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We discuss the existence of solutions to the following nonlinear problem involving two critical Sobolev exponents

where β ≥ 0, Q is continuous on ∂Ω, p ∈ H 1 (Ω) is continuous and positive in Ω and f is a lower-order perturbation of |u| 2 * -1 with f (x, 0) = 0.

Introduction

In this work, we deal with the following problem

     -div(p(x)∇u) = β|u| 2 * -2 u + f (x, u) in Ω, u ≡ 0 in Ω, ∂u ∂ν = Q(x)|u| 2 * -2 u on ∂Ω, (1.1) 
where Ω ⊂ IR N , N ≥ 3, is a bounded domain with the smooth boundary ∂Ω, ν is the outer normal on ∂Ω, β ≥ 0 is a constant, the coefficient Q is continuous on ∂Ω, the coefficient p ∈ H 1 (Ω) is continuous and positive in Ω and f (x, u) : Ω × IR → IR is measurable in x, continuous in u.

Here, 2 * = 2(N -1) N -2 is the critical Sobolev exponent for the trace embedding of the space H 1 (Ω) into L 2 * (∂Ω) and 2 * = 2N N -2 is the critical Sobolev exponent for the embedding H 1 (Ω) into L 2 * (Ω). Both embedding are continuous, but not compact. Our goal is to study the existence of solutions to problem (1.1). The main motivation to consider such problem is the study of conformal deformations of Riemannian manifolds with boundary, see [START_REF] Cherrier | Problèmes de Neumann non linéaires sur les variétés Riemanniennes[END_REF], [START_REF] Escobar | Sharp constant in a Sobolev trace inequality[END_REF] and [START_REF] Escobar | Uniqueness theorems on conformal deformation of Riemannian metric to a scalar flat metric with constant mean curvature[END_REF]. Problem(1.1) has a variational form. Then the eventual solutions correspond to the critical points of the energy functional.

The existence of a solution of (1.1) is closely related to S (resp. S 1 ) which is the best Sobolev constant for the imbedding H 1 (Ω) into L 2 * (Ω) (resp. for the imbedding H 1 (Ω) into L 2 * (∂Ω)). As in [START_REF] Brezis | Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[END_REF] for the nonlinear Dirichlet problem with critical Sobolev exponent, we will fill out the sufficient conditions to find solutions for the problem in presence of a nonlinear Neumann boundary data with a critical nonlinearity. One of the difficulty of our problem, besides the fact that the associated functional does not satisfy the Palais-Smale compactness condition (PS), is that it possesses four levels of homogeneity.

Let us recall some works related to the problem (1.1). If p ≡ 1 and u satisfies homogeneous Dirichlet condition, problem (1.1) has been treated in [START_REF] Brezis | Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[END_REF], where the authors obtained positive solutions with energy less than 1 N S N 2 , see also [START_REF] Hadiji | Solutions positives de l'équation -∆u = u p + µu q dans un domaine à trou[END_REF] and [START_REF] Crouau | Critical Sobolev exponent and the dimension three[END_REF]. In [START_REF] Struwe | A global compactness result for elliptic boundary value problems involving limiting nonlinearities[END_REF], the author gives a complete description of the energy levels c, associated to problem (1.1), on which (P S) c sequence is not compact. For the case p ≡ 1, f (x, u) = λ u with homogeneous Dirichlet condition we refer the reader to [START_REF] Hadiji | Problem with critical Sobolev exponent and with weight[END_REF][START_REF] Hadiji | Localization of solutions for nonlinear elliptic problems with critical growth[END_REF] . For the homogeneous Neumann problem, in [START_REF] Chabrowski | On the critical Neumann problem with perturbations of lower order[END_REF], the authors proved the existence of solution with energy less than 1 2N S N 2 . The case p ≡ 1 ≡ Q, β = 0 and f (x, u) is a linear perturbation, has an extensive literature and the first existence results was treated in [START_REF] Adimurthi | The Neumann problem for elliptic equation with critical non linearity, 65th birthday of Prof. Prodi[END_REF][START_REF] Adimurthi | Positive solution for Neumann problem with critical non linearity on boundary[END_REF][START_REF] Chabrowski | Least energy solutions of a critical Neumann problem with weight[END_REF][START_REF] Chabrowski | Sharp Sobolev Inequality Involving a Critical Nonlinearity on a Boundary[END_REF]. In this case the solutions are obtained as minimizers of the variational problem associated to (1.1) with energy less than S 1 . If β = 0 and f (x, u) has an explicit form, problem (1.1) has been studied in [START_REF] Yazidi | On some nonlinear Neumann problem with weight and with critical Sobolev trace maps[END_REF][START_REF] Yazidi | On nonhomogeneneous Neumann problem with weight and with critical nonlinearity in the boundary[END_REF] and some existence results are obtained.

In [START_REF] Chabrowski | Positive solutions of a Neumann problem with competing critical nonlinearities[END_REF], the authors were interested to the case p ≡ 1, f (x, u) = 0 and the presence of two critical nonlinearities. They derived some existence results by the use of the concentration compactness principle see [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case, Part 1[END_REF]. For another form of equation (1.1) with competing critical nonlinearities, see [START_REF] Pierotti | On a Neumann problem involving two critical exponents: remarks on geometrical and topological aspects[END_REF] and references therein.

In this paper we are concerned with the general case, more precisely, p ≡ 1, Q ≡ 0 and f (x, u) = 0. We assume that f is a lower-order perturbation of |u| 2 * -1 and f (x, 0) = 0.

Let

p 0 = min x∈ Ω p(x) and x 0 ∈ ∂Ω satisfy (Q(x 0 )) N -2 p(x 0 ) = max x∈∂Ω |Q(x)| N -2 p(x) .
We assume that

(1.2) |p(x) -p(x 0 )| = o(|x -x 0 |) and (1.3) |Q(x) -Q(x 0 )| = o(|x -x 0 |) for x near x 0 .
Our first contribution to problem (1.1), in section 2, is an existence result for the case where β = 0. The energy solutions which we find are under the level on which the (PS) condition failed. More precisely, we show existence of solutions with energy in ]0,

1 2(N -1) p(x 0 ) (Q(x 0 )) N-2 S N -1 1 [.
Next, in section 3, we turn to the general case and look for solutions for problem (1.1) in the case of the presence of competing critical nonlinearities in the case p(x 0 ) = p 0 . The main difficulty of the problem in caused by the presence of two critical exponents and a general nonlinear perturbation. This fact causes the change in energy level for which the Palais Smale condition (PS) is not satisfied. In this paper, we determine explicitly the new energy level M (S, S 1 ) defined by

(1.4) M (S, S 1 ) = p(x 0 ) (Q(x 0 )) N-2 S N -1 1 2 N -2 1 + √ 1 + 4E N -2 1 N - N -2 N (N -1) 1 1 + √ 1 + 4E where E = p(x 0 ) Q(x 0 ) N-2 S N-1 1 (p 0 S) N 2 2 N-2
. We will show the existence of solution for (1.1) with energy in ]0, M (S, S 1 )[. Note that 0 < M (S, S 1 ) < min 1 2(N -1)

p(x 0 ) (Q(x 0 )) N -2 S N -1 1 , 1 N (p 0 S) N 2
.

2 Existence results for β = 0

We assume that f (x, u) can be written as

(2.1) f (x, u) = a(x)u + g(x, u), with (2.2) a(x) ∈ L ∞ (Ω), (2.3) there exists 2 < α ≤ 2 * such that, for every x ∈ IR N and u ∈ IR, αG(x, u) ≤ u g(x, u), where G(x, u) = u 0 g(x, t)dt, (2.4) |g(x, u)| = o(|u|) as u → 0, uniformly in x, (2.5) |g(x, u)| = O(|u| 2 * -1 ) as |u| → +∞, uniformly in x. or (2.6) |g(x, u)| = O(|u| r-1 ) as |u| → +∞, uniformly in x,
where r is such that 2 * < r < 2 * , Moreover, we assume that the first eigenvalue λ 1 (a) of the following problem is positive:

-div(p(x)u) -a(x)u = µu in Ω ∂u ∂ν = 0 on ∂Ω, That is, (2.7) λ 1 (a) = inf u ∈H 1 (Ω) Ω |∇u| 2 -a(x)u 2 dx, Ω u 2 dx = 1 > 0.
Under assumption (2.7), it is easy to verify that ||u||

= ( Ω |∇u| 2 -a(x)u 2 dx) 1 2 is a norm on H 1 (Ω) equivalent to the usual norm . H 1 . Let Φ(u) = 1 2 Ω p(x)|∇u| 2 dx - Ω F (x, u)dx - 1 2 * ∂Ω p(x)Q(x)|u| 2 * ds x , u ∈ H 1 (Ω),
where 

F (x, u) = u 0 f (x, t)dt for x ∈ Ω, u ∈ IR.
v 0 ∈ H 1 , v 0 ≥ 0 on Ω, v 0 = 0 on ∂Ω, such that sup t≥0 Φ(tv 0 ) < 1 2(N -1) p(x 0 ) (Q(x 0 )) N -2 S N -1 1 .
Then problem (1.1) possesses a solution.

Proof of Theorem 2.1 Let s = 2 * when f satisfies (2.5) and s = r when f satisfies (2.6). By (2.4) we have, for any ε > 0, there is a δ > 0 such that |g(x, u)| ≤ ε|u| for a.e x ∈ Ω, and for all |u| ≤ δ, thus, by (2.5) or (2.6), we obtain |g(x, u)| ≤ ε|u| + C|u| s-1 for a.e x ∈ Ω, and for all u ∈ IR, and for some constant C (depending on ε). Therefore, we have (2.9)

F (x, u) ≤ 1 2 a(x)u 2 + ε 2 u 2 + C s
|u| s for a.e x ∈ Ω, and for all u ∈ IR.

Hence we find, for all u ∈ H 1 (Ω),

Φ(u) ≥ 1 2 Ω p(x)|∇u| 2 dx- 1 2 Ω a(x)|u| 2 dx- ε 2 Ω |u| 2 dx- C s Ω |u| s dx- 1 2 * ∂Ω p(x)Q(x)|u| 2 * ds x
Using (2.7) we easily see that, for ε > 0 small enough , there exist constants k > 0,

C 1 > 0 and C 2 > 0 such that Φ(u) ≥ k u 2 -C 1 u s -C 2 u 2 * ≥ u 2 k -C 1 u s-2 -C 2 u 2 * -2 for all u ∈ H 1 ,
which implies, since 2 * > 2 and s > 2, for some small α > 0 there exists ρ > 0 such that (2.10) Φ(u) ≥ ρ, provided u = α.

At this stage, we need some notations and some estimations. We recall S 1 defined by

S 1 = inf IR N + |∇u| 2 dx; u ∈ H 1 (IR N + ), IR N-1 |u| 2 * dx = 1
the best constant for the trace embedding

H 1 (IR N + ) into L q (∂IR N + ), where R N + = {x = (x ′ , x N ) : x ′ ∈ IR N -1 , x N > 0}.
We recall from [START_REF] Escobar | Sharp constant in a Sobolev trace inequality[END_REF] and [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case, Part 1[END_REF] that the minimizing functions of S 1 are of the form

(2.11) W (x) = γ N |x ′ | 2 + (1 + x N ) 2 N-2 2
, where γ N is a positive constant depending on N . We set

W ε,x 0 (x) = ε -N-2 2 φ(x)W ( x -x 0 ε ),
where

x 0 ∈ ∂Ω and φ is a radial C ∞ -function such that φ(x) = 1 if |x -x 0 | ≤ R 4 0 if |x -x 0 | > R 2
with R > 0 is a small constant.

From [START_REF] Adimurthi | Positive solution for Neumann problem with critical non linearity on boundary[END_REF] and [START_REF] Chabrowski | Sharp Sobolev Inequality Involving a Critical Nonlinearity on a Boundary[END_REF] we have the following estimates (2.12)

Ω p(x)|∇W ε,x 0 | 2 dx = p(x 0 )A 1 -p(x 0 )H(x 0 )    A ′ 2 ε| log ε| + o(ε| log ε|) if N = 3 A 2 ε + o(ε) if N ≥ 4, (2.13) 
∂Ω p(x)Q(x)|W ε,x 0 | 2 * ds x = p(x 0 )Q(x 0 )(B 1 -H(x 0 )B 2 ε) + o(ε)
where A 1 , A ′ 2 , A 2 , B 1 and B 2 are some positive constants defined explicitly in [START_REF] Adimurthi | Positive solution for Neumann problem with critical non linearity on boundary[END_REF]. From [START_REF] Yazidi | On some nonlinear Neumann problem with weight and with critical Sobolev trace maps[END_REF], for some 2 < r < 2 * , we have

(2.14) Ω |W ε,x 0 | r dx =    o(ε) if N ≥ 4 o(ε| ln(ε)|) If N = 3.
Let us notice that (2.15)

S 1 = A 1 B 2 2 * 1 and A 2 - 2 2 * A 1 B 2 B 1 > 0.
On the other hand, when f satisfies (2.5), we easily see that lim t→+∞ Φ(tW ε,x 0 ) = -∞.

Then we take v = t 0 W ε,x 0 , where t 0 > 0 is chosen large enough so that v > α and Φ(v) ≤ 0. When f satisfies (2.6), using (2.12)-(2.14), we have

Φ(tW ε,x 0 ) = t 2 A -t 2 * B + t r    o(ε) if N ≥ 4 o(ε| ln(ε)|) if N = 3.
Therefore, for ε > 0 small enough, there exists many t 0 > 0 such that t 2 0 At 2 * 0 B < 0. Let, again, v = t 0 W ε,x 0 for ε small enough when t 0 is chosen large such that v > α and Φ(v) ≤ 0. Set (2.16)

c = inf P∈A max w∈P Φ(w),
where A denotes the class of continuous paths joining 0 to v. Thanks to a result of Ambrosetti and Rabinowtz [START_REF] Ambrosetti | Dual variational methods in critical point theory and applications[END_REF], see also [START_REF] Brezis | Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[END_REF], there exists a sequence

{u j } in H 1 (Ω) such that Φ(u j ) → c and Φ ′ (u j ) → 0 in H -1 (Ω).
Looking at (2.8) we see that c <

1 2(N -1) p(x 0 ) (Q(x 0 )) N-2 S N -1 1 .
In order to conclude the proof of Theorem 2.1, we need the following Lemma.

Lemma 2.1 Let {u j } ⊂ H 1 (Ω) be a sequence satisfying (2.17) Φ(u j ) → c < p(x 0 )S N -1 1 2(N -1)(Q(x 0 )) N -2 and (2.18) Φ ′ (u j ) → 0 in H -1 (Ω) then {u j } is relatively compact in H 1 (Ω).

Proof of Lemma 2.1:

We start by showing that {u j } is bounded in H 1 (Ω). Using (2.1) and (2.7) we see that (2.17) and (2.18) are equivalent to

(2.19) 1 2 u j 2 - Ω G(x, u j )dx - 1 2 * ∂Ω p(x)Q(x)|u j | 2 * ds x = c + o(1),

and

(2.20)

u j 2 - Ω g(x, u j )u j dx - ∂Ω p(x)Q(x)|u j | 2 * ds x =< ξ j , u j > with ξ j → 0 in H -1 . Taking (2.19)-1 2 (2.20), we get (2.21) 1 2(N -1) ∂Ω p(x)Q(x)|u j | 2 * ds x - Ω G(x, u j )dx + 1 2 Ω g(x, u j )u j dx = c + o( u j ).
On the other hand, (2.19)-1 2 * (2.20) yields

(2.22) 1 2(N -1) u j 2 - Ω G(x, u j )dx + 1 2 * Ω g(x, u j )u j dx = c + o( u j ).
Using (2.3), (2.21) and (2.22) follow

(2.23) 1 2(N -1) u j 2 -(1 - α 2 * ) Ω G(x, u j )dx ≤ c + o( u j ) and (2.24) 1 2(N -1) ∂Ω p(x)Q(x)|u j | 2 * ds x -(1 - α 2 ) Ω G(x, u j )dx ≤ c + o( u j ). Computing ( α 2 -1)(2.23)+(1 -α 2 * )(2.24), we obtain ( α 2 -1) u j 2 + (1 - α 2 * ) ∂Ω p(x)Q(x)|u j | 2 * ds x ≤ c + o( u j ).
Therefore, since 2 < α ≤ 2 * , we obtain that {u j } is bounded in H 1 (Ω). Extract a subsequence, still denoted by u j , such that

u j ⇀ u weakly in H 1 (Ω), u j → u strongly in L t (Ω) for all t < 2 * = 2N N -2 , u j → u a.e. on Ω, f (x, u j ) → f (x, u) strongly in L r r-1 (Ω),
u j ⇀ u weakly in L 2 * (∂Ω).

Passing to the limit in (2.18), we obtain

-div(p(x)∇u) = f (x, u) in Ω ∂u ∂ν = Q(x)|u| 2 * -2 u on ∂Ω
We shall now verify that u ≡ 0. Indeed , suppose that u ≡ 0. We claim that Therefore

Ω f (x, u j )u j dx → 0 and Ω F (x, u j )dx → 0. From (2.5) or (2.6), let s = 2 * if f satisfies (2.5) and s = r if f satisfies (2.6), we have for some constants C 1 > 0 and C 2 > 0 |f (x, u)| ≤ C 1 |u| s-1 + C 2
Ω f (x, u j )u j dx ≤ C 1 Ω |u j | s dx + C 2 Ω |u j |dx and Ω F (x, u j )dx ≤ C 1 s Ω |u j | s dx + C 2 Ω |u j |dx.
Since u j → 0 in L s (Ω) then for j large enough, we have

Ω f (x, u j )u j dx = o(1)
and

Ω F (x, u j )dx = o(1).
Which gives the desired result. Extracting a subsequence, still denoted by u j , we may assume that (2.25)

Ω p(x)|∇u j | 2 dx → l for some constant l ≥ 0.
Passing to the limit in (2.20), we obtain

(2.26) ∂Ω p(x)Q(x)|u j | 2 * ds x → l.
Passing to the limit in (2.21), we easily get

(2.27) 1 2(N -1) l = c.
Therefore l > 0 and ∂Ω p(x)Q(x)|u j | 2 * ds x > 0 for large j.

On the other hand, from the result of [24, Theorem 02], we know that there exists a constant C(Ω) > 0 such that for every w ∈ H 1 (Ω)

Ω |∇w| 2 dx + C(Ω) Ω |w| k dx ≥ S 1 ∂Ω |w| 2 * ds x 2 2 * , with k = 2N N -1 if N ≥ 4 and k > 3 = 2N N -1 if N = 3.
We apply this result for w j = (p(x)) 1 2 u j and in particular for N = 3 we take k such that 6 = 2N N -2 > k > 3, we obtain for j large enough

Ω |∇(p(x)) 1 2 u j | 2 dx + C(Ω) Ω |(p(x)) 1 2 u j | k dx ≥ S 1 ∂Ω |(p(x)) 1 2 u j | 2 * ds x 2 2 * Since k < 2N
N -2 for every N ≥ 3, thanks to the compact embedding H 1 (Ω) ֒→ L k (Ω), we have, for a subsequence, u j → 0 strongly in L k (Ω) and we deduce (2.28)

Ω p(x)|∇u j | 2 dx + o(1) ≥ S 1 ∂Ω |(p(x)) 1 2 u j | 2 * ds x 2 2 * + o(1). Using the fact that |Q(x)| N -2 p(x) ≤ (Q(x 0 )) N -2 p(x 0 ) ∀x ∈ ∂Ω, (2.28) becomes (2.29) Ω p(x)|∇u j | 2 dx + o(1) ≥ S 1    ∂Ω (p(x)) 2 * 2   |Q(x)| N-2 p(x) (Q(x 0 )) N-2 p(x 0 )   1 N-2 |u j | 2 * ds x    2 2 * + o(1) ≥ S 1 (p(x 0 )) 1 N-2 Q(x 0 ) 2 2 * ∂Ω p(x)|Q(x)||u j | 2 * ds x 2 2 * + o(1) ≥ S 1 (p(x 0 )) 1 N-2 Q(x 0 ) 2 2 * ∂Ω p(x)Q(x)|u j | 2 * ds x 2 2 * + o(1).
At the limit we obtain

l ≥ (p(x 0 )) 1 N-2 Q(x 0 ) 2 2 * S 1 l N-2 N-1 and l ≥ (p(x 0 )) 1 N-1 (Q(x 0 )) N-2 N-1 S 1 l N-2 N-1 .
Using (3.9) and (2.27) we see that l ≡ 0 and

l 1 N-1 ≥ (p(x 0 )) 1 N-1 (Q(x 0 )) N-2 N-1 S 1 . Therefore l ≥ p(x 0 ) (Q(x 0 )) N -2 S N -1 1 and from (2.27) we have c ≥ 1 2(N -1) p(x 0 ) (Q(x 0 )) N -2 S N -1 1
which gives a contradiction with the fact that c <

1 2(N -1) p(x 0 ) (Q(x 0 )) N-2 S N -1 1
, thus u ≡ 0. Now, we shall prove, for a subsequence, that u j → u strongly in H 1 (Ω). We start by showing that Φ(u) ≥ 0. Indeed, since u is a solution of (1.1) with β = 0, we have

Ω p(x)|∇u| 2 dx = Ω f (x, u)dx + ∂Ω p(x)Q(x)|u| 2 * ds x .
On the other hand

Φ(u) = 1 2 Ω p(x)|∇u| 2 dx - 1 2 * ∂Ω p(x)Q(x)|u| 2 * ds x - Ω F (x, u)dx.
Therefore, using (2.3), we have

Φ(u) ≥ 1 2(N -1) Ω p(x)|∇u| 2 dx + ( α 2 * -1) Ω F (x, u)dx, and Φ(u) ≥ 1 2(N -1) ∂Ω p(x)Q(x)|u| 2 * ds x + ( α 2 -1) Ω F (x, u)dx.
Since 2 < α ≤ 2 * , we deduce that φ(u) ≥ 0. We set v j = u ju. We have (2.30)

Ω p(x)|∇u j | 2 dx = Ω p(x)|∇u| 2 dx + Ω p(x)|∇v j | 2 dx + o(1)
and from [START_REF] Brezis | A relation between pointwise convergence of functions and convergence of functionals[END_REF] we deduce that (2.31) 

∂Ω p(x)Q(x)|u j | 2 * ds x = ∂Ω p(x)Q(x)|u| 2 * ds x + ∂Ω p(x)Q(x)|v j | 2 * ds x + o(1
Φ(u) + 1 2 Ω p(x)|∇v j | 2 dx - 1 2 * ∂Ω p(x)Q(x)|v j | 2 * ds x = c + o(1)
and (looking at (2.18))

(2.33)

Ω p(x)|∇v j | 2 dx - ∂Ω p(x)Q(x)|v j | 2 * ds x = o(1).
Extracting a subsequence, still denoted by u j , we may assume that

Ω p(x)|∇v j | 2 dx → l for some constant l ≥ 0.
From (2.33) we obtain

∂Ω p(x)Q(x)|v j | 2 ds x = l.
Passing to the limit in (2.32), we easily see that

(2.34) 1 2(N -1) l = c -Φ(u).
Using the Sobolev embedding, see (2.29) for details, we have

(2.35) l ≥ (p(x 0 )) 1 N-2 (Q(x 0 )) N-2 N-1 S 1 l N-2 N-1 .
We claim that l = 0. Indeed, arguing by contradiction, assuming that l = 0, then (2.35) gives

l ≥ p(x 0 ) (Q(x 0 )) N -2 S N -1 1 . From (2.34), we obtain c -Φ(u) ≥ 1 2(N -1) p(x 0 ) (Q(x 0 )) N -2 S N -1 1 which gives a contradiction, since c < 1 2(N -1) (p(x 0 ) (Q(x 0 )) N-2 S N -1 1
and Φ(u) ≥ 0. Therefore l = 0, c = Φ(u) and u j → u strongly in H 1 (Ω).

2.1 Sufficient conditions on f (x, u) which give condition (2.8):

We claim that W ε,x 0 satisfies condition (2.8) for ε > 0 sufficiently small. Indeed, we have

Φ(tW ε,x 0 ) = 1 2 t 2 Ω p(x)|∇W ε,x 0 | 2 dx - t 2 * 2 * ∂Ω p(x)Q(x)|W ε,x 0 | 2 * ds x - Ω F (x, tW ε,x 0 )dx.
When f satisfies (2.5), we easily see that lim t→+∞ Φ(tW ε,x 0 ) = -∞ and for large t 0 > 0 we have Φ(t 0 W ε,x 0 ) < 0. When f satisfies (2.6), using (2.12), (2.13) and (2.14), we have

Φ(tW ε,x 0 ) = t 2 A -t 2 * B + t r    o(ε) if N ≥ 4 o(ε| ln(ε)|) if N = 3.
Therefore, for ε > 0 small enough, we chose t 0 > 0 such that t 2 0 At 2 * 0 B < 0 and Φ(t 0 W ε,x 0 ) < 0. Therefore, in both cases, sup t∈[0, 1] Φ(t t 0 W ε,x 0 ) is achieved at some 0 ≤ tε ≤ 1 and tε is bounded. In the rest of this section, we note t ε = tε t 0 . From now, we can suppose that t ε > 0, indeed if t ε = 0 then sup t≥0 Φ(tW ε,x 0 ) = 0 and the condition (2.8) is satisfied. Since the derivative of the function t → Φ(tW ε,x 0 ) vanishes at t ε we have (2.36)

t ε Ω p(x)|∇W ε,x 0 | 2 dx -t 2 * -1 ε ∂Ω p(x)Q(x)|W ε,x 0 | 2 * ds x - Ω f (x, t ε W ε,x 0 )W ε,x 0 dx = 0.
We claim that (2.37)

Ω f (x, t ε W ε,x 0 )W ε,x 0 t ε dx → 0 as ε → 0.
Indeed, from (2.36), we have

Ω p(x)|∇W ε,x 0 | 2 dx -t 2 * -2 ε ∂Ω p(x)Q(x)|W ε,x 0 | 2 * ds x - Ω f (x, t ε W ε,x 0 )W ε,x 0 t ε dx = 0.
Using (2.1)-(2.5) or (2.1)-(2.4) and (2.6), there are C 1 > 0 and C 2 > 0 such that, for a.e.

x ∈ Ω, for all u ∈ IR, |f

(x, u)| ≤ C 1 |u| s-1 + C 2 |u| where s = 2 * if f satisfies (2.5) and s = r if f satisfies (2.6). Therefore Ω f (x, t ε W ε,x 0 )W ε,x 0 t ε dx ≤ C 1 t ε s-2 W ε,x 0 s L s + C 2 W ε,x 0 2 L 2 ,
Using the fact that, as ε → 0, t ε is bounded, W ε,x 0 L 2 (Ω) → 0 and W ε,x 0 L s (Ω) → 0 since s < 2 * , we get directly (2.37). Consequently, for ε > 0 small enough, (2.36) become

t ε Ω p(x)|∇W ε,x 0 | 2 dx -t 2 * -1 ε ∂Ω p(x)Q(x)|W ε,x 0 | 2 * ds x = o(1). Therefore (2.38) t ε ≤     Ω p(x)|∇W ε,x 0 | 2 dx ∂Ω p(x)Q(x)|W ε,x 0 | 2 * ds x     1 2 * -2 + o(1). Set X ε =     Ω p(x)|∇W ε,x 0 | 2 dx ∂Ω p(x)Q(x)|W ε,x 0 | 2 * ds x     1 2 * -2 and M ε = sup t∈[0, 1] Φ(t t 0 W ε,x 0 ) = Φ(t ε W ε,x 0 ). Since the function t → 1 2 t 2 Ω p(x)|∇W ε,x 0 | 2 dx-t 2 * 2 * ∂Ω p(x)Q(x)|W ε,x 0 | 2 * ds x is increasing on the interval [0, X ε ] we have, by (2.38), M ε ≤ 1 2 X 2 ε Ω p(x)|∇W ε,x 0 | 2 dx - X 2 * ε 2 * ∂Ω p(x)Q(x)|W ε,x 0 | 2 * ds x - Ω F (x, t ε W ε,x 0 )dx.
Using (2.12)-(2.15) and the fact that

Ω |W ε,x 0 | 2 dx = o(ε), we obtain (2.39) M ε ≤ 1 2(N -1) p(x 0 ) (Q(x 0 )) N-2 S N -1 1 -Ω G(x, t ε W ε,x 0 )dx -      H(x 0 ) A 1 Q(x 0 )B 1 2 2 * -2 A ′ 2 ε| log ε| + o(ε| log ε|) if N = 3, H(x 0 ) p(x 0 ) 2 A 2 -2 2 * A 1 B 2 B 1 ε + o(ε) if N ≥ 4.
At this stage, we distinguish two cases: 

When H(x 0 ) ≤ 0.
ε N-2 2 +∞ ε 1 2 t N -1 +∞ 0 G t -(N -2) (1 + r 2 ) (N-2) 2 r N -2 drdt = +∞.
and for N = 3

(2.42) lim ε→0 ε 1 2 | ln(ε)| +∞ ε 1 2 t 2 +∞ 0 G t -1 (1 + r 2 ) 1 2 rdrdt = +∞.
Then condition (2.8) holds.

Proof.

From (2.40) and (2.11), for ε > 0 sufficiently small, we have

(2.43) Ω G(x, t ε W ε,x 0 )dx ≥ Ω G Aε N-2 2 (ε + x N ) 2 + |x ′ -x ′ 0 | 2 N-2 2 dx
for some constant A > 0. Inserting (2.43) into (2.39) we write (2.44)

M ε ≤ 1 2(N -1) p(x 0 ) (Q(x 0 )) N -2 S N -1 1 - Ω G Aε N-2 2 (ε + (x N -x 0N )) 2 + |x ′ -x ′ 0 | 2 N-2 2 dx -      H(x 0 ) A 1 Q(x 0 )B 1 2 2 * -2 A ′ 2 ε| log ε| + o(ε| log ε|) if N = 3, H(x 0 ) p(x 0 ) 2 A 2 -2 2 * A 1 B 2 B 1 ε + o(ε) if N ≥ 4.
Finally, we claim that

(2.45) lim ε→0 1 ε Ω G Aε N-2 2 (ε + x N ) 2 + |x ′ -x ′ 0 | 2 N-2 2 dx = +∞ If N ≥ 4,

and

(2.46) lim

ε→0 1 ε| log ε| Ω G Aε 1 2 (ε + x N ) 2 + |x ′ -x ′ 0 | 2 N-2 2 dx = +∞ If N = 3.
which implies, together with (2.44), that

M ε < 1 2(N -1) p(x 0 ) (Q(x 0 )) N-2 S N -1 1 for ε > 0 suffi- ciently small.
Verification of (2.45) and (2.46):

Ω G Aε N-2 2 (ε + x N ) 2 + |x ′ -x ′ 0 | 2 N-2 2 dx = ε N IR N + G Aε -N-2 2 (1 + y N ) 2 + |y ′ | 2 N-2 2 dy + O(1) = ε N ω +∞ 0 +∞ 0 (1 + y N ) N -1 G 1 (1 + y N ) N -2 Aε -N-2 2 [1 + r 2 ] N-2 2 r N -2 drdy N
where ω is the area of sphere S N -2 . Using the change of variable t = ε

1 2 (1 + y N ) we get Ω G Aε N-2 2 (ε + x N ) 2 + |x ′ -x ′ 0 | 2 N-2 2 dx = ε N 2 ω +∞ ε 1 2 +∞ 0 t N -1 G 1 t N -2 A (1 + r 2 ) N-2 2 r N -2 drdt.
Then 

ε N-2 2 +∞ ε 1 2 t N -1 +∞ 0 G t -(N -2) (1 + r 2 ) (N-2) 2
r N -2 drdt = 0.

and for N = 3

(2.49) lim

ε→0 ε 1 2 | ln(ε)| +∞ ε 1 2 t 2 +∞ 0 G t -1 (1 + r 2 ) 1 2 rdrdt = 0.
Then condition (2.8) holds.

Proof.

The proof of this Lemma is similar to proof of Lemma 2.2.
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Now let us give some examples for the nonlinear perturbation.

Examples of f :

If H(x 0 ) > 0 then the two functions g below satisfy the hypothesis of Lemma 2.2.

1) g(x, u) = g(u) = µ |u| r-2 u with µ > 0 and 2 * < r < 2 * .

2)

g(x, u) = g(u) =    (3 + γ)u 2+γ ln(u) + |u| 2+γ if u > 1 (3 + γ)|u| 2+γ | ln(u)| + |u| 2+γ if u < 1 with 0 < γ < 2 N -2 .
If H(x 0 ) < 0 then the two functions g below satisfy Lemma 2.3.

1) g(x, u) = g(u) = µ |u| r-2 u with µ ∈ IR and 2 < r < 2 * . 2) g(x, u) = g(u) = ± 5 2 |u| 3 2 + |u| 7 2 (1 + 5|u| 2 ) 2 .
3 Existence results in presence of two critical exponents.

We assume that β = 1 and, as in the previous section, the nonlinearity f (x, u) satisfies the following basic assumptions. Moreover we assume that

(3.1) f (x, u) = a(x)u + g(x, u), with (3.2) a(x) ∈ L ∞ (Ω), ( 3 
(3.5) λ 1 (a) = inf Ω |∇u| 2 -a(x)u 2 dx, Ω u 2 dx = 1 > 0. Set F (x, u) = u 0 f (x, t)dt for x ∈ Ω, u ∈ IR. Let define, for u ∈ H 1 (Ω), (3.6) Φ(u) = 1 2 Ω p(x)|∇u| 2 dx - 1 2 * Ω |u| 2 * dx - 1 2 * ∂Ω p(x)Q(x)|u| 2 * ds x - Ω F (x, u)dx.
Our main result in this section is and for some constant C (depending on ε). Therefore we have

(3.8) G(x, u) ≤ 1 2 a(x)u 2 + ε 2 u 2 + C 2 * |u| 2 *
for a.e x ∈ Ω, and for all u ∈ IR.

Therefore, for all u ∈ H 1 (Ω),

Φ(u) ≥ 1 2 Ω p(x)|∇u| 2 dx- 1 2 Ω a(x)|u| 2 dx- ε 2 Ω |u| 2 dx- C 2 * Ω |u| 2 * dx- 1 2 * ∂Ω p(x)Q(x)|u| 2 * ds x
Using (3.5) we easily see that, for ε > 0 small enough , there exist constants k > 0,

C 1 > 0 and C 2 > 0 such that Φ(u) ≥ k u 2 H 1 -C 1 u 2 * H 1 -C 2 u 2 * H 1 ≥ u 2 H 1 k -C 1 u 2 * -2 H 1 -C 2 u 2 * -2 H 1 for all u ∈ H 1 .
Which implies, since 2 * > 2 and 2 * > 2, that for some small α > 0 there exists ρ > 0 such that Φ(u) ≥ ρ, provided u = α.

On the other hand, for any u ∈ H 1 (Ω), u ≡ 0 in Ω, we have by (3.4) lim t→+∞ Φ(tu) = -∞. Thus for later purpose we take v = t 0 U ε,x 0 , where t 0 > 0 is chosen large enough so that v ∈ U and Φ(v) ≤ 0. Set

(3.9) c = inf P∈A max w∈P Φ(w),
where A denotes the class of continuous paths joining 0 to v.

Looking at (3.7) we see that c < M (S, S 1 ). By a result of Ambrosetti and Rabinowtz [START_REF] Ambrosetti | Dual variational methods in critical point theory and applications[END_REF], see also [START_REF] Brezis | Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[END_REF], there exists a sequence {u j } in

H 1 (Ω) satisfying (3.10) Φ(u j ) → c < M (S, S 1 ) and (3.11) 
Φ ′ (u j ) → 0 in H -1 (Ω)
Using (3.1) and (3.5), from (3.10) and (3.11) we write

(3.12) 1 2 u j 2 - 1 2 * Ω |u j | 2 * dx - 1 2 * ∂Ω p(x)Q(x)|u j | 2 * ds x - Ω G(x, u j ) = c + o (1), and (3.13) 
u j 2 - Ω |u j | 2 * dx - ∂Ω p(x)Q(x)|u j | 2 * ds x - Ω g(x, u j )u j dx =< ξ j , u j > with ξ j → 0 in H -1 .
We start by showing that {u j } is bounded in H 1 (Ω). Computing (3.12)-1 2 * (3.13), we obtain

(3.14) 1 2(N -1) u j 2 + N -2 2N (N -1) Ω |u j | 2 * dx- Ω G(x, u j ) - 1 2 * g(x, u j )u j dx = c+o(1)+ < ξ j , u j > .
On the other hand, from (3.4) we have for all ε > 0 there exists C > 0 such that We deduce from (3.14)-(3.16), after using the embedding L 2 (Ω) ֒→ L 1 (Ω) and

H 1 (Ω) ֒→ L 2 (Ω) that, for ε > 0 small enough, 1 2(N -1) u j 2 + N -2 2N (N -1) (1 + ε) Ω |u j | 2 * dx -C ′ u j ≤ c + o(1)
for some constant C ′ > 0. This gives that {u j } is bounded in H 1 (Ω), otherwise we obtain a contradiction.

Extract a subsequence, still denoted by u j , such that

u j ⇀ u weakly in H 1 (Ω), u j → u strongly in L t (Ω) for all t < 2 * = 2N N -2 , u j → u a.e. on Ω, f (x, u j ) ⇀ f (x, u) weakly in L 2 * 2 * -1 (Ω), u j ⇀ u weakly in L 2 * (∂Ω), u j ⇀ u weakly in L 2 * (Ω).
We shall now verify that u ≡ 0 on Ω. Indeed , suppose that u ≡ 0. We claim that (3.17)

Ω f (x, u j )u j dx → 0 and Ω F (x, u j )dx → 0.
From (3.15) and (3.16), we have, for all ε > 0 there exists C > 0 such that

Ω f (x, u j )u j dx ≤ ε Ω |u j | 2 * dx + C Ω |u j |dx and Ω F (x, u + j )dx ≤ ε 2 * Ω |u j | 2 * dx + C 2 Ω |u j | 2 dx.
Since {u j } remains bounded in L 2 * (Ω) and u j → 0 in L 2 (Ω) we obtain (3.17). Now, extruding a subsequence, still denoted by u j , we may assume that there exist some constants l ≥ 0, m 1 ≥ 0 and m 2 ≥ 0 such that (3.18)

Ω p(x)|∇u j | 2 dx → l, Ω |u j | 2 * dx → m 1 , and ∂Ω p(x)Q(x)|u j | 2 * ds x → m 2 .
Passing to the limit in (3.12) and (3.13), we get

(3.19) 1 2 l - 1 2 * m 1 - 1 2 * m 2 = c and l -m 1 -m 2 = 0.
From the result of [24, Theorem 01], we know that there exists a constant C(Ω) > 0 such that for every w ∈ H 1 (Ω)

Ω |∇w| 2 dx + C(Ω) Ω |w| k dx ≥ S 2 2 N Ω |w| 2 * dx 2 2 * , with k = 2N N -1 if N ≥ 4 and k > 3 = 2N N -1 if N = 3.
We apply this result for w j = (p(x)) 1 2 u j and in particular for N = 3 we take k such that 6 = 2N N -2 > k > 3, we obtain for j large enough

Ω |∇(p(x)) 1 2 u j | 2 dx + C(Ω) Ω |(p(x)) 1 2 u j | k dx ≥ S 2 2 N Ω |(p(x)) 1 2 u j | 2 * dx 2 2 *
Since k < 2N N -2 for every N ≥ 3, thanks to the compact embedding H 1 (Ω) ֒→ L k (Ω), we have u j → 0 strongly in L k (Ω) and we deduce

Ω p(x)|∇u j | 2 dx + o(1) ≥ S 2 2 N Ω |(p(x)) 1 2 u j | 2 * dx 2 2 * + o(1).
Using the fact that p(x) ≥ p 0 for all x ∈ Ω, we see that

Ω p(x)|∇u j | 2 dx + o(1) ≥ p 0 S 2 2 N Ω |u j | 2 * dx 2 2 *
+ o(1).

At the limit we obtain

(3.20) (m 1 ) 2 2 * p 0 S 2 2 N ≤ l.
On the other hand, by the same way, from [24, Theorem 02] we have (see (2.29) for more details) 

(3.21) (m 2 ) 2 2 * p(x 0 ) (Q(x 0 )) N -2 1 N-1 S 1 ≤ l.
                               1 2(N -1) l + N -2 2N (N -1) m 1 = c 1 N l - N -2 2N (N -1) m 2 = c m 1 ≤ 2 2 N l p(a)S 2 * 2 m 2 ≤   l [ p(x 0 ) (Q(x 0 )) N-2 ] 1 N-1 S 1   2 * 2 .
An easy computation yields

(3.23) 1 N l - N -2 2(N -1)N ( l p(x 0 ) (Q(x 0 )) N-2 S 1 ) 2 * 2 ≤ c ≤ 1 2(N -1) l + N -2 2(N -1)N ( 2 2 N l p 0 S ) 2 * 2 .
We can write

l ≤ ( l p(x 0 ) (Q(x 0 )) N-2 S 1 ) 2 * 2 + ( 2 2 N l p 0 S ) 2 * 2 .
If l = 0 then, since c > 0, we obtain a contradiction and we get the desired result. Now, if l = 0 we reduce to the study of the following polynomial

1 (2 -2 N p 0 S) N N-2 t 2 + 1 ( p(x 0 ) (Q(x 0 )) N-2 S 1 ) N-1 N-2 t -1 ≥ 0 where t = l 1 N-2 . Which is possible if t ≥ 2( p(x 0 ) (Q(x 0 )) N-2 S 1 ) N-1 N-2 1 + √ 1 + 4E ′ where E ′ =   p(x 0 ) (Q(x 0 )) N-2 S N -1 1 (2 -2 N p 0 S) N 2   2 N-2 .
From the left inequality of (3.23) and the fact that l = t N -2 , we obtain c ≥ M (S, S 1 ) which gives a contradiction with (3.10). Consequently u ≡ 0 and u is a solution of (1.1).

Remark 3.1

If we assume that

(3.24) F (x, v) ≤ 1 2 f (x, v)v + 1 N |v| 2 *
, for all v ∈ IR and for for a.e x ∈ Ω.

then the previous sequence {u j } is relatively compact in H 1 (Ω).

Let {u j } be the sequence defined in the proof of Theorem 3.1, we recall that u j converge weakly to u in H 1 (Ω). We will show that u j converges strongly to u in H 1 (Ω). Firstly, since u is a solution of (1.1), we have

Ω p(x)|∇u| 2 dx = Ω |u| 2 * dx + Ω f (x, u)udx + ∂Ω p(x)Q(x)|u| 2 * ds x . Therefore Φ(u) = Ω 1 N |u| 2 * + 1 2 f (x, u)u -F (x, u) dx + 1 2(N -1) ∂Ω p(x)Q(x)|u| 2 * ds x .
Using (3.24) we have Φ(u) ≥ 0. Now, we set v j = u ju. We write

(3.25) Ω p(x)|∇u j | 2 dx = Ω p(x)|∇u| 2 dx + Ω p(x)|∇v j | 2 dx + o(1)
and from [START_REF] Brezis | A relation between pointwise convergence of functions and convergence of functionals[END_REF] we deduce that 

(u) + 1 2 Ω p(x)|∇v j | 2 dx - 1 2 * Ω |v j | 2 * dx - 1 2 * ∂Ω p(x)Q(x)|v j | 2 * ds x = c + o(1)
and (looking at (3.11))

(3.29) Ω p(x)|∇v j | 2 dx - Ω |v j | 2 * dx - ∂Ω p(x)Q(x)|v j | 2 * ds x = o(1)
. Now, we assume (for a subsequence) that exists some constants l ≥ 0, m 1 ≥ 0 and m 2 ≥ 0 such that

Ω p(x)|∇v j | 2 dx → l, Ω |v j | 2 * dx → m 1 and ∂Ω p(x)Q(x)|v j | 2 * ds x → m 2 .
Passing to limit in (3.28) and (3.29), using the Sobolev embedding, a easy computation yields

                         1 2(N -1) l + N -2 2N (N -1) m 1 = c -Φ(u) 1 N l -N -2 2N (N -1) m 2 = c -Φ(u) m 1 ≤ l p(a)S 2 * 2 m 2 ≤ l [ p(x 0 ) (Q(x 0 )) N-2 ] 1 N-1 S 1 2 * 2 .
Therefore, as in end of proof of Theorem 3.1, if l = 0 then c -Φ(u) ≥ M (S, S 1 ) which is a contradiction since c < M (S, S 1 ) and Φ(u) ≥ 0. Consequently l = 0 and then u j → u strongly in H 1 (Ω).

3.1 Sufficient conditions on f (x, u) which give condition (3.7):

We recall

S = inf IR N |∇u| 2 dx; u ∈ H 1 (IR N ), IR N |u| 2 * dx = 1 .
We consider, for all ε > 0, the following functions

(3.30) U ε,y (x) = ε ε 2 + |x ′ -y ′ | 2 + |x N -y N + µ(N -2) -1 ε| 2 N-2 2 
, where x = (x ′ , x N ), y = (y ′ , y N ) ∈ IR N -1 ×]0, +∞[, µ ∈ IR and u ε,x 0 = ξ(x)U ε,x 0 (x), where ξ be a radial C ∞ -function such that, for a fixed positive constant R,

ξ(x) = 1 if |x -x 0 | ≤ R 4 0 if |x -x 0 | > R 2 
It is known, see [START_REF] Chipot | On the solutions to some elliptic equations with nonlinear Neumann boundary conditions[END_REF] and [START_REF] Li | Uniqueness theorems through the method of moving spheres[END_REF], that U ε,y is a solution of the following problem

(3.31)          -∆u = N (N -2)u N+2 N-2 in IR n + u > 0 in IR N + -∂u ∂x N = µ u N N-2 on ∂IR N + = IR N -1 .
We draw on estimates made in [11, pages 17-22], we write (3.32)

Ω p(x)|∇u ε,x 0 | 2 dx = p(x 0 )A µ -µH(x 0 )p(x 0 )    K 1 ε + o(ε) if N ≥ 4 K 0 ε| log ε| + o(ε| log ε|) If N = 3, (3.33) Ω |u ε,x 0 | 2 * dx = B µ -µH(x 0 )K 2 ε + o(ε) for all N ≥ 3, (3.34) ∂Ω p(x)Q(x)|u ε,x 0 | 2 * ds x = p(x 0 )Q(x 0 )C µ +µH(x 0 )p(x 0 )Q(x 0 )K 3 ε+o(ε) for all N ≥ 3, Hence h(t µ ) = t 2 µ p(x 0 )A µ N - N -2 2N (N -1) p(x 0 )Q(x 0 )C µ t 2 N-2 µ .
By a standard computation we have

h(t µ ) = A µ   2A 0 Q(x 0 )C 0 1 + 1 + 4 AµBµ p(x 0 )(Q(x 0 )) 2 C 2 µ   N -2   1 N - N -2 N (N -1) 1 1 + 1 + 4 AµBµ p(x 0 )(Q(x 0 )) 2 C 2 µ   From (3.35)-(3.37) we see, for µ > 0 small enough, that h(t µ ) = A 0   2A 0 Q(x 0 )C 0 1+ 1+4 A 0 B 0 p(x 0 )(Q(x 0 )) 2 C 2 0   N -2   1 N -N -2 N (N -1) 1 1+ 1+4 A 0 B 0 p(x 0 )(Q(x 0 )) 2 C 2 0   +µL + o(µ),
where L is a constant. Using the fact that

S 1 = A 0 (C 0 ) 2 2 * , S = A∞ (B∞) 2 2 * , A ∞ = 2A 0 and B ∞ = 2B 0 , we obtain, for µ > 0 small enough, that max t≥0 J(t U ε,0 ) = h(t µ ) = M (S, S 1 ) + µ L + o(µ).
This gives the desired result.
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Now, we will show, under some additional conditions on f (x, u), that u ε,x 0 , defined by (3.30), satisfies condition (3.7). We have Since f (x, u) is a lower-order perturbation of |u| 2 * -1 , we see that lim t→+∞ Φ(tu ε,x 0 ) = -∞.

Φ(tu ε,x 0 ) = 1 2 t 2 Ω p ( 
Therefore sup t≥0 Φ(tu ε,x 0 ) is achieved at some t ε ≥ 0 and t ε is bounded in IR + .

From now we suppose that t ε > 0, otherwise condition (3.7) is easily satisfied. We write t ε = t 0 + O(ε) when N ≥ 4 and t ε = t 0 + O(ε| ln(ε)|) when N = 3, using (3.32)-(3.34) we get 

If N ≥ 4: Φ(t ε u ε,x 0 ) = t 2 ε 2 p(x 0 ) IR N + |∇U ε,0 | 2 dx - t 2 * ε 2 IR N + |U ε,0 | 2 * dx - t 2 * ε 2 p(x 0 )Q(x 0 ) R N-1 |U ε,0 (x ′ , 0)| 2 * dx ′ - t 2 0 2 µH(x 0 )K 1 ε + t 2 *
R N + |∇U 1,0 | 2 dx - t 2 * -2 0 p(x 0 ) IR N + |U 1,0 | 2 * dx -Q(x 0 )t 2 * -2 0 R N-1 |U 1,0 | 2 * dx ′ = 0.
On the other hand, since U 1,0 is a solution of (3.31) we see that where G(x, s) = s 0 g(x, r)dr. Now, we are able to give sufficient conditions on f to have the condition (3.7):

  for a.e. x ∈ Ω, and for all u ∈ IR, and then |F (x, u)| ≤ C 1 s |u| s + C 2 |u| for a.e x ∈ Ω, and for all u ∈ IR.

. 3 )

 3 |g(x, u)| = o(|u|) as u → 0, uniformly in x, (3.4) |g(x, u)| = o(|u| 2 * -1 ) as |u| → +∞, uniformly in x.

Theorem 3. 1

 1 Assume (3.1)-(3.5) and suppose, moreover, that(3.7)there exists somev 0 ∈ H 1 , v 0 ≥ 0 on Ω, v 0 = 0 on ∂Ω, such that sup t≥0 Φ(tv 0 ) < M (S, S 1 ), where M (S, S 1 ) is defined in(1.4).Then, problem (1.1) possesses a solution.Proof of Theorem 3.1. From (3.3) we have, for any ε > 0, there is a δ > 0 such that |g(x, u)| ≤ ε|u| for a.e x ∈ Ω, and for all |u| ≤ δ, thus, by (3.4), we obtain |g(x, u)| ≤ ε|u| + C|u| 2 * -1 for a.e x ∈ Ω, and for all u ∈ IR,

(3. 15 )≤ ε 2 *

 152 |g(x, u)| ≤ ε|u| 2 * -1 + C for a.e x ∈ Ω and for all u ∈ IR, |u| 2 * + Cu for a.e x ∈ Ω and for all u ∈ IR.

Combining ( 3 .

 3 [START_REF] Pierotti | On a Neumann problem involving two critical exponents: remarks on geometrical and topological aspects[END_REF],(3.20) and (3.21) we obtain the following(3.22) 

Ω

  |u j | 2 * dx = Ω |u| 2 * dx + Ω |v j | 2 * dx + o(1), and (3.27) ∂Ω p(x)Q(x)|u j | 2 * ds x = ∂Ω p(x)Q(x)|u| 2 * ds x + ∂Ω p(x)Q(x)|v j | 2 * ds x + o(1).Inserting (3.25), (3.26) and (3.27) into (3.12) and (3.13) we get (3.28) Φ

0 2 *-F 2 *- t 2 * 0 2 *R N- 1 |U 2 0 2 FF 2 *≥ 4 t 2 0 2 p

 2221222422 µH(x 0 )K 2 ε (x, tu ε,x 0 )dx + o(ε) ≤ max t≥0 J(tU ε,0 ) -t 2 0 2 µH(x 0 )p(x 0 )K 1 ε + t 2 * 0 µH(x 0 )K 2 ε µH(x 0 )p(x 0 )Q(x 0 )K 3 ε -Ω F (x, tu ε,x 0 )dx + o(ε), If N = 3: Φ(t ε u ε,x 0 ε,0 (x ′ , 0)| 2 * dx ′ -t µH(x 0 )K 0 ε| ln(ε)| -Ω F (x, tu ε,x 0 )dx + o(ε| ln(ε)|) 0 )p(x 0 )K 0 ε| ln(ε)| -Ω (x, tu ε,x 0 )dx + o(ε| ln(ε)|). Therefore (3.41) Φ(t ε u ε,x 0 ) ≤ M 1 (S, S 1 ) -Ω (x, tu ε,x 0 )dx + o(µ) -µH(x 0 ) p(x 0 )Q(x 0 )K 3 ]ε + o(ε) if N (x 0 )K 0 ε| ln(ε)| + o(ε| ln(ε)|) if N = 3. Now,we need to give a explicit form of t 0 . Since sup t≥0 Φ(tu ε,x 0 ) = sup t≥0 h(t) is achieved at t ε then h ′ (t ε ) = 0 and letting ε → 0 we get (3.42)

R N- 1 |U 1 , 0 | 2 * 1 2 2 0 2 p 4 NF≥ 4 K 0 4 K 0

 110212244040 0 | 2 dx -N (N -2)IR N + |U 1,0 | 2 * dxµ dx ′ = 0.Combining(3.42) and (3.43) we obtain t 0 = (p(x 0 ) N (N -2)) * -2 . Using (3.38) and (3.39), for N ≥ 4, we see thatt (x 0 )K 1p(x 0 )Q(x 0 )K 3 = p(x 0 ) (N -2) 2 2 -3 + 2(N -1) (N -3)(N -2) 2 µ 2 +2 (N -1) (N -2) N (N -2) p(x 0 )p(x 0 )Q(x 0 )µ = K > 0.Combining this with (3.41) we obtain (3.44)Φ(t ε u ε,x 0 ) ≤ M 1 (S, S 1 ) -Ω (x, tu ε,x 0 )dx -µH(x 0 ) ε| ln(ε)| + o(ε| ln(ε)|) if N = 3.Using (3.1) and the fact that Ω |u ε,x 0 | 2 dx = o(ε), (3.44) becomes (3.45) Φ(t ε u ε,x 0 ) ≤ M 1 (S, S 1 ) -Ω G(x, tu ε,x 0 )dx -µH(x 0 ) ε| ln(ε)| + o(ε| ln(ε)|) if N = 3.

  ).

	Inserting (2.30) and (2.31) into (2.19) and (2.20) we get
	(2.32)

  Assume

		u 0 g(t)dt satisfies, for N ≥ 4
	(2.48)	lim ε→0
	(2.45) and (2.46) are a consequence of (2.41) and (2.49).	2
	When H(x 0 ) > 0.
	Lemma 2.3	

that f (x, u) satisfies (2.1)-

(2.5) 

and (2.7) or (2.1)-(2.4) and (2.6)-(2.7). Suppose that there exists some continuous function g such that (2.47) g(x, u) ≥ g(u) for a.e. x ∈ Ω and for all u ∈ IR and the primitive G(u) =

  x)|∇u ε,x 0 | 2 dx -t 2 * 2 * Ω |u ε,x 0 | 2 * dx -t 2 * 2 * ∂Ω p(x)Q(x)|u ε,x 0 | 2 * ds x -

Ω

F (x, tu ε,x 0 )dx.

where A µ , B µ , C µ and K i > 0 for i ∈ {0, 1, 2, 3} are defined by (3.35)

with K 2 > 0 and K 0 > 0 are some constants. Let

We have the following result

, where M (S, S 1 ) is defined in (1.4).

Proof.

We have

Looking at the polynomial B µ l 2 + p(x 0 )Q(x 0 )C µ lp(x 0 )A µ we deduce that

.

Proposition 3.3

Assume that f (x, u) satisfies (3.1)- (3.5) and that H(x 0 ) > 0. Suppose that there exists some continuous function g(.) such that g(x, u) ≥ g(u) for a. e. x ∈ Ω and for all u ∈ IR and the primitive G(u) = u 0 g(t)dt satisfies :

Then condition (3.7) holds.

Proof.

The proof become directly from (3.45). 2

Example of f : All the assumptions of Proposition 3.3 are satisfied for the following functions:

1. g(x, u) = g(u) = ±|u| r-2 u with 2 < r < 2 * and u ∈ IR.

2. g(x, u) = g(u) = u 2 * -1 (2 * ln(u) -1) (ln(u)) 2 for u > 0.