), which, together with (28), easily implies (31).

Now, we set

1 + 1 -
0= (At ) a0 = (A 0-a)
lot| lo~|
where, if o belongs to CI°(TM & E), we denote by 0 := H% -ocandby o™ := 1‘% o

the parts of o acting on X+ and on ¥~ only, i.e., such that
ot p=0-o" € X" and o -p=0-9 € %
Setting 7 = n 4 1~ we thus get
Vxp=n(X)-p+ S(X+IX +hX)-,

as claimed in Proposition 4.1.
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Now, we will compute B explicitely. For this, we set A (X,Y) = (AT(X),Y) and
A_(X)Y):= (A (X),Y). Then, the form 7 is given by

1
n(X) = e [Af(X,e1)(er-e3—ex-eq) + A (X, ea)(ea-e3+ €1 - eq)]
1
+72|<p_|2 [A_(X,e1)(e1-es+ex-eq)+A_(X,e2)(ea-e3—eq - eq)]
with
!
AL(X,Y) = Re <VX¢+ — X+ X +RX) 7Y ey <p+>
and

A_(X,Y) = Re <VX<,0_ - %(X FIX A hX) oY ey @—> .
Moreover, we see easily by direct computations that for any vectors X and Y tangent to
M,

B(X,Y):=X -n(Y)—n(Y) X
is a vector belonging to E which is such that
1

(B(X,Y),&) = mee (X -VypT —a(X + fX+hX) Y o, pF)

1
+W9‘{6<X-Vy<p_ —a(X+fX+hX) Y o & o)

forall¢ € E.
Lemma 5.6. The operator B defined above is symmetric in X and'Y .

Proof: The proof is analogous to the symmetry of A, proven above and uses the Dirac
equations

Dot =H -t - a[(2 +tr(f))p - 8- so‘}

and

—

Dy~ = H ¢~ —a|@+u(f)et - 8-o7].

Now, computing

(B(X,¥),8) = 5 (BOX,Y),€) + (B(Y X))

we finally obtain that B is given in the discussion of Section 4.
Since B(e;, X) =e; - n(X) —n(X) - e;, we obtain
(33) > e Blej, X)=-2m(X) = > e n(X)-e;.

j=1,2 j=1,2

Writing (X)) in the form Z er - N, for some vectors 7 belonging to E, we easily get

k=12
that Z e; - n(X) - e; = 0. Indeed, we have
j=1.2
Do nX) e = Y e | D e | e
J=1,2 J=1,2 k=12

= e1-(ex-m+ez-m2)-e1+ez-(ex-m +ez-m2)-e2
—M-€1—€2-M2—€1- N1 — M2 €2

el M +n2-ex—er-n—1N2-e2

= 0
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Thus, from (33), we get

1
DX = =3 3 e Blej, X)
j=1,2
The last claim in Proposition 4.1 is now proved. (]
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