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A nonlinear general Neumann problem involving two critical

exponents

Rejeb Hadiji* and Habib Yazidi t *

Abstract

We discuss the existence of solutions to the following nonlinear problem involving
two critical Sobolev exponents

—div(p()Vu) = Blul* "2u + f(z,u) inQ,
U ?—é 0 in Q,
gu = Q(z)|ul>2u on 09,

where 3 > 0, Q is continuous on 99, p € H(Q) is continuous and positive in  and

f is a lower-order perturbation of |u[?"~* with f(z,0) = 0.

Keywords : Sobolev critical exponent, The trace embedding, Variational problem,

Critical nonlinearity in the boundary, Palais-Smale Condition, The mean curvature.

2010 AMS subject classifications: 35J20, 35J25, 35J60.

1 Introduction

In this work, we deal with the following problem

—div(p(@)Vu) = Bl u+ fzu)
(1.1) uz0 in Q,
% = Q(x)|u|*2u on 052,

where Q ¢ IRY, N > 3, is a bounded domain with the smooth boundary 02, v is the
outer normal on 92, § > 0 is a constant, the coefficient @) is continuous on 952, the
coefficient p € H'(Q) is continuous and positive in Q and f(z,u) : @ x R — IR is
measurable in x, continuous in wu.

Here, 2, = 28{,\[__21) is the critical Sobolev exponent for the trace embedding of the space
HY(Q) into L?(09) and 2* = 2% is the critical Sobolev exponent for the embedding

H(Q) into L?" (). Both embedding are continuous, but not compact. Our goal is to
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study the existence of solutions to problem (1.1).

The main motivation to consider such problem is the study of conformal deformations of
Riemannian manifolds with boundary, see [6], [13] and [14].

Problem(1.1) has a variational form. Then the eventual solutions correspond to the
critical points of the energy functional.

The existence of a solution of (1.1) is closely related to S (resp. S1) which is the
best Sobolev constant for the imbedding H'(Q2) into L? (Q) (resp. for the imbedding
H(Q) into L*(09)). As in [4] for the nonlinear Dirichlet problem with critical Sobolev
exponent, we will fill out the sufficient conditions to find solutions for the problem in
presence of a nonlinear Neumann boundary data with a critical nonlinearity. One of
the difficulty of our problem, besides the fact that the associated functional does not
satisfy the Palais-Smale compactness condition (PS), is that it possesses four levels of
homogeneity.

Let us recall some works related to the problem (1.1). If p = 1 and wu satisfies

homogeneous Dirichlet condition, problem (1.1) has been treated in [4], where the authors
obtained positive solutions with energy less than %S %, see also [15] and [7]. In [20], the
author gives a complete description of the energy levels ¢, associated to problem (1.1),
on which (PS). sequence is not compact. For the case p # 1, f(z,u) = Au with
homogeneous Dirichlet condition we refer the reader to [16, 17] . For the homogeneous
Neumann problem, in [8], the authors proved the existence of solution with energy less
than ﬁS%
Thecasep=1=Q, f =0and f(x,u) is a linear perturbation, has an extensive literature
and the first existence results was treated in [1, 3, 9, 10]. In this case the solutions are
obtained as minimizers of the variational problem associated to (1.1) with energy less
than S;. If 5 = 0 and f(z,u) has an explicit form, problem (1.1) has been studied in
[21, 22] and some existence results are obtained.

In [11], the authors were interested to the case p = 1, f(x, u) = 0 and the presence
of two critical nonlinearities. They derived some existence results by the use of the
concentration compactness principle see [18]. For another form of equation (1.1) with
competing critical nonlinearities, see [19] and references therein.

In this paper we are concerned with the general case, more precisely, p Z 1, @ # 0 and
f(z,u) # 0. We assume that f is a lower-order perturbation of |u|?>"~! and f(z,0) = 0.
Let po = mig[zlp(x) and xo € 0f) satisfy

Q@)™ Q@)
p(z0) wedQ  p(x)
We assume that
(1.2) Ip(z) — p(zo)| = o(|z — zol)
and
(1.3) |Q(z) — Q(z0)| = of|z — o)



for x near xg.

Our first contribution to problem (1.1), in section 2, is an existence result for the
case where 8 = 0. The energy solutions which we find are under the level on which

the (PS) condition failed. More precisely, we show existence of solutions with energy in

0, sy =St L

Next, in section 3, we turn to the general case and look for solutions for problem (1.1)
in the case of the presence of competing critical nonlinearities in the case p(xg) = po.
The main difficulty of the problem in caused by the presence of two critical exponents and
a general nonlinear perturbation. This fact causes the change in energy level for which

the Palais Smale condition (PS) is not satisfied. In this paper, we determine explicitly
the new energy level M (S, S;) defined by

p(z0) S{V—l oN—2

(Q(z0))V—2 1 N -2 1
(14)  M(S,5) = B
1+vitag] > N N(N-1D1+V1+4E
p(z(])\r) . N1 %
where E = % . We will show the existence of solution for (1.1) with
PoS) 2
energy in |0, M(S,S1)[.
Note that
: 1 p(x0) No1 1 ﬂ}
0 < M(S,S1) < min ST, —=(poS)z ¢
50 <uin{ gy gt 7 S)

2 Existence results for 7 =0

We assume that f(z,u) can be written as

(2.1) flz,u) = a(z)u + g(x,u),

with

(2.2) a(x) € L>(Q),

(2.3) there exists 2 < o < 2, such that, for every € RN and u € IR,
' aG(z,u) < ug(z,u), where G(z,u) = [ g(z,t)dt,

(2.4) lg(z,u)| = o(Ju]) as w — 0, uniformly in z,

(2.5) lg(z,u)| = O(|u|*1) as |u| — +oo, uniformly in z.

or

(2.6) lg(x,u)] = O(Ju|"~!) as |u| = +o0, uniformly in x,

where r is such that 2, < r < 2%,



Moreover, we assume that the first eigenvalue A;(a) of the following problem is positive:

—div(p(x)u) — a(x)u = pu  in Q
9u _ on 0f),

That is,

(2.7) Ai(a) = inf {/ |Vul? — a(z)u’dz, /uzdac = 1} > 0.
u€eH1(Q) Q

Under assumption (2.7), it is easy to verify that ||u|| = ([, [Vu|? — a(z)u?dz)

1,
2 1S a norm

on H!(Q) equivalent to the usual norm ||| z1.
Let

2 dsy, u € HY(Q),

B(u) = %/5%9(3:)|Vu|2dx - /QF(x,u)dx - Qi p(2)Q(x)

o
u —
where F(x,u) = / f(z,t)dt for x € Q, u € IR. Our main result in this section is
0

Theorem 2.1
Assume (2.1)-(2.5) and (2.7) or (2.1)-(2.4) and (2.6)-(2.7). Moreover suppose that

there exists some vg € H,v9 > 0 on Q,vy # 0 on 09, such that

p(xo) -
)< 2T gy

(2.8)

Then problem (1.1) possesses a solution.

Proof of Theorem 2.1
Let s = 2, when f satisfies (2.5) and s = r when f satisfies (2.6). By (2.4) we have, for
any € > 0, there is a § > 0 such that

lg(z,u)| <elu| for a.e z € 2, and for all |u| <9,
thus, by (2.5) or (2.6), we obtain
lg(z,u)| < elu| + Clul*~! for a.e z € Q, and for all u € IR,
and for some constant C' (depending on €). Therefore, we have

(2.9) F(x,u) < ~a(z)u® + %uQ + g|u|s for a.e z € Q, and for all u € IR.
s

l\')IH

Hence we find, for all u € H'(€),

D(u) > ;/( )| Vul dw——/éz(x)]u\de—%/(\lulzdx—g/g\zu]sdx—Q—l* af]lo(x)Q(x)\uP*dsx

Using (2.7) we easily see that, for £ > 0 small enough , there exist constants k > 0,
C7 > 0 and Cy > 0 such that

®(u)

v

kllull* = Cillull* = Calul*
lull (& = Cullu]|*=* = Caf|u

v

2*72) for all u € HY,



which implies, since 2, > 2 and s > 2, for some small « > 0 there exists p > 0 such that
(2.10) ®(u) > p, provided [jul| = a.

At this stage, we need some notations and some estimations. We recall S; defined by

Sy = inf{/ \Vul?dz; u € HY(RY), / lu|?* dx = 1}
RY RN-1

the best constant for the trace embedding H'(IRY) into LI(9IRY), where RY = {z =
(2 zn): o' € RN7 2 > 0}.

We recall from [13] and [18] that the minimizing functions of S; are of the form

(2.11) W(z) = o
j/[2 + (1 + n)°

N-2"

2

where vy is a positive constant depending on N. We set

N-—2 Tr — X

Weao(z) =72 d(z)W(

),

™

where g € 00 and ¢ is a radial C*°-function such that

qﬁ(m):{ 1 if |z — x| <

0 if |z — zo| >

ol [

with R > 0 is a small constant.

From [3] and [10] we have the following estimates

(2.12)
) Alelloge| + o(e|loge|) if N =3
[ @IV W[ = ) A1 — plao) H o) |
Q Age + o(e) if N >4,
(2.13) / () Q) |We wo [ ds = p(a20)Q(0) (Br — H(x0) Bae) + o(e)
o9

where Ay, Al, As, By and Bj are some positive constants defined explicitly in [3].

From [21], for some 2 < r < 2*, we have
o(e) if N >4

(2.14) / W | =
0 o(|n(2)) IEN = 3.

Let us notice that

A 2 A1B
(2.15) Sy=-"1 and Ay— L2 >0
2% 2, Bl
By
On the other hand, when f satisfies (2.5), we easily see that t_l)lin O(tW, z,) = —00.
o

Then we take v = toW, 4,, where t; > 0 is chosen large enough so that [|v| > « and



®(v) <0.
When f satisfies (2.6), using (2.12)-(2.14), we have
o(e) it N >4

D(tWe zy) = 2A —t>* B + 1"
o(e|In(e)|) if N = 3.

Therefore, for € > 0 small enough, there exists many ¢ty > 0 such that t%A — t%*B < 0.
Let, again, v = toW; 4, for € small enough when ¢( is chosen large such that ||v|| > a and
®(v) <0.

Set

(2.16) ¢ = inf max ®(w),
PecA weP

where A denotes the class of continuous paths joining 0 to v.
Thanks to a result of Ambrosetti and Rabinowtz [2], see also [4], there exists a sequence
{u;} in H'(2) such that

®(u;) »c and @'(u;) — 0in HH(Q).

1 plzo) _ gN-1
2(N=1) (Q(ap))¥ 2L
In order to conclude the proof of Theorem 2.1, we need the following Lemma.

Looking at (2.8) we see that ¢ <

Lemma 2.1
Let {u;} C HY() be a sequence satisfying

T SNfl
(2.17) B(uj) ¢ < 5y ﬁ(l;]()tho))NQ
and
(2.18) ' (u;) =0 inH Q)

then {u;} is relatively compact in H' ().

Proof of Lemma 2.1:
We start by showing that {u;} is bounded in H().
Using (2.1) and (2.7) we see that (2.17) and (2.18) are equivalent to

1 1

(219)  fug]? - / Gla,uj)de — ~ [ p@)Q(@)|u; P dss = ¢+ o(1),
2 Q 2. Jao

and

(2.20) s % — /Q ol )uyda /8 )@y P dss =< &>

with & — 0 in H™1,
Taking (2.19)-1(2.20), we get
(2.21)

2AN—1) /69 p(x)Q(x)|u;*ds, — /QG(ﬂ:,uj)d:U + % /é}(ﬂ:,uj)ujd:c = c+ o(||u;)).

6



On the other hand, (2.19)-5-(2.20) yields

1

1
lal = | Glaus)de + 5 fate,us)ugde = e+ of )

Using (2.3), (2.21) and (2.22) follow

(2.29) sl = 0= 5 | Glau)de < et ol
and
20 gy [ @@l - 1= 5) [ Gl < e+ oflul)

Computing (5 — 1)(2.23)+(1 — 5-)(2.24), we obtain

(§ =Dl + =55 [ ple)@@luyds, < e+ oy ).

Therefore, since 2 < a < 2, we obtain that {u;} is bounded in H'(Q2).

Extract a subsequence, still denoted by wu;, such that
uj — wu weakly in H'(Q),
uj — wu strongly in L*(Q) for all t < 2* = N 3

uj — u a.e. onfl,
f(x,uj) — f(z,u) strongly in Lf_:l(Q),
uj — wu weakly in L*(9Q).
Passing to the limit in (2.18), we obtain

% = Q(z)|u**2u on 0N

{ —div(p(z)Vu) = f(z,u) in Q

We shall now verify that u # 0. Indeed , suppose that u = 0. We claim that
/ f(x,uj)u;de — 0 and / F(xz,uj)dx — 0.
Q Q
From (2.5) or (2.6), let s = 2, if f satisfies (2.5) and s = r if f satisfies (2.6), we have

for some constants C; > 0 and Cy > 0
|f(z,u)| < Clul*~t +Cy for a.e. z € Q, and for all u € IR,

and then o
|F(z,u)] < —1|u|S + Cslu|  for a.e x € Q, and for all u € IR.
s

Therefore

Scl/ ‘u]"sd.%'—i-CQ/ ]uj\dm
Q Q

7

‘/ fz,uj)ujde
0



and

'/qu] )dx <—/]uj\ dx—i—Cg/]uj]dx.

Since u; — 0 in L*(Q2) then for j large enough, we have

/Qf(x,uj)ujdx =o(1)

/ F(x,uj)dr = o(1).
Q
Which gives the desired result.

Extracting a subsequence, still denoted by u;, we may assume that

and

(2.25) / p(x)|Vu,;|*dz — 1 for some constant [ > 0.
Q

Passing to the limit in (2.20), we obtain

(2.26) /(m p(m)Q(x)]ujIQ*dsx —

Passing to the limit in (2.21), we easily get

(2.27) ﬁl —c

Therefore I > 0 and [, p(#)Q(x)|u;|** ds, > 0 for large j.
On the other hand, from the result of [24, Theorem 02|, we know that there exists a
constant C(2) > 0 such that for every w € H()

21
/ \Vw|*dz + C(Q)/ \w|kdz > Sy (/ ]w[Q*dSJC) o,
Q ) o9

Withk:—ilfN>4andk:>3——71fN—3
We apply this result for w; = (p(:n)) 2u; and in particular for N = 3 we take k such that
6= ]\2,—1172 > k > 3, we obtain for j large enough

/Q IV (p(2)) FuPdo + C(9) /Q (o)) o > Sy ( /8 (b)) by

Since k < 225 for every N > 3, thanks to the compact embedding H!(€2) — L*(), we

have, for a subsequence, u; — 0 strongly in LFE(Q) and we deduce

=

@) [ pla)VuPde o) > 5, ( | @iy d) o).

Using the fact that
QN2 _ (@)
pz)  —  plxo)

YV € 09,

8



(2.28) becomes

(2.29)
QN2 \ ¥-2 2
24 -
[ p@IvuPa o) > si| [ @anF ((Q(f) s, |+ o)
Q o0 e
- 1 2 2
(p(wo)) ™2 | ™ (/ )2
> 5| ——— p(x)|Q Zedsy + o(1
[ Ee [ bwiew (1)
- 1 2 2
(p(a))™=2 | * (/ 2 )2
> S | —— 2)Q(x)|u;|“*dsy 4+ o(1).
| ot [ bl )
At the limit we obtain )
L 42
(p(xo)) -2 | ™ ne2
> —
l [ Q(zo) S
and )
(Q(wo)) V=1
Using (3.9) and (2.27) we see that | # 0 and
1
[N > (P(%))ésl
(Q(z0)) V1
Therefore
p(zo) N-1
" Q)M
and from (2.27) we have
1 p(zo) N1
>
“Z AN 1) (QGaa)
which gives a contradiction with the fact that ¢ < 5~ p(2o) SN L thus u # 0.

2(N=1) (Q(z0))¥ 2
Now, we shall prove, for a subsequence, that u; — u strongly in H L(Q).

We start by showing that ®(u) > 0. Indeed, since u is a solution of (1.1) with 8 = 0, we

have
/ p()|Vul2ds = / f(,u)de + / Pp(@)Q()|u
Q Q o0
On the other hand

B(u) = / p(@)|Val dx——/ (@)l ds, — /Fx w)d

Therefore, using (2.3), we have

2 ds,.

B(u) > ﬁ/ﬂp(:ﬂﬂVUPd:ﬂ%—(;—1)/QF(:c,u)d:c,

*

and
1

—— T z)|ul>ds x T,u)ax.
> 5=y |, @RI s + (5 =) [ Fla.ua

9

D(u)



Since 2 < a < 2,, we deduce that ¢(u) > 0.

We set v; = uj — u. We have

(2.30) / p(x)|Vu;|*dr = / p(x)|Vul|?dz + / p(x)|Vv;2dz + o(1)
Q Q Q
and from [5] we deduce that

Zeds, + o(1).

(2.31) /BQp(x)Q(x)]uj Zds, = /BQ p(@)Q(x)|u|* ds, + /BQp(w)Q(x)]vj
Inserting (2.30) and (2.31) into (2.19) and (2.20) we get

2ds, = c+ o(1)

@32) ety [ p@Tulae- 3 [ pwe@h

and (looking at (2.18))
(2.33) [ p@IVefs - [ p@)QlusPds, = o)
Q a0
Extracting a subsequence, still denoted by u;, we may assume that
/ p(x)|Vv;[*dx — 1 for some constant [ > 0.
Q

From (2.33) we obtain
| p)Q@lu;Pds, =1
o0
Passing to the limit in (2.32), we easily see that

1

(2.34) =T

l=c—®(u).
Using the Sobolev embedding, see (2.29) for details, we have
e
- N—-2
(2.35) 1> PV o=t

We claim that [ = 0. Indeed, arguing by contradiction, assuming that [ # 0, then (2.35)
gives
p(zo) N-1
1> ——5=5] .
(Q(ao))N -2

From (2.34), we obtain

1 p(xo) N—1
=20 2 SR T @)

which gives a contradiction, since ¢ < 2(]\,171) (Q((gg)o])v_g S{Vil and ®(u) > 0. Therefore

[ =0, c= ®(u) and uj — u strongly in H*(Q).

10



2.1 Sufficient conditions on f(z,u) which give condition (2.8):

We claim that W ,, satisfies condition (2.8) for ¢ > 0 sufficiently small. Indeed, we have

1 2
BWe) = 5 | ) W Pl =

/ P(2) Q)| Wiy [ dsp — / F(, (W gy ).
o0 Q

*
When f satisfies (2.5), we easily see that tEeroo P (tWe z,) = —oo and for large ¢t > 0 we
have ®(toWe z,) < 0.
When f satisfies (2.6), using (2.12), (2.13) and (2.14), we have

o(e) ifN>4

O(tWe py) = t2A — t>* B+ 1"

o(e/ln(e)]) if N =3.
Therefore, for ¢ > 0 small enough, we chose 5 > 0 such that t%A — t%*B < 0 and
P(toWewy) < 0. Therefore, in both cases, sup;ejo, 1] (ttoWe 4,) is achieved at some
0 <t. <1 and ¢, is bounded. In the rest of this section, we note t. = t.tg.
From now, we can suppose that ¢. > 0, indeed if t. = 0 then sup,>o ®(tW: z,) = 0 and
the condition (2.8) is satisfied.
Since the derivative of the function t — ®(tW, ;) vanishes at ¢. we have
(2.36)

te/ p(x)|[ VW, 4 | d — t?*l/ (@) Q) |[We o |** dsy — / f(@,teWe 20)We zoda = 0.
Q oN Q
We claim that

teWe 2o)We a
(2.37) / f@te ; o) We, Sdr — 0 ase — 0.
Q €

Indeed, from (2.36), we have

/ p(2)|VWe g |*d — 272 / p(2)Q(x)|We 4| dsy — / S (@, t-Weno) Wz, dx = 0.
Q ’ o0 ’ Q te

Using (2.1)-(2.5) or (2.1)-(2.4) and (2.6), there are C; > 0 and C3 > 0 such that, for a.e.
r e forall u € R, |f(z,u)] < C1lul*~! + Calu| where s = 2, if f satisfies (2.5) and
s =r if f satisfies (2.6).

Therefore

xz,t.W, W. _
/ f( 5 E,xo) £,Z0 dx S Cltgs QHWE,GCOHis + CQHWQM)H%%
Q

te
Using the fact that, as ¢ — 0, t. is bounded, [|[We xll12() — 0 and [[We z,llps (@) — 0
since s < 2*, we get directly (2.37).
Consequently, for ¢ > 0 small enough, (2.36) become

tg/p(x)|VW€7mO|2dx—t§*1/ p(m)Q(m)|W€7mO|2*dsm =o(1).
Q o0

Therefore

/Q (@) [ VW oy [2d

(2.38) t. <
/ D) Q)| Wy |2 dss
o0

11



Set

/Q p(@)| VW, [2d

X, =
/ (&) Q)| Wy |2 s
o0

and
M, = sup ®(ttoWez,) = P(tWe )-
tel0,1]

Since the function t — 12 [, p(x)|[VWe 4, |*dz—5 ad =~ [oq P(2)Q(2)|We 4 |?<ds,, is increasing
on the interval [0, X;] we have, by (2.38),

1 X2
M. < 3X2 [ p@)VWesy ol — 55
2°¢ Jo ’ 2

*

/ P(2) Q)W [ sy — / Fla, 6. W a, )da
o0 Q

Using (2.12)-(2.15) and the fact that [, |W; 4, |*dz = o(¢), we obtain

N—-1
M, < 2(]\[1_1)@(1;(0);’ =51 = [ G, t-We gy )d:

(2.39) H (o) (m) 7 Ale|loge| + ofe|loge|) if N =3,

H(xo)p—(go) (A2 - 22* AIBQ) e+ o(e) if N> 4.

At this stage, we distinguish two cases:
When H(zg) <0.

Lemma 2.2
Assume that f(x, u) satisfies (2.1)-(2.5) and (2.7) or (2.1)-(2.4) and (2.6)-(2.7). Sup-

pose that there exists some continuous function g(.) such that

(2.40) g(x,u) > g(u) for a.e. x € Q and for allu € IR
and the primitive G(u fo t)dt satisfies, for N > 4
_ +o0 +00 t—(N=2)
(2.41) lime 2 /1 tNl/ ¢\ — == rN2drdt = 400
=0 e2 0 (1+172)
and for N =3
E% +o0 400 tfl
(2.42) lim / ot / G| —— | rdrdt =
=0 [In(e)] Je3 0 (1+47r2)2
Then condition (2.8) holds.
Proof.
From (2.40) and (2.11), for € > 0 sufficiently small, we have
Ag%
(2.43) /Gthwo d:c>/G 57 ) de
2

6 +xN) 24 | — x6|2]

12



for some constant A > 0.
Inserting (2.43) into (2.39) we write
(2.44)

_ 1 (o) o A" i
Ve S ST Q) /“G([(H(m_m))%rmf_ngﬁ)d

2

H (z) < A >m Abelloge| + o(e|loge|) if N =3,

_ (z0)B1
H(xo)p(go) (A 22* A}B?Q) e+o(e) if N > 4.
Finally, we claim that
N-—-2
1 Ae 2
(2.45) lim G< £’ _ )dm = oo If N > 4,
E—r 5
S e e il
and
Ae?
2.46 lim < —)dz = +o0 If N = 3.
N-—2
e—0 a]logs\ €+9UN —l—\x’—m’]Q}T
0
which implies, together with (2.44), that M. < 2(]\,171)( (Z(O)())BV_Q S{Vil for ¢ > 0 suffi-

ciently small.
Verification of (2.45) and (2.46):

Ae 22 57¥
/G )do =&V / e 5=z )dy + O(1)
e+:EN +|:c’—ﬂ:6|2] 1+yN) +|’y’|2}
oo ptoo N 1 A N
=¢ w/ / (1+yN)N 1G( — ~ 2) N=2drdyy
0 0 (1+yN) [1+7°2]7

where w is the area of sphere SN72,

Using the change of variable t = e (1+yn) we get

N-—-2
Ae 2 N T N1 1 A N-2
/G = e /% /0 ( G(HH NEQ)T drdt.

)] 1)

Then (2.45) and (2.46) are a consequence of (2.41) and (2.49). O

When H (zg) > 0.

Lemma 2.3
Assume that f(z, u) satisfies (2.1)-(2.5) and (2.7) or (2.1)-(2.4) and (2.6)-(2.7). Sup-

pose that there exists some continuous function g such that
(2.47) g(x,u) > g(u) for a.e. x € Q and for allu € IR

13



and the primitive G(u fo t)dt satisfies, for N > 4

N—2 +00 +oo t*(N72)

(2.48) lime 2 /1 AR / G| ——z= | ¥V Pdrdt =0.
e—0 ) 0 (1 + 7“2) 3
and for N =3
6% 400 +o0o t_l

(2.49) lim / ot / G| —— | rdrdt =0.

=0 |In(e)] /.3 0 (14 r2)z
Then condition (2.8) holds.
Proof.
The proof of this Lemma is similar to proof of Lemma 2.2. O

Now let us give some examples for the nonlinear perturbation.
Examples of f:
If H(xzp) > 0 then the two functions g below satisfy the hypothesis of Lemma 2.2.

1) g(z,u) = g(u) = p|ul""2u with g > 0 and 2, <7 < 2* .

2)
(3 +u In(u) + |ul>*7 ifu>1
9(x, u) = g(u) =
B+ Inw)] + [u7 i w <1

with 0 < v < ﬁ
If H(xzp) < 0 then the two functions g below satisfy Lemma 2.3.
1) g(z, u) = g(u) = p|u|""2u with p € IR and 2 < r < 2,.

_ 5 Jufz o+ Jufz +IUI
3 Existence results in presence of two critical exponents.

We assume that = 1 and, as in the previous section, the nonlinearity f(z,u) satisfies

the following basic assumptions.

(3.1) f(z,u) = a(@)u + g(z,u),

with

(3.2) a(x) € L*(Q),

(3.3) lg(z,u)] = o(|lu]) as w— 0, uniformly in z,
(3.4) lg(z,u)| = o(|u|> 1) as |u| = +oo, uniformly in .

14



Moreover we assume that

(3.5) 1nf{/ |Vu|® — a(z)u?dz, /uzdx = 1} > 0.
Q

Set F(x,u) = / f(x,t)dt for x € Q, u € IR. Let define, for u € H*(Q),
0

(3.6) D(u) = /( | Vuldr — - /\u!2*dx——/ \u!z*dsx—/QF(x,u)dx.

Our main result in this section is

Theorem 3.1
Assume (3.1)-(3.5) and suppose, moreover, that

there exists some vg € H,v9 > 0 on Q,v9 # 0 on 99, such that
(3.7) sup ®(tvg) < M(S,S1), where M(S,S1) is defined in (1.4).
>0

Then, problem (1.1) possesses a solution.

Proof of Theorem 3.1.
From (3.3) we have, for any ¢ > 0, there is a ¢ > 0 such that

lg(z,u)| <elu| for a.e z € Q, and for all |u| <4,
thus, by (3.4), we obtain
lg(z,u)| < elul + Clul* 71 for a.e z € Q, and for all u € IR,

and for some constant C' (depending on ). Therefore we have

—

(3.8) G(z,u) < za(z)u? + u + €|u|2* for a.e z € Q, and for all u € IR.

l\D

Therefore, for all u € H(Q),

B(u) > ;/( )|Vl dx——/a(x)\uy%zm—gAu\zdm——/\qu*dx——/ p(@)Q@)|u

Using (3.5) we easily see that, for £ > 0 small enough , there exist constants k£ > 0,
Cq1 > 0 and Cy > 0 such that

z*dsx

®(u)

Y

kllull3: — ChllullFn — Co
ull2: <l<: 01||u\|2* 2 02||u\|2* 2) for all w € H'.

V

Which implies, since 2, > 2 and 2* > 2, that for some small o > 0 there exists p > 0
such that
®(u) > p, provided [|u]| = a.

On the other hand, for any v € H*(Q), u #Z 0 in Q, we have by (3.4) lim;_, o ®(tu) =

—o00. Thus for later purpose we take v = toU; 4,, where ¢y > 0 is chosen large enough so

15



that v ¢ U and ®(v) < 0.
Set

3.9 = inf d
(39) e

where A denotes the class of continuous paths joining 0 to v.

Looking at (3.7) we see that ¢ < M(S,S7).

By a result of Ambrosetti and Rabinowtz [2], see also [4], there exists a sequence {u;} in
H!(Q) satisfying

(3.10) ‘P(u]') —c< M(S, Sl)
and
(3.11) ®'(uj) = 0 in H Q)

Using (3.1) and (3.5), from (3.10) and (3.11) we write

d:c——/

,
dz /8 p(#)Q()

1
(312) Sl - 5

Zeds, — /QG(:U,uj) =c+o(1),

and

(3.13)  [luy|* —

Zeds, — / g(z, uj)ujde =< &, uj >
Q

with & — 0 in H™1,

We start by showing that {u;} is bounded in H(2).
Computing (3.12)—% (3.13), we obtain

(3.14)

ﬁ\\uﬂ\ Y / |u;|* da— / [ (z,u;) — 2—1*g(ac,uj)uj] dr = cto(1)+ < &, u; >
On the other hand, from (3.4) we have for all € > 0 there exists C' > 0 such that
(3.15) lg(z,u)| < elul* 1+ C for a.e z € Q and for all u € IR,

and therefore

(3.16) |G(x,u)| < %|u|2 + Cu for a.e x € Q and for all u € R.

We deduce from (3.14)-(3.16), after using the embedding L?(2) < L*(Q) and H(Q) —
L?(2) that, for € > 0 small enough,

N -2

. 2

1
20N — 1) (1+¢) /!uj\Q dz — C'||uj|| < c+o(1)

for some constant C’ > 0. This gives that {u;} is bounded in H'(f2), otherwise we obtain

a contradiction.

16



Extract a subsequence, still denoted by u;, such that

uj — wu weakly in H(Q),

u;j — u strongly in L'(Q) for all t < 2* = NQ—JL,
u; — u a.e. onfl,
f(x,uj) — f(z,u) weakly in L%(Q),
uj — wu weakly in L*(99Q),
uj — wu weakly in L¥(Q).
We shall now verify that u Z 0 on €.
Indeed , suppose that u = 0. We claim that
(3.17) /Qf(x,uj)ujdx — 0 and /QF(x,uj)dx — 0.

From (3.15) and (3.16), we have, for all £ > 0 there exists C' > 0 such that

Se/ |uj|2*d:c+C/ |uj|da
Q Q

/F(x,uj)dx §%/ [u;
0 2" Jao

Since {u;} remains bounded in L (Q) and u; — 0 in L?(Q) we obtain (3.17).
Now, extruding a subsequence, still denoted by u;, we may assume that there exist some
constants [ > 0, m; > 0 and ms > 0 such that

'/Q f(x,uj)ujde

and

Z*d:c—{—g/ |u;|2dz.
2 Ja

(3.18)
/ p(x)|Vuy|*dz — 1, / luj|? dx — my, and / p(@)Q(x)|uj|*ds, — mo.
Q Q o0
Passing to the limit in (3.12) and (3.13), we get
1 1 1
(3.19) §l — = 2—*m2 =c¢ and [ —m; —mg=0.

From the result of [24, Theorem 01], we know that there exists a constant C'(£2) > 0 such
that for every w € H(Q)
2
2 k ) 2 =
/|Vw| dx—l—C(Q)/|w| de > — /|w *dx ,
Q Q 2N Q

with k = 225 if N >4 and k > 3 = 225 if N = 3.
We apply this result for w; = (p(x))%uj and in particular for NV = 3 we take k£ such that
6= J\%—jjz > k > 3, we obtain for j large enough

/\V(p(x))%ujpdx+C(Q)/ﬂ\(p(x))§u]‘kdx> 2% (/ ‘(p(x))%uj’?do%



Since k < 225 for every N > 3, thanks to the compact embedding H'(€2) — L*(), we
have u; — 0 strongly in L*(Q2) and we deduce
2

[ i +ot) = 2 ( [ fapbua) " +ow.

Using the fact that p(x) > pg for all z € Q, we see that

2
S oF
/p(x)\Vuj\de +o(1) > pOQ </ ]ujIQ*dx> i +o(1).
Q 2~ Q

At the limit we obtain

S
(3.20) (m)z 222 <.
2N
On the other hand, by the same way, from [24, Theorem 02] we have (see (2.29) for more
details)

2| p(wo) }Nl
3.21 mo)2x | ———~ 5 S <L
20 ma? [t s
Combining (3.19), (3.20) and (3.21) we obtain the following
(1, N-2
2N —1) "2N(N 1)t 7€
1 I N -2
N' ToN(N-—1) 7€
(3.22) 21\ *
' my <
b (p(a)5>
24
2
mo < l
2= - 1
(@l TS

An easy computation yields

(3.23) 1, N —2 ( I % << 1, N-2 (2%1%
' N' TN-DN' _p@) o’ =°=oN_-1) "2(N-1N'pS’
(Q(zo))N 271

We can write

2
l 2. 2N [ 2*
by +(8)°
Q(zo)N—2+1

If I = 0 then, since ¢ > 0, we obtain a contradiction and we get the desired result. Now,

if [ # 0 we reduce to the study of the following polynomial

J—%t + () %t—IZO where t = [N-2,
(27~ po S) ((Q(xo))N_—Q S1)
2
9 p(zo) S % p(z0) _ SNfl N—2
Which is possible if ¢ > ((Q(mo))N =51) where E' = (Q(mo)2)N ’ 1N
L+ VITAE (2% s

From the left inequality of (3.23) and the fact that [ = ¢ ~2, we obtain ¢ > M(S, S1)

which gives a contradiction with (3.10). Consequently u # 0 and u is a solution of (1.1).
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Remark 3.1

If we assume that

1 -
(3.24) F(z,v) < - f(xz,v)v + NMQ , forallv e IR and for for a.e x € Q.

DN | =

then the previous sequence {u;} is relatively compact in H' ().

Let {u;} be the sequence defined in the proof of Theorem 3.1, we recall that u; converge
weakly to u in H1(Q). We will show that u; converges strongly to u in H!(f2).

Firstly, since u is a solution of (1.1), we have
/p(m)]Vu\de = / lul* dx +/ f(z, u)udx +/ p(2)Q(2)|ul* dsy.
Q Q Q o0N
Therefore

- [f3

Using (3.24) we have ®(u) > 0.

Now, we set vj = u; — u.

2 dsy.

2 %f(l‘,U)u _ F(x,u)} dr + ﬁ /8Qp($)Q($)’u

We write
(3.25) | p@IVasis = [ p@IVafds + [ p)ive;fds + o)
Q Q Q

and from [5] we deduce that

(3.26) /Q|uj|2"d;c:/Q

and

Z*d:n—i—/ |vj|? dz 4 o(1),
Q

(3.27) /8 D(E)Q) g dss = /8 p@)Q() vl ds, + /8 D(EQ) vy dss + o(1).

Inserting (3.25), (3.26) and (3.27) into (3.12) and (3.13) we get

(3.28) <I>(u)+% /Q p(@)] o, e — o= / ,vj,z*dm__ / p(2)Q ()05 dss = e+ o1)

and (looking at (3.11))
e20) [ pa@iulae= [ ol de= [ @@l s = o).

Now, we assume (for a subsequence) that exists some constants [ > 0, m; > 0 and mg > 0
such that

/ p(x)|Vv;2de — 1, / lvj|* dx — my  and / p(x)Q(z)|v;|** dsy — ma.
Q Q o
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Passing to limit in (3.28) and (3.29), using the Sobolev embedding, a easy computation
yields

(

2(N£1)l + 2N]¥J§E1)m1 =c— ®(u)

1 N—2
Nl = a2 = ¢ - ®(u)
2*

my < <W) 2
24

2
l
mo < .
2= [ p(zq) }ﬁs
\ (Qzg)) N2 !

Therefore, as in end of proof of Theorem 3.1, if [ # 0 then ¢ — ®(u) > M (S, S1) which is
a contradiction since ¢ < M(S,S1) and ®(u) > 0. Consequently [ = 0 and then u; — u
strongly in H(Q).

3.1 Sufficient conditions on f(z,u) which give condition (3.7):

Szhﬁ{/ﬁ\Vm%m;uefﬂuww,/)]u?dmzl}.
RN RN

We consider, for all € > 0, the following functions

We recall

N—-2

B30 Oy = ( : )

e2+ |2’ —y' |2+ |zn — yn + p(N —2)~1g2

where z = (¢/,2n), y = (¥, yn) € RY'x]0, oo, p € R and ez, = &(2)Ue (@),

where £ be a radial C*°-function such that, for a fixed positive constant R,

§(x):{ 1if |z — x| <

0 if | — xo| >

(SlleviiN ey

It is known, see [12] and [23], that U, , is a solution of the following problem
N2
—Au=N(N —2)u~=2 in IR}
(3.31) u >0 in RY
—a‘z—zjv:,uu% on ORY = RV~L.

We draw on estimates made in [11, pages 17-22], we write
(3.32)

) Kie +o(e) it N >4
| PVt P = pla) Ay~ (o))
Q Koe|loge| + o(e|loge|) If N =3,

(3.33) / te o> da = B, — pH (x0)Kae + o(e) for all N > 3,
Q

(3.34)
/mp<“’”>Q<~’v>|u5,xol2*dsx = p(20)Q(0)CputpuH (0)p(20)Q(x0) Kze +o0(e)  for all N > 3,
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where A,,, B,,, C;, and K; > 0 for i € {0, 1, 2, 3} are defined by

(3.35) A / VU, 4, [2d /m/ [2I* d
. = = = ————dr,
" el 4T = v (L+ [22)N
o +oo 1

. B, = o |2 da = — _da,

. = Jg Ol [ f
1 1

3.37 - Us oo |* da’ = S S—

( ) % /RN—1 ’ g, ol (1+( 52)2)¥ mv-1 (1+ [y2)N-1 Y
N+1 _N-1

. K, = (N —2)? 2 ) K
(3.38) == 2p (g ey K
(3.39) K3 = 2(N — 1)k

with K5 > 0 and Ky > 0 are some constants. Let

1 1 " 1
J(u) = §p(.%'0) /]RN \Vu]zdx > /]RN \u!z dx — Q—p(xo)Q(xo)/ ]u(x/,O)lz*dx’,
+ + *

RN-1
We have the following result

Proposition 3.2 We have

ueHl(lzl%fN)\{o} max J(tu) < M(S, S1), where M(S, S1) is defined in (1.4).

Proof.
We have
2 2% 12+

I(tU-0) = Gplan) Ay = 5By = S-plan)Qan)Cye

Set h(t) = 2p(x0)A - %Bu - t22* P(20)Q(20)C,-
Therefore

max J(t Uz o) = maxh(t).

>0 >0
Let t,, such that h(t,) = max h(t). Then t, satisfies
4 2
(3.40) p(x0)Ay — Buty > — p(x0)Q(z0)Cputi > = 0.
Looking at the polynomial Bl + p(z0)Q(z0)C,l — p(xo)A, we deduce that

N—-2
2

t, =

rmmmm@+¢wmmmmm+@mMﬁu
2B

I

N-—2

— 975 ( A\ 7 1
- Q(xO)CM p(xo)AuB E
1+ e
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Hence (1) A N9 ,
h(ty) = ti [p HCJOV E— IN(N = 1)p(ﬂco)Q(x0)CMt,7‘2} )

By a standard computation we have

” N-2
Q(z0)Co 1 N -2 1
h(ty) = Ay Y N NN-1)14 [1+4—PubBs
\/ p(20)(Q(20))2C3 \/ p(20)(Q(20))2C3
From (3.35)-(3.37) we see, for p > 0 small enough, that
N-2
(atades) 1 N—2 1
h(ty) = Ao — N T N(N-D) o5
1+\/1+4p(w0)(Q0(w(?))20(2) 1+\/1+4p(x0)(Q0(x§))203

+uL + o(p),

where L is a constant.

Using the fact that S = Ao G = _Ax_ A =29A4)and By = 2By, we obtain, for
(CO)Z (BOO)Q_*

@ > 0 small enough, that

max J(t U, o) = h(t,) = M(S, S1) + u L+ o(p).

t>0
This gives the desired result. a

Now, we will show, under some additional conditions on f(x,u), that u. 4, defined by
(3.30), satisfies condition (3.7).

We have
1, 2 t 2 t% 2
D (tue zy) = =t ()| Ve g0 “dx — = |Ue zo|” dz — — p(2)Q () |ue 2| ** dsy
2 Ja 2" Ja 2 Joo
- / F(z,tue z,)dx.
Q
Since f(z,u) is a lower-order perturbation of |u|> !, we see that . liin D (tue z,) = —00.
—+o0
Therefore sup ®(tu, z,) is achieved at some ¢, > 0 and t. is bounded in IR
>0

From now we suppose that t. > 0, otherwise condition (3.7) is easily satisfied.

We write t. = t9 + O(e) when N > 4 and t. = ¢y + O(¢|In(¢)|) when N = 3, using
(3.32)-(3.34) we get

If N > 4:

t2 tz
P(tetic o) = 5 p(T0) / VU ol*dz — =~ / |Ue.o
RY RY

+

2 dx

t2* t2 t2*

- ; p(CUQ)Q(CCQ)/ U.o(2',0)[*dzx’ — EO,uH(:UO)Kle + 20—*,uH(:CO)K26
RN-1

tor

— 20 pH(xg)Kse — / F(x,tue z,)dx + o(e)
) i@ &

< max J(tUs ) — EO,uH(xo)p(xo)Kle + %pH(mo)ng

to*

pwH (x0)p(x0)Q(x0) Kse — / F(x, tue zo)dx + o(e),

2, 0
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If N=3:

t2 t2 "
S Eep(:vo)/N VUeoldr — 5 [ |Uo dr
RY RY

24

S pe0)QGao) [ Ueola’0)

— Jo F@, tucz dw+0( | In(e)])

2
Zeda — EOMH(.%'())KQE‘ In(e)|

>0
Therefore
(3.41)
P(tete oy) < Mi(S, S1) — [ F(x,tue zy)dx + o(p)

Q
2 2% 25
[Sp(zo) K1 — 2Ky + ZO—*P(CUO)Q(%)K:S]& +o(e) N>
—pH (o) 2
2p(xo)Koe|In(e)| + o(e] In(e)]) if N =

<max J(tU. o) — EO,uH(:UO)p(:CO)KOd In(e)| — /QF(:U,tu&mO)dx + o(e|In(g)]).

4

3.

Now, we need to give a explicit form of ¢y. Since sup ®(tu. z,) = sup h(t) is achieved at

>0 >0
te then h/(t.) = 0 and letting € — 0 we get

to 2 .
(3.42) / ‘VULQ‘QCL%' -2 / ’U170’2 dxr — Q(Z’o)to*_z/ ’Ul,O Q*dm'l =0.
RY p(zo) Jmy RN-1
On the other hand, since Uy is a solution of (3.31) we see that
(3.43) / |VU; o|?dz — N(N — 2) / Uy 0% da — u/ Uy 0| dz’ = 0.
RN RN N-—-1

+ +

Combining (3.42) and (3.43) we obtain tg = (p(zo) N(INV — 2))2* -2,
Using (3.38) and (3.39), for N > 4, we see that

2 2% 24 02 .
Sp(ao) Ky — S Ko + S p(a0)Q(ao)Ks = p<x0><N22> (75 + e ?)
+285 ) L V/NN = 2)\/p(x0)p(0)Q(w0) 1

=K >0.

Combining this with (3.41) we obtain
(3.44)
Ke+o(e)

Pttt oy) < Mi(S, S1) — / F(x,tue g, )dx — pH (x0)
Q Koe|In(e)| + o(e[In(e)|)

Using (3.1) and the fact that [, [uc 4, |*dz = o(¢), (3.44) becomes
(3.45)

Ke+o(e)
D (tette zy) < Mi(S, S1) — / G(x, tue zo)dx — pH (o)
0 Koel n(&)| + ofz | Ine))

where G(z, s) fo (z,7)dr.

Now, we are able to give sufficient conditions on f to have the condition (3.7):

23
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Proposition 3.3

Assume that f(xz, u) satisfies (3.1)-(3.5) and that H(xo) > 0. Suppose that there exists
some continuous function g(.) such that g(x, u) > g(u) for a. e. x € Q and for allu € IR
and the primitive G(u) = [ g(t)dt satisfies :

(3.46)
+oo N—1 +oo 57¥
lim eV 1 / (1+t3) 2 / G 3 5 | TN 2drdt =0 for N > 4,
e—0 . - 0 1+t 2 (1+r2) 2
and

NI

2 +o0o +o00 —
(3.47) lim < / (1+ t2)/ G 61 - | rdrdt =0 for N = 3.
e=0 [In(e)| J . 0 (1412)2(1 + r2)z

Then condition (3.7) holds.

Proof.
The proof become directly from (3.45). 0

Example of f:
All the assumptions of Proposition 3.3 are satisfied for the following functions:
1. g(z, u) = g(u) = £|u[""2u  with 2 <r <2, and u € R.

u? (2, In(u) —
2. g(x, u) =g(u) = 21211(111)()2) D for u > 0.
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