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ABSTRACT. The main result of this paper, Theorém 1.11, gives an ex-
plicit description of the ergodic decomposition for infaickrell mea-
sures on spaces of infinite complex matrices. The main agetgin is
that of sigma-finite analogues of determinantal measurespanes of
configurations. An example is the infinite Bessel point psscéhe scal-
ing limit of sigma-finite analogues of Jacobi orthogonalymamial en-
sembles. The statement of Theoflem 1L.11 is that the infiniss@@oint
process (subject to an appropriate change of variablese@sely the
ergodic decomposition measure for infinite Pickrell measur
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1. INTRODUCTION

1.1. Informal outline of the main results. The Pickrell family of mesures
is given by the formula

(1) 1) = const,, , det(1 + 2*2)"2""*dz.

Heren is a natural numbers a real numberz a squaren x n matrix

with complex entriesdz the Lebesgue measure on the space of such ma-
trices, andconst,, s @ normalization constant whose precise choice will be
explained later. The measqmés) is finite if s > —1 and infinite ifs < —1.

By definition, the measurﬁﬁf) is invariant under the actions of the unitary
groupU (n) by multiplication on the left and on the right.

If the constantsonst,, ; are chosen appropriately, then the Pickrell fam-
ily of measures has the Kolmogorov property of consistemmjen natural
projections: the push-forward of the Pickrell measujfél under the nat-
ural projection of cuttting the. x n-corner of a(n + 1) x (n + 1)-matrix

is precisely the Pickrell measuye?’. This consistency property is also
verified for infinite Pickrell measures providedis sufficiently large; see
Propositiori 1.B for the precise formulation. The consisygoroperty and
the Kolmogorov Theorem allows one to define the Pickrell fgrof mea-
suresi®), s € R, on the space of infinite complex matrices. The Pickrell
measures are invariant by the action of the infinite unitaoug on the left
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and on the right, and the Pickrell family of measures is theeinah ana-
logue, in infinite dimension, of the canonical unitarilyamant measure on
a Grassmann manifold, see Pickrell[[33].

What is the ergodic decomposition of Pickrell measures vatpect to
the action of the Cartesian square of the infinite unitarygfoThe ergodic
unitarily-invariant probability measures on the spacendinite complex
matrices admit an explicit classification due to Pickrell][and to which
Olshanski and Vershik [30] gave a different approach: eaghdic mea-
sure is determined by an infinite array= (z1,...,,,...) on the half-
line, satisfyingry > x5--- > 0andx; +---+x, + --- < 400, and an
additional parametey that we call theGaussian parameteinformally, the
parameters:;,, should be thought of as “asymptotic singular values” of an
infinite complex matrix, whiley is the difference between the “asymptotic
trace” and the sum of asymptotic eigenvalues (this diffeedn positive, in
particular, for a Gaussian measure).

Borodin and OlshanskKi[6] proved in 2000 that for finite Pelkmesures
the Gaussian parameter vanishes almost surely, and théieadgcompo-
sition measure, considered as a measure on the space ajuatidns on
the half-line(0, +o0), coincides with the Bessel point process of Tracy and
Widom [43], whose correlation functions are given as deteamis of the
Bessel kernel.

Borodin and Olshanski [6] posed the problebescribe the ergodic de-
composition of infinite Pickrell measurebhis paper gives a solution to the
problem of Borodin and Olshanski.

The first step is the result af [10] that almost all ergodic poments of
an infinite Pickrell measure are themselWieste: only the decomposition
measure itself is infinite. Furthermore, it will developthjast as for finite
measures, the Gaussian parameter vanishes. The ergodinp@sition
measure can thus be identified with a sigma-finite meatiten the space
of configurations on the half-lin@, +co).

How to describe a sigma-finite measure on the space of coafigns?
Note that the formalism of correlation functions is comelgunapplicable,
since these can only be defined for a finite measure.

This paper gives, for the first time, an explicit method fonstoucting in-
finite measures on spaces of configurations; since theseunesaare very
closely related to determinantal probability measuresy #ire callednfi-
nite determinantal measures

We give three descriptions of the measBif&; the first two can be carried
out in much greater generality.

¢ Inductive limit of determinantal measureBy definition, the mea-
sureB®) is supported on the set of configuratiokisvhose particles
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only accumulate to zero, not to infinityg(*)-almost every config-
uration X thus admits a maximal particle,,...(X). Now, if one
takes an arbitrary? > 0 and restricts the measul*) onto the
set{X : xn.(X) < R}, then the resulting restricted measure is
finite and, after normalization, determinantal. The cqroesling
operator is an orthogonal projection operator whose rasf@uind
explicitly for any R > 0. The measur®) is thus obtained as an
inductive limit of finite determinantal measures along ahaeisting
family of subsets of the space of configurations.

e A determinantal measure times a multiplicative functionisllore
generally, one reduces the measlf¢ to a finite determinantal
measure by taking the product with a suitable multiplicafunc-
tional. A multiplicative functionabn the space of configurations is
obtained by taking the product of the values of a fixed nontiga
function over all particles of a configuration:

Uy (X) =[] g(a).

zeX
If ¢ is suitably chosen, then the measure

(2) 7, B

is finite and, after normalization, determinantal. The esponding
operator is an orthogonal projection operator whose rasf@und
explicitly. Of course, the previous description is a paitae case of
this one withg = x( g). It is often convenient to take a positive
function, for example, the functiog’(z) = exp(—p3x) for 3 > 0.
While the range of the orthogonal projection operator imagithe
measurel(2) is found explicitly for a wide class of functignst
seems possible to give a formula for its kernel for only vesw f
functions; these computations will appear in the sequélisoytaper.
e A skew-product. As was noted above3®)-almost every config-
uration X admits a maximal particle,,..(X), and it is natural to
consider conditional measures of the meadhire with respect to
the position of the maximal particle,,...(X ). One obtains a well-
defined determinantal probability measure induced by aeptigin
operator whose range, again, is found explicitly using tbscdp-
tion of Palm measures of determinantal point processesodbieitai
and Takahash[ [39] . The sigma-finite distribution of the mad
particle is also explicitly found: the ratios of the measuoéinter-
vals are obtained as ratios of suitable Fredholm deterrtsndrhe
measuré®® is thus represented as a skew-product whose base is an
explicitly found sigma-finite measure on the half-line, amdose
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fibres are explicitly found determinantal probability mees. See
section 1.10 for a detailed presentation.

The key role in the construction of infinite determinantatasures is
played by the result of [11] (see also [12]) that a determtiagorobability
measure times an integrable multiplicative functionalaer normaliza-
tion, again a determinantal probability measure whoseatpeis found
explicitly. In particular, ifPy; is a determinantal point process induced by a
projection operatofl with rangeL, then, under certain additional assump-
tions, the measuré P, is, after normalization, a determinantal point pro-
cess induced by the projection operator onto the subspace the precise
statement is recalled in Proposition]9.3 in the Appendix.

Informally, if g is such that the subspacgL no longer lies inL,, then
the measurel ,[P; ceases to be finite, and one obtains, precisely, an infi-
nite determinantal measure corresponding to a subspaocealfyl square-
integrable functions, one of the main constructions of plaiger, see Theo-
rem2.11.

The Bessel point process of Tracy and Widom, which govemsttfjodic
decomposition of finite Pickrell measures, is the scalingtlof Jacobi or-
thogonal polynomial ensembles. In the problem of ergodamdgosition
of infinite Pickrell measures one is led to investigating #staling limit
of infinite analogues of Jacobi orthogonal polynomial ernsiesn The re-
sulting scaling limit, an infinite determinantal measuse¢omputed in the
paper and called the infinite Bessel point process; see Slitnséd.4 of this
Introduction for the precise definition.

The main result of the paper, Theorém 1.11, identifies thedécgde-
composition measure of an infinite Pickrell measure withnffiaite Bessel
point process.

1.2. Historical remarks. Pickrell measures were introduced by Pickrell
[33] in 1987. Borodin and Olshanskil[6] studied in 2000 a elgselated
two-parameter family of measures on the space of infinitertitean matri-
ces invariant with respect to the natural action of the itdininitary group
by conjugation; since the existence of such measures, asasvat of the
original family considered by Pickrell, is proved by a cortgiion that goes
back to the work of Hua Loo-Keng [19], Borodin and Olshanskigto the
measures of their family the name ldtia-Pickrell measuresFor various
generalizations of Hua-Pickrell measures, see e.g. Mdi&di, Bourgade-
Nikehbali-Rouault[[8]. While Pickrell only considered uak of the param-
eter for which the resulting measures are finite, Borodin@rsthanski([6]
showed that the inifnite Pickrell and Hua-Pickrell measuwaee also well-
defined. Borodin and Olshanski [6] proved that the ergodadgosition
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of Hua-Pickrell probability measures is given by determiaé point pro-
cesses that arise as scaling limits of pseudo-Jacobianguial polynomial
ensembles and posed the problem of describing the ergodiergmsition
of infinite Hua-Pickrell measures.

The aim of this paper, devoted to Pickrell’s original modslto give
an explicit description for the ergodic decomposition diriite Pickrell
measures on spaces of infinite complex matrices.

1.3. Organization of the paper. The paper is organized as follows. In the
Introduction, we proceed by illustrating the main condiiuc of the pa-
per, that of infinite determinantal measures, on the spesx@anple of the
infinite Bessel point process. Next we recall the constomctif Pickrell
measures and the Olshanski-Vershik approach to Pickotdissification of
ergodic unitarily-invariant measures on the space of it#ficomplex matri-
ces. We then formulate the main result of the paper, Thebrédy Which
identifies the ergodic decomposition measure of an infinit&rBIll mea-
sure with the infinite Bessel point process (subject to tlange of variable
y = 4/x). We conclude the Introduction by giving an outline of theqir
of Theoreni 1.1]1: the ergodic decomposition measures of@lickeasures
are obtained as scaling limits of their finite-dimensionqgdr@ximations, the
radial parts of finite-dimensional projections of Pickmneleasures. First,
Lemmal1.14 states that the rescaled radial parts, mutifliea certain
positive density, converge to the desired ergodic decoitippsneasure
multiplied by the same density. Second, it will develop tthat normalized
products of the push-forwards of rescaled radial partsecsfrace of con-
figurations on the half-line with a suitably chosen multplive functional
on the space of configurations, converge weakly in the sphoeeasures
on the space of configurations. Combining these statemelttallw to
conclude the proof of Theorelm 1]11 in the last section of tyep

Section 2 is devoted to the general construction of infingeedminan-
tal measures on the spaCenf(E) of configurations on a locally compact
complete metric spackE endowed with a sigma-finite Borel measure

Start with a spacé{ of functions onE locally square-integrable with
respect tq: and an increasing collection of subsets

EyCE,C---CE,C---

in E such that for any: € N the restricted subspagg;, H is a closed sub-
space inLy(E, ). If the corresponding projection operatdy, is locally-
trace class, then, by the Macchi-Soshnikov Theorem, tbggtion oper-
atorIT,, induces a determinantal measttg on Conf(FE). Under certain
additional assumptions it follows from the result of [11é€¢sCorollan) 9.6
in the Appendix) that the measur®g satisfy the following consistency
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property: if Conf(FE, E,) stands for the subset of those configurations all
whose patrticles lie ik, then for anyn € N we have

(3) IP)”-H |Conf(E,En)
P, 1(Conf(E, E,))

The consistency propertyl(3) implies that there existsmaifjnite measure
B such that for any. € N we have) < B(Conf(F, E,,)) < +oco0 and

-P,

IB|Conf(E,En)
B(Conf(FE, E,))

The measur® is called an infinite determinantal measure. An alternative
description of infinite determinantal measures uses thadbsm of multi-
plicative functionals. In[[11] it is proved in (see also [I#)d Proposition
9.3 in the Appendix) that a determinantal measure timestagiable mul-
tiplicative functional is, after normalization, again aeleninantal measure.
Now, if one takes the product of a determinantal measure lmnaecgent,
but not integrable, multiplicative functional, then oneaihs an infinite de-
terminantal measure. This reduction of infinite determiaameasure to
usual ones by taking the product with a multiplicative fuocal is essen-
tial for the proof of Theorerh 1.11. Section 2 is concluded ty proof of
the existence of the infinite Bessel point process.

Section 3 studies convergence of determinantal probabiltasures given
by positive contractions that are locally trace-class. Yt $y recalling
that locally trace-class convergence of operators immliesk convergence
of the corresponding determinantal measures in the spapeobfbility
measures on the space of configurations. In the study of teaffick-
rell measures, we need to consider induced processes ofesgeBpoint
process as well as as finite-rank perturbations of the Bessel process,
and in Section 3 sufficient conditions are given for the cogwece of in-
duced processes and of processes induced by finite-rankipeions. We
conclude Section 3 by establishing, for infinite determtabmeasures ob-
tained as finite-rank perturbations, the convergence ofaimély of deter-
minantal processes obtained by inducing on an exhaustinidyfaf subsets
of the phase space to the initial, unperturbed, determahanbcess.

In Section 4, we embed suitable subsets of the space of coatiigus
into the space ofinite measures on the phase spdtand give sufficient
conditions for precompactness of families of determinlamiasures with
respect to the weak topology on the space of finite measuréiseospace
of finite measures o’ (which is stronger than the usual weak topology on
the space of finite measures on the spadeafonmeasures, equivalent to
the weak topology on the space of finite measures on the spacaig-
urations). This step is needed for proving the vanishinghef“Gaussian

-P,
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parameter” for the ergodic components of Pickrell measuBesodin and
Olshanski [[6] proved this vanishing for the ergodic compusef Hua-
Pickrell measures: in fact, the estimate of their argumanthe interpreted

as the assertion dightnessof the family of rescaled radial parts of Hua-
Pickrell measures considered as measures in the spacdefii@asures on
the space ofinite measures. We next study weak convergence of induced
processes and of finite-rank perturbations with respedteméw topology.

In Section 5, we go back to radial parts of Pickrell measuésstart by
recalling the determinantal representation for radiatgaf finite Pickrell
measures and the convergence of the resulting determimaotaesses to
the modified Bessel point process (the usual Bessel poicepsoof Tracy
and Widom [43] subject to the change of variaple- 4/x). Next, we rep-
resent the radial parts of infinite Pickrell measures asitefoteterminantal
measures corresponding to finite-rank perturbations adhlaarthogonal
polynomial ensembles. The main result of this section i&sdion[5.5
which shows that the scaling limit of the infinite determitedrmeasures
corresponding to the radial parts of infinite Pickrell measus precisely
the modified infinite Bessel point process of the Introductitnfinite de-
terminantal measures are made finite by taking the produbtavsuitable
multiplicative functional, and weak convergence is essdigld both in the
space of finite measures on the space of configurations ahe ispace of
finite measures in the space of finite measures. The lattenstat will be
essential in the proof of the vanishing of the “Gaussian patar” in the
following Section.

In Section 6, we pass from the convergence, in the space td fimea-
sures on the space of configurations and in the space of fi&sunes in
the space of finite measures, of rescaled radial parts oféfickeasures
to the convergence, in the space of finite measures on theeRiskt, of
finite-dimensional approximations of Pickrell measures.particular, in
this section we establish the vanishing of the “Gaussiaampater” for er-
godic components of infinite Pickrell measures. Propasifd proved in
this section allows us to complete the proof of Propositidi§1

The final Section 7 is mainly devoted to the proof of Lenimallvlldich
relies on the well-known asymptotics of the Harish-Chartrgkson-Zuber
orbital integrals. Combining Lemnia 1]14 with Propositiafiél, we con-
clude the proof of Theorem 1.111.

The paper has three appendices. In Appendix A, we collech¢leeled
facts about the Jacobi orthogonal polynomials, includiverecurrence re-
lation between the-th Christoffel-Darboux kernel corresponding to pa-
rameterg«, ) and then — 1-th Christoffel-Darboux kernel corresponding
to parameterén + 2, §). Appendix B is devoted to determinantal point pro-
cesses on spaces of configurations. We start by recallirdgfiretion of the
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space of configurations, its Borel structure and its topglege next intro-
duce dterminantal point processes, recall the Macchiw8ksev Theorem
and the rule of transformation of kernels under a change whbies. We
next recall the definition of multiplicative functionals time space of con-
figurations, formulate the result of [11] (see alsol [12])tthaeterminantal
point process times a multiplicative functional is agairetedminantal point
process and give an explicit representation of the regukérnels; in par-
ticular, we recall the representation from [11], [12] forkels of induced
processes. Finally, in Appendix C we recall the construnctd Pickrell
measures following a computation of Hua Loo-Kend [19] ad a&the ob-
servation of Borodin and Olshanski [6] in the infinite casd #men, using
Kakutani’s Theorem in the same way as Borodin and OlshaB$kpfove
that Pickrell measures corresponding to distrinct valddh@parameteg
are mutually singular.

1.4. The Infinite Bessel Point Process.

1.4.1. Outline of the constructionTaken € N, s € R, and endow the cube
(—1, 1)™ with the measure

1<i<j<n i=1

Fors > —1, the measuré [4) is the Jacobi orthogonal polynomial ensem-
ble, a determinantal point process induced byrttta Christoffel-Darboux
projection operator for Jacobi polynomials. The classkdalne-Mehler
of Jacobi polynomials implies an asymptotics for the Chbifst-Dabroux
kernels and, consequently, also for the correspondingrdétantal point
processes, whose scaling limit, with respect to the scaling

Yi
(5) w=1-o,
is the Bessel point process of Tracy and Widoni [43]. Recalitihe Bessel
point process is governed by the projection operatof,if{0, +o), Leb),
onto the subspace of functions whose Hankel transform ipatgd in
[0, 1].

Fors < —1, the measuréd [4) is infinite. To describe its scaling limig, w
start by recalling a recurrence relation between Christddarboux ker-
nels of Jacobi polynomials and the consequent relationdmvthe corre-
sponding orthogonal polynomial ensembles: namely;thie Christoffel-
Darboux kernel of the Jacobi ensemble with parametera rank one per-
turbation of then — 1-th Christoffel-Darboux kernel of the Jacobi ensemble
corresponding to parameter- 2.

1=1,...,n,
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This recurrence relation motivates the following conginuc Consider
the range of the Christoffel-Darboux projection operatdt.is a finite-
dimensional subspace of polynomials of degree less thamltiplied by
the weight(1 — u)*/2. Consider the same subspace fo< —1. The re-
sulting space is no longer a subspacé gfit is nonetheless a well-defined
space ofocally square-integrable functions. In view of the recurrenca-rel
tion, furthermore, our subspace corresponding to the patemis a rank
one perturbation of a similar subspace corresponding tanpaters + 2,
and so on, until we arrive at a value of the parameter, denote@n, in
what follows, for which the subspace becomes partof Our initial sub-
space is thus a finite-rank perturbation of a closed subspacgesuch that
the rank of the perturbation depends ©hut not onn. Now we take this
representation to the scaling limit and obtain a subspadecafly square-
integrable functions of0, +oc), which, again, is a finite-rank perturbation
of the range of the Bessel projection operator correspgithe parame-
ters + 2n,.

To such a subspace of locally square-integable functionsexeassign
a sigma-finite measure on the space of configurationsintiréte Bessel
point process The infinite Bessel point process is the scaling limit of the
measureg (4) under the scalibg (5).

1.4.2. The Jacobi orthogonal polynomial ensemblerst lets > —1. Let

P be the standard Jacobi orthogonal polynomials correspgnii the

weight (1 — u)®. Let K (u1, uz) the n-th Christoffel-Darboux kernel of
the Jacobi orthogonal polynomial ensemble, see formUla3)(1114) in

the Appendix. We now have the following well-known deteramtal rep-

resentation for the measuteé (4) in the case —1:

(6)
consty, s H (ui—uj)2

n
1<i<j<n i=

s 1 (s -
=1

1

where the normalization constantnst,, ; is chosen in such a way that the
left-hand side be a probability measure .

1.4.3. The recurrence relation for Jacobi orthogonal polynomiakem-
bles. We write Leb for the usual Lebesgue measure on the real line or on
its subset. Given a finite family of functions, ..., fx on the real line,
let span(fi, ..., fi) stand for the vector space these functions span. The

Christoffel-Darboux kernek'\” is the kernel of the opertaor of orthogonal
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projection, in the space,([—1, 1], Leb), onto the subspace

(7) Lfféz) = span ((1 —u)*?, (1 —u)*?u, ..., (1 — ) ?u") =
= span (1 —u)*2, (1 —w)*/*™, .. (1 —u)/* ).
By definition, we have a direct-sum decomposition
e C(1— u)s/2 o (s+2n=1)

Jac Jac
By Propositio 8.11 in the Appendix, for ary> —1 we have the recurrence
relation

s+1
23+1

8) K (ur,up) = PV () (1 = wr)2 P (ug) (1 — ug)*/?+

+ KT(LS+2) (Ul, UQ)
and, consequently, an orthogonal direct-sum decompasitio
LG = CPS P (w)(1 —u)*? @ LG,

Jac Jac

We now pass to the case< —1. Define a natural number, by the relation

s 11
3 T E (‘5’ 5}
and introduce the subspace
9)
Ve —span (1= u)"2, (1= w)/2, P () (1 - w) /201

By definition, we have is a direct sum decomposition
(10) LG = yem g [{nenn),

Jac Jac
Note here that
LiF2men=me) « L([—1,1], Leb),

Jac
while
VM () Ly([—1, 1], Leb) = 0.

1.4.4. Scaling limits. Recall that the scaling limit, with respect to the scal-
ing[8), of Christoffel-Darboux kernel&® of the Jacobi orthogonal poly-
nomial ensemble, is given by the Bessel kerigbf Tracy and Widom
[43] (the definition of the Bessel kernel is recalled in thgpApdix and the
precise statement on the scaling limit is recalled in Prijprs8.3 in the
Appendix).

It is clear that, for anys, under the scaling (5), we have

lim (2n2)%(1 — w)? = o
n—oo
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and, for anyn > —1, by the classical Heine-Mehler asymptotics for Jacobi
polynomials, we have

a a— JCV )
lim 22 n (@) () (1 — ul)Tl = <\/y_)
n—00 \/E
It is therefore natural to take the subspace
. Jston,—
(11) V) — span (ys/27ys/2+17 L +2n; 1(\/@) .
VY

as the scaling limit of the subspa€eé (9).

Furthermore, we already know that the scaling limit of thiespace[(10)
is the subspac&(+2%), the range of the operatdt_ o, .

We arrive at the subspadé(®

12) H® =76 ® [ (st2ns)

It is natural to consider the subspabé®) as the scaling limit of the sub-
spacesLJac under the scalind {5) as — .

Note that the subspadé(®) consists of locally square-integrable func-
tions, which, moreover, only fail to be square-integradtieera for any
e > 0, the subspacg;. .., is contained inL,.

1.4.5. Definition of the infinite Bessel point proceds/e now proceed to a
precise description, in this specific case, of one of the ramstructions
of the paper: that of a sigma-finite measif€, the scaling limit of infinite
Jacobi ensembleis](4) under the scaling (5).A®tf ((0, +00)) be the space
of configurations orf0, +co). Given a Borel subsédf, C (0, +oc0), we let
Conf((0,+00), Ey) be the subspace of configurations all whose particles
lie in Ey. Generally, given a measuBeon a setX and a measurable subset
Y C X suchthat) < B(Y) < +o00, we letB|y stand for the restriction of
the measur® onto the subseét’.

It will be proved in what follows that, for any > 0, the subspace
X(e +yH®) is a closed subspace b§((0, +-00), Leb) and that the operator
I1=5) of orthogonal projection onto the subspage ) H® is locally of
trace class. By the Macchi-Soshnikov Theorem, the opefHfd) induces
a determinantal measubg. .., on Conf((0, +-c0)).

Proposition 1.1. Let s < —1. There exists a sigma-finite measii¢’ on
Conf((0, +00)) such that we have

(1) the particles ofB-almost every configuration do not accumulate at
zero;
(2) for anye > 0 we have

0 < B(Conf((0,400); (g, 400)) < +00



14 ALEXANDER I. BUFETOV

and
E‘COHf((O,—i—OO);(E,-FOO))

B(Conf((0,400); (¢, +00))

= ]P)ﬁ(g,s) .

These conditions define the measii€ uniquely up to multiplication
by a constant.
Remark. Fors # —1,—3, ..., we can also write

f{(s) _ Span<ys/27 o ys/2+n5—1) ® Z‘/(S-{—Qns)

and use the preceding construction otherwise without ahalgrs = —1
note that the functiop'/? fails to be square-integrable at infinity — whence
the need for the definition given above. Fos —1, write B) = P .

Proposition 1.2. If s; # s,, then the measuré®") andB2) are mutully
singular.

The proof of Proposition 112 will be derived from Propositib.4, which
in turn, will be obtained as a corollary of the main resultedren{1.11, in
the last section of the paper.

1.5. The modified Bessel point processin what follows, we will need
the Bessel point process subject to the change of varigble4/x. We
thus consider the half-lin€), +o00) endowed with the standard Lebesgue
measurd.ecb. Takes > —1 and introduce a kernel®) by the formula

(13)

JO (21, 29) = Is (\/%7) VL&T?JSJF1 (\/%> — (V%) \/%TIJSJrl (\/%TJ 7

X1 — T2

1 >0, 20> 0.

1
= (2 i) . @ﬁ) i,
T1X2 xy T2
0
The change of variable = 4/x reduces the kernel® to the kernel
J, of the Bessel point process of Tracy and Widom consideresetre-
call here that a change of variables = p(v,), us = p(ve) transforms a
kernel K (uy, us) to a kernel of the forn¥ (p(vy), p(ve)) (/0 (v1)p' (v2))).
The kernelJ®) therefore induces on the spabg((0, +00), Leb) a locally
trace class operator of orthogonal projection, for whidlghsly abusing
notation, we keep the symbdl®); we denoteL(®) the range of/®). By
the Macchi-Soshnikov Theorem, the operaf6? induces a determinantal
measure? ;. on Conf((0, +00)).

or, equivalently,

(14) T (z,y) =
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1.6. The modified infinite Bessel point process.The involutive homeo-
morphism
y=4/z

of the half-line(0, +o00) induces a corresponding change of variable homeo-
morphism of the spadggonf((0, +c)). LetB*) be the image oB() under
our change of variables. As we shall see below, the me@tiris precisely
the ergodic decomposition measure for the infinite Picknalasures.

A more explicit description description of the measBf& can be given
as follows.

By definition, we have

L) — {@(4/95)’(p c Z‘/(s)}.

Xz

( the behaviour of determinantal measures under a changariatbles is
recalled in the Appendix).

We similarly letV®) H®) C Ly ,.((0, +00), Leb) be the images of the
subspace¥ *), H) under our change of variablgs= 4/z:

V) — {()0(4/1')’()06‘7(3)}7 HE — {@(4/@7806[:[(3)}.
x x

By definition, we have

2
(15) V) = span | 7%/271 . S () .
) 5 \/E

(16) H® — () q [(s+2ns),

It will develop that for allR > 0 the subspace, r H is a closed
subspace i, ((0, +00), Leb); let I1¢*f) be the corresponding orthogonal
projection operator. By definition, the operaidt?) is locally of trace-
class and, by the Macchi-Soshnikov Theorem, the opeFHtd? induces a
determinantal measui®;..ry on Conf((0, +00)).

The measur®'®) is characterized by the following conditions:

(1) the set of particles d8(*)-almost every configuration is bounded;
(2) forall R > 0 we have
0 < B(Conf((0,400); (0, R)) < 00

and
E‘Conf((o,ﬂ-oo)?(OvR))
B(Conf((0, +00); (0, R))

— PH(S,R) .
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These conditions define the measB#€ uniquely up to multiplication by
a constant.
Remark. Fors # —1,—3, ..., we can of course also write

H® = span(x_s/Q_l, . ,x_s/z_"erl) @ L),

Let .# 10.((0,400), Leb) be the space of locally trace-class operators act-
ing on the spacé.((0, +00), Leb) (see the Appendix for the detailed def-
inition). We have the following proposition describing thgymptotic be-
haviour of the operatod %) asR — oc.

Proposition 1.3. Lets < —1. Then
(1) asR — oo we have
H(S,R) N J(s+2n5)

in ﬂl,loc((ov —|—OO), Leb),
(2) Consequently, a® — oo, we have

PH(S,R) — IP)J(5+2n5)
weakly in the space of probability measures@mf((0, +o00)).

As before, fors > —1, write B®) = PP,(.,. Propositioi LR is equivalent
to the following

Proposition 1.4. If s; # s, then the measuré®®?) andB2) are mutully
singular.

Proposition_ 114 will be obtained as the corollary of the nrasult, The-
orem 1.11, in the last section of the paper.

We now represent the measubé&”) as the product of a determinantal
probability measure and a multiplicative functional. Heve limit our-
selves to specific example of such a representation, but &t fehows we
will see that they can be constructed in much greater gatyerhaltroduce
a functionS on the spac€onf((0, +o00)) by setting

S(X) = Zx

The functionS may, of course, assume value, but the set of such config-
urations isB*)-negligible, as is shown by the following

Proposition 1.5. For any s € R we haveS(X) < +oo almost surely with
respect to the measul® and for anys > 0 we have

exp(—BS(X)) € Ly(Conf((0, +00)), B).
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Furthermore, we shall now see that the measure
exp(—AS(X))B")
[ ew(-os(x)a

Conf ((0,400))

is determinantal.
Proposition 1.6. For anys € R, 5 > 0, the subspace
(17) exp (—fBx/2) H®)

is a closed subspace ﬂ&((o, +00), Leb), and the operator of orthogonal
projection onto the subspad#?) is locally of trace class.

LetI1*#) be the operator of orthogonal projection onto the subsjia&e (
By Proposition_1.6 and the Macchi-Soshnikov Theorem, therator
11¢#) induces a determinantal probability measure on the spacg (0, +-00)).

Proposition 1.7. For anys € R, g > 0, we have
exp(—BS(X))B"
| ew(-ss(x)ae

Conf((0,400))

(18)

= Ppe.s-

1.7. Unitarily-Invariant Measures on Spaces of Infinite Matrices.

1.7.1. Pickrell Measures.Let Mat(n,C) be the space of x n matrices
with complex entries:

Mat(n,C) ={z = (z;), i=1,...,n;j=1,...,n}
Let Leb = dz be the Lebesgue measureMat(n, C). Forn, < n, let
m, . Mat(n,C) — Mat(n,C)

be the natural projection map that to a mattix= (z;;),7,7 = 1,....n,
assigns its upper left corner, the matriX (2) = (2),4,5 = 1,...,n1.

Following Pickrell [31], takes € R and introduce a measuﬁéf) on
Mat(n, C) by the formula

i) = det(1 4 2%2) " *dz.

The measurﬁﬁf) is finite if and only ifs > —1.
The measureﬁﬁf) have the following property of consistency with re-
spect to the projections;, .
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Proposition 1.8. Let s € R, n € N satisfyn + s > 0. Then for any
Z € Mat(n,C) we have

(19) / det(1 + 2%2) 2" 7%dz =
(r ) ~1(3)
2n+1 T 1 2
— 4 ( (n + 1+ S)) det(l 4 2*2>—2n—s.
F'2n+2+s)-I'2n+1+s)
Now let Mat(N, C) be the space of infinite matrices whose rows and
columns are indexed by natural numbers and whose entrieparglex:

Mat(N, C) = {Z = (Zij),i,j S N, Zij c (C}

Let 72° : Mat(N,C) — Mat(n,C) be the natural projection map that to
an infinite matrixz: € Mat(N, C) assigns its upper left x n-“corner”, the
matrix (z;;),4,7 =1,...,n.

Fors > —1, Propositior 1.8 together with the Kolmogorov Existence
Theorem[[20] implies that there exists a unique probabhiligasure:*) on
Mat (N, C) such that for any: € N we have the relation

e DRL+s)(20 —1+s)
) =7 sy
E (T(L+ s))?

If s < —1, then Proposition 118 together with the Kolmogorov Exisgen
Theorem[[20] implies that for any > 0 there exists a unique infinite mea-
sureu* onMat (N, C) such that

(1) for anyn € N satisfyingn + s > 0 and any compact subsgt C
Mat(n, C) we haveu*V (Y") < 4oo; the pushforwardér2®), p(s
are consequently well-defined;

(2) for anyn € N satisfyingn + s > 0 we have

0oy (s) S L TQRIFS)TR2—1+5)\ -,

(m

l=ng

The measureg* will be calledinfinite Pickrell measures Slightly
abusing notation, we shall omit the super-sch@nd write*) for a mea-
sure defined up to a multiplicative constant. See p.116 imé&arand Ol-
shanskil[6] for a detailed presentation of infinite Pickratasures.

Proposition 1.9. For any s, s, € R, s; # s, the Pickrell measureg(**)
andx(*2) are mutually singular.

Proposition 1.9 is obtained from Kakutani’'s Theorem in thiisof [6],
see also [26].
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Let U(co) be the infinite unitary group: an infinite matrix= (u;;); jen
belongs taJ (c0) if there exists a natural numbeg such that the matrix

(uij), 1,7 € [1,n0]

is unitary, whilew;; = 1if i > ng andu;; = 0if ¢ # j, max(i, j) > no.
The grouplU(oo) x U(oo) acts onMat(N, C) by multiplication on both
sides:

1
T(ulm)z = UIRU, .

The Pickrell measureg®) are by definitionl/ (co) x U(oc)-invariant.
For the r6le of Pickrell and related mesures in the reptesen theory of
U(x), seel[28],29],[[30].

Theorem 1 and Corollary 1 in[9] imply that the measurés admit
an ergodic decomposition, while Theorem 1 (in|[10] implieattfor any
s € R the ergodic components of the measpf are almost surely fi-
nite. We now formulate this result in greater detail. Rettadlt al/ (co) x
U (oo)-invariant probability measure aviat(N, C) is calledergodicif ev-
eryU(oco) x U(oo)invariant Borel subset dflat(N, C) either has measure
zero or has complement of measure zero. Equivalently, ergwdbabil-
ity measures are extremal points of the convex set ofatb) x U(oo)-
invariant probability measures dviat(N, C). Let 9M.,,(Mat(N, C) stand
for the set of all ergodié/(co) x U(oo)-invariant probability measures on
Mat(N, C). The sethi..,(Mat(N,C)) is a Borel subset of the set of all
probability measures oklat(N, C) (see, e.g.[[9]). Theorem 1 in [10] im-
plies that for anys € R there exists a unique sigma-finite Borel measure
7® on the setn,,,(Mat(N, C)) such that we have

(21) p = / ndp® ().
Merg(Mat(N,C)

The main result of this paper is an explicit description ¢ theasure
7*) and its identification, after a change of variable, with thfite Bessel
point process considered above.

1.8. Classification of ergodic measuresFirst, we recall the classification
of ergodic probabilityl/ (co) x U(oo)-invariant measures ollat(N, C).
This classification has been obtained by Pickrell [31], [3&rshik [44]
and Olshanski and Vershik [30] proposed a different apgraacdhis clas-
sification in the case of unitarily-invariant measures andpace of infinite
Hermitian matrices, and Rabaoui [34], [35] adapted the &iski-Vershik
approach to the initial problem of Pickrell. In this notegt®Ishanski-
Vershik approach is followed as well.
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Takez € Mat(N, C), denotez(™) = 7>z, and let

(22) AW > > >
be the eigenvalues of the matrix
()" 2™,

counted with multiplicities, arranged in non-increasimges. To stress de-
pendence on, we write A" = A" ().

Theorem. (1) Letn be an ergodic Borel/ (oo) x U (o0)-invariant prob-
ability measure oiMat(N, C). Then there exist non-negative real
numbers

720, ;i 2> 22, 2>...20,

satisfyingy > >~ ;, such that for-almost every: € Mat (N, C)

=1
and any; € N we have:

@ tr (2" 5(m)
(23) x; = lim A (Z>, v = lim w

n—00 7’L2 n—00 n2

(2) Conversely, given non-negative real numbers 0, x; > x9
...>=x, = ...>=0suchthat

00
72 inv
i=1

there exists a uniqué (co) x U(oo)-invariant ergodic Borel proba-
bility measure on Mat(N, C) such that the relation®@) hold for
n-almost allz € Mat(N, C).

WV

Introduce thePickrell set2p C R, x RY by the formula

Qp = {w: (v,x):x=(2n), nEN, x, > 2,01 20, v sz}
i=1

The set)p is, by definition, a closed subset®&f, x RT_ endowed with the
Tychonoff topology. Fotw € Qp we letn,, be the corresponding ergodic
probability measure.

The Fourier transform of the measujg is explicitly described as fol-
lows. First, for anyA € R we have

exp(—4(y — i 1))2)

(24) / exp(iARz11)dn,(2) =

Mat(N,C)

—18

k=1
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DenoteF,, ()\) the expression in the right-hand side [0fl(24); then, for any
A, .. A € R we have
(25)

exp(i( A1 Rz11 + -+ ARz ) )dnw(2) = Fiu(Ay) - -+ - E,(Am)-

Mat(N,C)

The Fourier transform is fully defined, and the measwraes completely
described. An explicit construction of the ergodic measuggis given
as follows. First, if one takes all entries of the mattibare independent
identically distributed complex Gaussian random varighlgh expectation
0 and variancey, then the resulting Gaussian measure with paramgter
clearly unitarily invariant and, by the Kolmogorov zeroeolaw, ergodic,
corresponds to the parameter= (7,0, ...,0,...)—all z-coordinates are
equal to0 ( indeed, singular values of a Gaussian matrix grow at {ate
rather tham).

Next, let(vq,...,vn,...), (w1,...,w,,...) be two infinite independent
vectors of independent identically distributed complexu€&aan random
variables with variancg/z, and set;; = v;w;. One thus obtains a measure
whose unitary invariance is clear and whose ergodicity im&diate from
the Kolmogorov zero-one law. This measure correspondsetpanameter
w € Qp such thaty(w) = z, x;(w) = =z, and all the other parameters
are zero. Following Olshanski and Vershik [30], such meras;alre called

Wishart measurewith parameter. In the general case, set= v — Z Tk

The measurey, is then an infinite convolution of the Wishart measures
with parameters:, ..., z,,... and the Gaussian measure with parameter
7. Convergence of the series+- - -+, +. .. ensures that the convolution
is well-defined.

The quantityy = v— > x; will therefore be called th&aussian param-

eterof the measure,,. |]€V\}i|| develop that the Gaussian parameter vanishes
for almost all ergodic components of Pickrell measures.

By Proposition 3 in[[9], the subset of ergodifoc) x U(oo)-invariant
measures is a Borel subset of the space of all Borel probatigasures on
Mat(N, C) endowed with the natural Borel structure (see, el.g., [3)t- F
thermore, if one denoteg, the Borel ergodic probability measure corre-
sponding to a point € Qp, w = (v, x), then the correspondence

W —> Ny

is a Borel isomorphism of the Pickrell S8} and the set of/ (co) x U(c0)-
invariant ergodic probability measures bhat(N, C).
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The Ergodic Decomposition Theorem (Theorem 1 and Corollanf{9])
implies that each Pickrell measyi€’, s € R, induces a unique decompos-
ing measurg® onp such that we have

(26) W = [ i)
Qp
The integral is understood in the usual weak sense| see [9].
Fors > —1, the measur@®) is a probability measure ailp, while for
s < —1 the measurg® is infinite.
Set

Q% = {(7.{za}) €2, >0 foralln, v=Y z,}.
n=1
The subsef)?, is of course not closed if1p.
Introduce a map

conf: Qp — Conf((0,+00))
that to a pointv € Qp,w = (v, {x,}) assigns the configuration
conf(w) = (z1,...,Zy,...) € Conf((0, +00)).

The mapu — conf(w) is bijective in restriction to the subs@f..

Remark. In the definition of the maponf, the “asymptotic eigenvalues”
x, are counted with multiplicities, while, if,,, = 0 for somen,, thenz,,
and all subsequent terms are discarded, and the resultinfggemtion is
finite. We shall see, however, that?)-almost surely, all configurations are
infinite and thatz(®-almost surely, all multiplicities are equal to one. It
will also develop that the complement\ QY% is 77(*)-negligible for alls.

1.9. Formulation of the main result. We start by formulating the ana-
logue of the Borodin-Olshanski Ergodic Decomposition Treeo [6] for
finite Pickrell measures.

Proposition 1.10.Lets > —1. Thenz®)(Q%) = 1 and ther(*)-almost sure
bijectionw — conf(w) identifies the measurg®) with the determinantal
measureP ).

The main result of this paper, an explicit description fag grgodic de-
composition of infinite Pickrell measures, is given by thiofeing

Theorem 1.11.Lets € R, and letz®) be the decomposing measure, defined
by 26), of the Pickrell measure®). Then
(1) 79\ =0,
(2) the i) -almost sure bijectiony — conf(w) identifieszi®) with the
infinite determinantal measui@®).
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1.10. A skew-product representation of the measuréd(®). With respect
to the measurB®), almost every configuratioN only accumulates at zero
and therefore admits a maximal particle that we dengig(X). We are
interested in the distribution of the maximal particle urithe measurd(®).
By definition, for anyR > 0, the measur®®) assings finite weight to the
set{X : rn.(X) < R}. Furthermore, again by definition, for ady > 0
andR;, R, < R we have the following relation:

B ({X : 2max(X) < Ri}) _ det (1= X(ry 00 1P X (71 4)
BE) ({X : Zmax(X) < Ro})  det (1 = X(Ror00) IO X Ry 500))

The push-forward of the measus€’) is a well-defined Borel sigma-finite
measure orf0, +-o00) for which we will use the symbd,...B*); the mea-
sureén.B®) is, of course, defined up to multiplication by a positive con-
stant.

Question. What is the asymptotics of the quantity..B*) (0, R) ask —
oco? ask — 0?

The operatoil*®) admits a kernel for which we keep the same symbol;
consider the functiop(z) = 1% (z, R). By definition,

or(x) € X(O,R)H(S)-

(27)

Let 7™ stand for the orthogonal complement to the one-dimensguial
space spanned hyg(z) in xo,.rH®. In other words.H""™ is the sub-
space of those functions iz H ) that assume value zero at the paint
LetTT"be the operator of orthogonal projection onto the subsﬁh(ég).
Proposition 1.12. We have

[e.e]

B*) = / Pt dmax B (R).
0
Proof. This immediately follows from the definition of the asaireB(*)

and the characterization of Palm measures for determinamite processes
due to Shirai and Takahashi |38].

1.11. The general scheme of ergodic decomposition.

1.11.1. Approximation.Let § be the family ofo-infinite U(co) x U(oo)-
invariant measureg on Mat (N, C) for which there existg, (dependent on
1) such that for allR > 0 we have

,u({z: max |z;;] < R}) < +00.

1<i,5<no

By definition, all Pickrell measures belong to the clgss
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We recall the result of [10] stating that every ergodic measelonging
to the clasgf must be finite and that the ergodic components of any measure
in § are therefore almost surely finite (the existence of thedicgdecom-
position for any measurg € § follows from the ergodic decomposition
theorem for actions of inductively compact groups establisin [9]). The
classification of finite ergodic measures now implies thatefery measure
i € § there exists a unique Borelinite measurg: on the Pickrell sef)p
such that

(28) p= [ nadno)
Qp
Our next aim is to construct, following Borodin and Olshan§, a
sequence of finite-dimensional approximations for the megs
To a matrixz € Mat(N, C) and a numben € N assign the array
A A Al

of eigenvalues arranged in non-increasing order of theirmétf™)*z(™),
where

2" = (Zz'j)i,jzl ..... n:
Forn € N define a map
t™: Mat(N,C) — Qp
by the formula
(n) y(n) (n)

1 n
(29) t™(2) = <—2tr(z(”))*z("), A , Ay e A 0,0,.. ) .

n

n2’ n2 n?’

It is clear by definition that for any € N, = € Mat(N, C) we have
t™(2) € QY.

For anyu € § and all sufficiently larges € N the push-forwardé:™),
are well-defined since the unitary group is compact. We gnaiently see
that for anyu € § the measure&™), ;. approximate the ergodic decom-
position measurg.

We start by a direct description of the map that takes a measarg to
its ergodic decomposition measgre

Following Borodin-Olshansk( [6], leblat,.. (N, C) be the set of all ma-
tricesz such that

(1) for anyk, there exists the limitim %)\g’“) = 2(2);

n—oo N,

. - 1
(2) there exists the limitim —tr(z)*2(" =: y(z2).

n—oo 1,
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Since the set of regular matrices has full measure with ptgpeany
finite ergodicl (c0) x U (c0)-invariant measure, the existence of the ergodic
decomposition’(28) implies

p(Mat (N, C)\Mat,es (N, C)) = 0.
We introduce the map
() Mat, e (N, C) — Qp
by the formula

t©)(2) = (y(2), 21(2), 22(2), . . ., 2 (2), .. ) .
The Ergodic Decomposition Theorem [9] and the classificatb er-

godic unitarily-invariant measures in the form of Olshared Vershik
imply the important equality

(30) (t*)p = 7.

Remark. This equality has a simple analogue in the context of De
Finetti's theorem: in order to obtain the ergodic decompasiof an ex-
changeable measure on the space of binary sequences, bmegds to
consider the push-forward of the initial measure by the alrsarely de-
fined map that to each sequence assigns the frequency ofirét.os

Given a complete separable metric spacewe write Mg, (Z) for the
space of all finite Borel measures anendowed with the weak topology.
Recall [3] thathis, (Z2) is itself a complete separable metric space: the weak
topology is induced, for instance, by the Lévy-Prohoronne

We proceed to showing that the measuré’s ), ;. approximate the mea-
sure(t(>)), . = masn — oo. For finite measureg the following statement
is due to Borodin and Olshanski [6].

Proposition 1.13. Let i be a finites-invariant measure oMat(N, C).
Then, as» — oo, we have

() = ())ops
weakly in9tg, (Qp).
Proof. Let f: Q2p — R be continuous and bounded. For ang Mat,.. (N, C),

by definition, we have™ (z) — t(*)(2) asn — oo, and, consequently,
also,

Jim f(e(2)) = F((2)),

whence, by bounded convergence theorem, we have

lim /)f(t("’(Z))du(Z)Z /)f(t(“’(Z))du(Z)-

n—oo

Mat(N,C Mat(N,C
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Changing variables, we arrive at the convergence

lim [ f(w) / f(w)d(x®),
n—o0
Qp
and the desired weak convergence is established. O

For o-finite measureg € §, the Borodin-Olshanski proposition is mod-
ified as follows.

Lemma 1.14.Lety € §. There exists a positive bounded continuous func-
tion f on the Pickrell sef2p such that

(1) f € Li(Qp, (x)),p) and f € L (Qp, (t), ) for all sufficiently
largen € N;
(2) asn — oo, we have

FEM) = f),p
weakly in9tg, (Qp).

Proof of Lemma 1.14 will be given in Section 7.

Remark. As the above argument shows, the explicit characterization
of the ergodic decomposition of Pickrell measures givenhedreni 1.111
does rely on the abstract result, Theorem 1_in [9], that aripgiearantees
the existence of the ergodic decomposition and does notskif give an
alternative proof of the existence of the ergodic deconijmsi

1.11.2. Convergence of probability measures on the Pickrell s&call
that we have a natural forgetting mapnf : 2 — Conf(0, +o00) that
to a pointw = (v,z), z = (x1,...,x,,...), assigns the configuration
conf(w) = (z1,...,ZTn,...).

Forw € Qp,w=(v,2),x = (T1,...,Zpn,...), Tp = Tp(w), Set

= Z T (w)

In other words, we set(w) = S(conf(w)), and, slightly abusing notation,
keep the same symbol for the new map. Take- 0 and consider the
measures

exp(—BS(w))e™ (1)),
n € N.

Proposition 1.15.For any s € R, 3 > 0, we have
exp(—BS(w)) € Ly(Qp, t™ (1))).
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Introduce the probability measure
o) _ _XD(=BS(w))e (u')
/eXp(—ﬁS(w))dt(”)(,u(s))

Qp
Now go back to the determinantal meas@fg. s) on the spac€onf((0, +0))
(cf. (I8)) and let the measuré®?) on)p be defined by the requirements
(1) v (Qp \ Q%) = 0;
(2) conf, P = Pr.s.
The key role in the proof of Theorem 1111 is played by

Proposition 1.16.Forany > 0, s € R, asn — oo we have
YsmB) s 1 (s,8)

weakly in the spac®is, (Qp).

Proposition_1.16 will be proved in Section 6, and in Sectigruging
Propositiori 1.16, combined with Lemma1.14, we will conelule proof
of the main result, Theorem 1J11.

To establish weak convergence of the measufes?), we first study
scaling limits of the radial parts of finite-dimensional jetions of infinite
Pickrell measures.

1.12. The radial part of the Pickrell measure. Following Pickrell, to a
matrixz € Mat(n, C) assign the collectiof\(z), ..., A\,(z)) of the eigen-
values of the matrix*z arranged in non-increasing order. Introduce a map

tad, : Mat(n,C) — R’

by the formula
(31) tad, 2z = (A(2),..., An(2)) .
The mapl(3lL) naturally extends to a map definedven (N, C) for which
we keep the same symbol: in other words, the mayp assigns to an infi-
nite matrix the array of squares of the singular values ot iksn-corner.

Theradial part of the Pickrell measurﬁﬁf) is now defined as the push-
forward of the measurﬁ,(f) under the mapao,,. Note that, since finite-
dimensional unitary groups are compact, and, by definifienany s and

all sufficiently largen, the measurgaﬁf) assigns finite weight to compact
sets, the pushforward is well-defined, for sufficiently &arg even if the
measure:®) is infinite.

Slightly abusing notation, we writé: for the Lebesgue measuvét(n, C)
anddA for the Lebesgue measure B} .
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For the push-forward of the Lebesgue meadure™ = dz under the
maprad,, we now have

(vad, ). (dz) = const(n) - [ (A — A;)%dA,
1<j
whereconst(n) is a positive constant depending onlyeon
The radial part of the measu,rés) now takes the form:

1
s) __ 2
(32) (taan)*ﬂgz) = const(n, s) - g()‘z -\ (1 + A;)2nts dA,

whereconst(n, s) for a positive constant depending @@nds (the constant
may change from one formula to another).
Following Pickrell, introduce new variables, . . ., u,, by the formula

Proposition 1.17.In the coordinates33) the radial part(tad,,). .’ of the
measure.” is defined on the cuble-1, 1]" by the formula

(34) (tad, ). ') = const(n, s) - H(ul —u )? - H(l — u;)® du;.

i<j i=1

In the cases > —1, the constantonst(n, s) can be chosen in such a way
that the right-hand side be a probability measure; in the €as —1, there
is no canonical normalization, the left hand side is defingtbuproportion-
ality, and a positive constant can be chosen arbitrarily.

Fors > —1, Propositiol 1.17 yields a determinantal representation f
the radial part of the Pickrell measure: namely, the rackat {3 identified
with the Jacobi orthogonal polynomial ensemble in the cioartes [(3B).
Passing to the scaling limit, one obtains the Bessel pootgss (subject to
the change of variablg = 4/z).

Similarly, it will develop that fors < —1, the scaling limit of the mea-
sures[(34) is precise the modified infinite Bessel point medetroduced
above. Furthermore, if one multiplies the measutes$ (34)hieydensity
exp(—£S5(X)/n?), then the resulting measures are finite and determinantal,
and their weak limit, after approproate scaling, is prdgiiee determinan-
tal measuré;. s) of (18). This weak convergence is a key step in the proof
of Proposition 1.16.

The study of the case < —1 thus requires a new object: infinite de-
terminantal measures on spaces of configurations. In theSsetion, we
proceed to the general construction and description of tbpguties of in-
finite determinantal measures.
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2. CONSTRUCTION AND PROPERTIES OF INFINITE DETERMINANTAL
MEASURES

2.1. Preliminary remarks on sigma-finite measures.Let Y be a Borel
space, and consider a representation

Y = G Y,
n=1

of Y as a countable union of an increasing sequence of subsei$, C
Y,+1. As before, given a measureon Y and a subset” C Y, we write
uly+ for the restriction ofu ontoY’. Assume that for every we are given
a probability measur®,, onY,,. The following proposition is clear.

Proposition 2.1. A sigma-finite measut® onY such that

Bly,
35 =P,
49 B(Y,)
exists if and only if for any, n, N > n, we have
PN|Yn _
Py (Yy,) "

The conditiori35 determines the measule uniquely up to multiplication
by a constant.
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Corollary 2.2. If B,, B, are two sigma-finite measures dnhsuch that for
all n € N we have

0 < Bi(Y,) < 4+00,0 < By(Y,,) < 00,

and

Bily, _ Balv,
Bl(Yn) B2(Yn) ’
then there exists a positive constant- 0 such that®, = C'B..

2.2. The unique extension property.

2.2.1. Extension from a subseLet £ be a standard Borel space, Jebe
a sigma-finite measure af, let L be a closed subspace bf(E, ), let11
be the operator of orthogonal projection ortoand letk, C E be a Borel
subset. We shall say that the subspadeas theunique extension property
from E if a functiony € L satisfyingx g, = 0 must be the zero function
and the subspaceg, L is closed. In general, if a functiop € L satisfying
XE,¢¢ = 0 must be the zero function, then the restricted subspage still
need not be closed: nonetheless, we have the following cteatlary of
the open mapping theorem.

Proposition 2.3. Assume that the closed subspdcis such that a function
¢ € L satisfyingyz,» = 0 must be the zero function. The subspagel
is closed if and only if there exists> 0 such that for anyy € L we have

(36) Ixenmell < (1 —e)llell,

in which case the natural restriction map— x g, is an isomorphism of
Hilbert spaces. If the operatoyz\ 5,11 is compact, then the conditio36)
holds.

Remark. In particular, the conditiori (36) a fortiori holds if the apéor
XE\E, 11 is Hilbert-Schmidt or, equivalently, if the operatgg, g, [Ix £\ £,
belongs to the trace class.

The following corollaries are immediate.

Corollary 2.4. Let g be a bounded nonegative Borel function Bnsuch
that

(37) inf g(z) > 0.

AT N

If (36) holds then the subspacgy L is closed inL,y (L, p).

Remark. The apparently superfluous square root is put here to keep
notation consistent with the remainder of the paper.
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Corollary 2.5. Under the assumptions of Propositi@rg, if (36) holds and
a Borel functiory — [0, 1] satisfies[87), then the operatoll? of orthogonal
projection onto the subspagggL is given by the formula

(38) MY = gll(1+ (g — DI~ /g = VglI(1 + (g — DIN) ' /g.

In particular, the operatoilI”® of orthogonal projection onto the subspace
X e, L has the form

(39) II™ = xp,II(1 — xp\s L) XE, = XEIL(1 — Xp\ £ I1) Tl p, .

Corollary 2.6. Under the assumptions of Propositin3 if (36) holds,
then, for any subsét C E,, once the operatogy 1170y belongs to the
trace class, it follows that so does the operateiilyy, and we have

tryy [0y > tryy iy

Indeed, from[(30) it is clear that if the operatgrI17° is Hilbert-Schmidt,
then the operatoxy Il is also Hilbert-Schmidt. The inequality between
traces is also immediate from (39).

2.2.2. Examples: the Bessel kernel and the modified Bessel kernel.

Proposition 2.7. (1) For anye > 0, the operator.J, has the unique
extension property from the subget+oo);
(2) Forany R > 0, the operator/ ) has the unique extension property
from the subsef), R).

Proof. The first statement is an immediate corollary of theeutainty
principle for the Hankel transform: a function and its Hankkansform
cannot both have support of finite measure [16]) [17]. (n@&teehhat the
uncertainty principle is only formulated far > —1/2 in [16] but the more
general uncertainty principle af [17] is directly applitalalso to the case
s € [—1, 1/2]) and the following estimate, which, by definition, is clearl
valid for anyR > 0:

R
/ Js(y,y)dy < +o0.
0

The second statement follows from the first by the change ébiey =
4/x. The proposition is proved completely.

2.3. Inductively determinantal measures. Let E be a locally compact
complete metric space, and l@onf(F) be the space of configurations on
E endowed with the natural Borel structure (see, e.g., [20] fnd the
Appendix).

Given a Borel subset’ C E, we letConf(E, E') be the subspace of
configurations all whose patrticles lie k.
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Given a measurB on a setX and a measurable subsétC X such that
0 < B(Y) < 400, we letB |y stand for the restriction of the measuke
onto the subset’.

Let 1 be ao-finite Borel measure on.

We let £y C F be a Borel subset and assume that for any bounded Borel
subsetB C E\E, we are given a closed subspab&U? C L,(E, )
such that the corresponding projection oper#térU £ belongs to the space
A1 10c(E, ). We furthermore make the following

Assumption 1. (1) |[xpII®YB|| <1, xplI®™YUBxp € A (E, p)
(2) for any subset&") ¢ B? c E\E,, we have

@ M
XEOUB(l)LEOUB = [FoUB™

Proposition 2.8. Under these assumptions, there exists-finite measure
B on Conf(E) such that

(1) for B-almost every configuration, only finitely many of its pdetsc
may lie inE\ Ey;
(2) for any bounded Borel subsgt C E\ Ey, we have

0 < B(Conf (E; EyU B)) < 400 and

B }Conf(E;EOUB)
B (Conf (E; Ey|U B))

Such a measure will be called arductively determinantal measure

Propositiori Z.B is immediate from Proposition|2.1 combiwéti Propo-
sition[9.3 and Corollary 915 from the Appendix. Note thatditions 1 and
2 define our measure uniquely up to multiplication by a cantsta

We now give a sufficient condition for an inductively detenamtal mea-
sure to be an actual finite determinantal measure.

- PHEOUB .

Proposition 2.9. Consider a family of projectionsl®°U? satisfying the
Assumptioifland the corresponding inductively determinantal mea$ure
If there existsk > 0, ¢ > 0 such that for all bounded Borel subsBt C
E\ E, we have

(1) |[xpIPVUE|| <1 —¢;

(2) tryplI®oUByp < R,
then there exists a projection operatidre .7, ,,.(E, ) onto a closed sub-
spaceL C Ly(E, ;) such that

(1) LFoUB = xp gL forall B;

(2) xe\B lIxE\E, € A (E, 1);
(3) the measureB andP; coincide up to multiplication by a constant.
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Proof. By our assumptions, for every bounded Borel subset E\ E,
we are given a closed subspat€“”?, the range of the operatdr” U5,
which has the property of unique extension frégin The uniform estimate
on the norms of the operatoxs; 117U Z implies the existence of a closed
subspace. such thatL.Z“8 = yp zL. Now, by our assumptions, the
projection operatofl®0U % belongs to the spac# ,..(F, 1), whence, for
any bounded subsé&t C F, we have

I xy € A(E, p),
whence, by Corollarly 216 applied to the subBgtU Y, it follows that

xyllxy € A (E, pn).
It follows that the operatofl of orthogonal projection ot is locally of
trace class and therefore induces a unique determinarmiépility mea-
sureP; on Conf(FE). Applying Corollary 2.6 again, we have

trxp\e lIxE\E, < R,
and the proposition is proved completely

We now give sufficient conditions for the measiiréo be infinite.

Proposition 2.10. Make either of the two assumptions:

(1) for anye > 0, there exists a bounded Borel sub&etC E\ F, such
that

sl VB > 1 —¢

(2) forany R > 0, there exists a bounded Borel subgsetC F\ £, such
that

tryplI®UBy 5 > R.
Then the measu® is infinite.

Proof. Recall that we have

B (Conf (E; Ey))
(Conf (E; EyU B))

(40) B = ]PHEOUB (COHf (E7 Eo)) =

= det (1 — XBHEOUBXB) .

Under the first assumption, it is immediate that the top eigkr of the
self-adjoint trace-class operatppIl0U By ; exceedd — ¢, whence

det (1 - XBHEOUBXB) S e.
Under the second assumption, write

(41) det (1 - XBHEOUBXB) < exp (—trXBHEOUBXB) < exp(—R).
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In both cases, the ratio
B (Conf (E; Ey))
B (Conf (E; EyUB))
can be made arbitrary small by an appropriate choicB,ofvhich implies
that the measur is infinite. The proposition is proved.

2.4. General construction of infinite determinantal measures .By the
Macchi-Soshnikov Theorem, under some additional assonmgta deter-
minantal measure can be assigned to an operator of orthibgajection,
or, in other words, to a closed subspacdefF, 1). In a similar way, an
infinite determinantal measure will be assigned to a sulesfacf locally
square-integrable functions.

Recall thatl, 1. (£, 1) is the space of all measurable functighs £ —
C such that for any bounded subdet” F we have

(42) |fl2dp < 4o0.
/

Choosing an exhausting famil,, of bounded sets (for instance, balls
with fixed centre and of radius tending to infinity) and usidg)(with B =
B,,, we endow the spadg, ..(F, i) with a countable family of seminorms
which turns it into a complete separable metric space; tpeltgy thus
defined does not, of course, depend on the specific choice ektiausting
family.

Let H C Lyjoo(E, 1) be alinear subspace. B’ C E is a Borel subset
such thaty - H is a closed subspace b§(E, 1), then we denote bi ' the
operator of orthogonal projection onto the subspagd! C Ly(E, ). We
now fix a Borel subsel, C F; informally, Ej is the set where the particles
accumulate. We impose the following assumptionérand H .

Assumption 2. (1) Forany bounded Borel sét C F, the space g,usH
is a closed subspace &k (F, u);
(2) For any bounded Borel sét C E'\ E,, we have

(43) HEOUB S ﬂl,loc(Ev :u)v XBHEOUBXB S ﬂl(Ev :u)a
(3) If ¢ € H satisfiesyg, ¢ = 0, theny = 0.
If a subspaced and the subsel, have the property that any € H

satisfyingx g, = 0 must be the zero function, then we shall say tHdtas
theproperty of unique extensidrom Ej,.

Theorem 2.11.Let E' be a locally compact complete metric space, and let
w be ac-finite Borel measure o. If a subspaced? C Lo j..(F, 1) and a
Borel subset, C E satisfy Assumptidg, then there exists a-finite Borel
measuréd on Conf(F) such that
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(1) B-almost every configuration has at most finitely many paesicl
outside ofEj;

(2) for any bounded Borel (possibly empty) subBet £\ E, we have
0 < B(Conf(FE; Ey U B)) < +o0 and

IB|Conf(E;E'0UB)
B(Conf(F; Ey U B))

The requirements (1) and (2) determine the meaBuwaiquely up to mul-
tiplication by a positive constant.

- PHEOUB .

We denotdB(H, E)) the one-dimensional cone of nonzero infinite deter-
minantal measures induced ByandE,, and, slightly abusing notation, we
write B = B(H, Ey) for a representative of the cone.

Remark. If B is a bounded set, then, by definition, we have

B(H, E,) = B(H, Ey U B).

Remark. If £ C E is a Borel subset such thgis, s is a closed sub-
space inLy(E, ;1) and the operatoll®“#" of orthogonal projection onto
the subspacg g, H satisfies

(44) PVE € 7 10e(By 1), xe TV xp € A(B, p),

then, exhausting’ by bounded sets, from Theorém 2.11 one easily obtains
0 < B(Conf(E; Ey U E'")) < 400 and

]B|Conf(E;EQUE’)
B(Conf(E; Ey U E'))

= PHEOUE’ .

2.5. Change of variables for infinite determinantal measures.Let F' :
E — FE be a homeomorphism. The homeomorphigrmduces a homeo-
morphism of the spac€onf(F), for which, slightly abusing notation, we
keep the same symbol: give € Conf(F), the particles of the configura-
tion F(X) have the form¥'(z) over allz € X.

Assume now that the measurgs: andp are equivalent, and & =
B(H, Ey) be an infinite determinantal measure. Introduce the sulspac

FH = {o(F(@)) | g o € H).

From the definitions we now clearly have the following

Proposition 2.12. The push-forward of the infinite determinantal measure
B = B(H, Ey) has the form

F.B = B(F*H, F(Ey)).
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2.6. Example: infinite orthogonal polynomial ensembles.Let p be a
nonnegative function o not identically equal to zero. Tak¥ € N and
endow the seR” with the measure

N

(45) H (z; — x;)° H p(x;)dx;.

1<i,j<N i=1

Iffor k =0,...,2N — 2 we have

+oo
/ 2¥p(r)dr < +o0,
then the measuré (45) has finite mass and, after normalizgiields a de-
terminantal point process donf(R).

Given afinite family of functiongy, . . ., fx onthereal line, letpan(fi, . ..
stand for the vector space these functions span. For a gdaection p,
introduce the subspadé(p) C Lao.(R, Leb) by the formula

H(p) = span (Vo v/ ).

The measurd (45) is an infinite determinantal measure, d®isrsby the
following immediate

Proposition 2.13. Let p be a positive continuous function d& and let
(a,b) C R be a nonempty interval such that the functjpis positive and
bounded in restriction tda, b). Then the measuré®) is an infinite deter-
minantal measure of the for( H (p), (a, b)).

2.7. Multiplicative functionals of infinite determinantal measures. Our
next aim is to show that, under some additional assumpti@msnfinite
determinantal measure can be represented as a product aealétermi-
nantal measure and a multiplicative functional.

Proposition 2.14. Let a subspacéd C L j..(E, ;) and a Borel subset
Ey induce an infinite determinantal measite= B (H, E,). Letg: £ —

(0,1] be a positive Borel function such thgfgH is a closed subspace in

7fN)

Ly(FE, 1), and letIl¢ be the corresponding projection operator. Assume

additionally

(1) VT —gll®T—g € A(E, p);
(2) XE\EOHQXE\Eofl(E, ©);
(3) JIENS Lﬁl,loc(Eiy,u)

Then the multiplicative functional, is B-almost surely positiveB-
integrable, and we have
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v,B

/ v, dB

Conf(E)

== ]PH{] .

Before starting the proof, we prove some auxiliary proposs.
First, we note a simple corollary of unique extension proper

Proposition 2.15.. LetH C Ly j..(E, 1) have the property of unique ex-
tension fromi,, and lety) € Lo (£, i) be suchthak g, 5% € x5, ysH
for any bounded Borel sé% C E\ Ey. Themy € H.

Proof. Indeed, for anyB there exists)p € Lo..(E, 1) such that
XE,UBYB = XB,UBY. Take two bounded Borel sets; and B, and note
thatx g, ¥5, = XE,¥B, = XE,¥ , Whence, by the unique extension property,
Yp, = ¥p,. Thus all the functiong s coincide and also coinside with,
which, consequently, belongs 1.

Our next proposition gives a sufficient condition for a swdxspof locally
square-integrable functions to be a closed subspacte.in

Proposition 2.16.Let L C Lq,.(E, ) be a subspace such that

(1) for any bounded BoreB C FE\E, the spacexg, L is a closed
subspace of»(E, p);

(2) the natural restriction mag g, gL — X, L is an isomorphism of
Hilbert spaces, and the norm of its inverse is bounded abgve b
positive constant independent Bf

ThenL is a closed subspace of(E, 1), and the natural restriction map
L — xg,L is an isomorphism of Hilbert spaces.

Proof. If L contained a function with non-integrable square, then for
an appropriately chosen @ the inverse of the restriction isomorphism
X, UsL — xg,L would have an arbitrarily large norm. Thétis closed
follows from the unique extension property and ProposEdiB.

We now proceed with the proof of Proposition 2.14.

First we check that for any bounded BorelC E\ E, we have

(46) V1=gl?UE/1 —g e 7(B, p)
Indeed, the definition of an infinite determinantal measomglies
yslI2UB ¢ 7, (E, ),
whence, a fortiori, we have
1 — gxpll™VUE ¢ 74(F, ).
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Now recall that
-1
M5 = yp, ITHUB (1- XBHEOUB) U8By 4.

The relation
V1—gll*\/1 —ge 7(E,p
therefore implies

V 1- gXEoHEOUBXEo V 11— g € lﬂl(E|7/~L)7

or, equivalently,
1- gXEOHEOUB < j2<E7 M)

V1 —glieeUB ¢ 7 (E ),

or, equivalently, that

V1 —glEUB /T —ge 7 (E, p)
as desired.

We next check that the subspag@H xz, s is closed inLy(E, ). But
this is immediate from closedness of the subsp#gé/, the unique exten-
sion property from the subsé,, which the subspacg/gH has, since so
doesH, and our assumption

We coincide that

XE\EOHQXE\EO € A(FE, ).
We now letI[?*#0U5B be the operator of orthogonal projection onto the

subspacg/gH x g, B-

It follows from the above that for any bounded Borel $etC E\ E, the
multiplicative functionalV, is P;z, u s-almost surely positive and, further-
more, that we have

‘IIQ]P)HEO UB

\/\Ijg dIP)HE()UB
wherelIl?*£ U5 is the operator of orthogonal projection onto the closed

subspaceg/gxx, ysH.
It follows now that for any bounded Borét C E\ £, we have

v B

— PHQXEoLJB y

9XEqUB

/ \I]!]XEO usB dB

It remains to note thalt (47) immediately implies the statetoéProposition
[2.14, whose proof is thus complete.

(47)

— PHQXEOUB .

2.8. Infinite determinantal measures obtained as finite-rank peturba-
tions of determinantal probability measures.
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2.8.1. Construction of finite-rank perturbationdVe now consider infinite
determinantal measures induced by subsp&cektained by adding a finite-
dimensional subspadé to a closed subspadeC Ly(E, ).

Let, therefore) € .7 1,.(F, 1) be the operator of orthogonal projection
onto a closed subspade C L.(F, i), let V be a finite-dimensional sub-
space ofLy ..(E, ) such thal” N Ly(F, u) = 0, and setd = L + V. Let
Ey C E be aBorel subset. We shall need the following assumptioh, &h
andE.

Assumption 3. (1) xp\5,QXE\8 € 1(E, p1);
(2) x5,V C Lo(E, p);
(3) if ¢ € V satisfiesyg, ¢ € xg,L, thenp = 0;
(4) if ¢ € L satisfiesyg,¢ = 0, thenp = 0.

Proposition 2.17.If L, V and E, satisfy Assumptidl then the subspace
H = L +V and E, satisfy Assumptidg.

In particular, for any bounded Borel subget the subspacg g, s L is
closed, as one sees by takiB§= £, U B in the following clear

Proposition 2.18. LetQ € ¥ 1,.(E, 1) be the operator of orthogonal pro-
jection onto a closed subspade € L,(FE,u). Let B/ C E be a Borel
subset such thatz Qx e € 41 (E, 1) and that for any functiog € L, the
equality xygrp = 0 impliesp = 0. Then the subspaces L is closed in
LQ(Ev :u)

The subspac# and the Borel subséi, therefore define an infinite deter-
minantal measur® = B(H, E,). The measur®(H, E,) is indeed infinite
by Propositiorn 2.70.

2.8.2. Multiplicative functionals of finite-rank perturbation®roposition
[2.14 now has the following immediate

Corollary 2.19. Let L, V and E, induce an infinite determinantal measure
B. Letg: £ — (0, 1] be a positive measurable function. If
(1) VgV C Ly(E, p);
(2) VI—gllyT—g € S(E,p),
then the multiplicative functional, is B-almost surely positive and inte-
grable with respect t®, and we have
v,B

/‘I/gd]B%

wherell? is the operator of orthogonal projection onto the closedspdte

VaL+ ygv.

= PH!] 5
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2.9. Example: the infinite Bessel point processWe are now ready to
prove Proposition 111 on the existence of the infinite Bepsé@it process
B®), s < —1. We first need the following property of the usual Bessel poin
processfs, s > —1. As before, let, be the range of the projection operator
J,.

Lemma 2.20.Lets > —1 be arbitrary. Then

(1) ForanyR > Othe subspacg(R,Jroo)Zs is closed inL, ((0, +00), Leb),

and the corresponding projection operatﬁ; r Is locally of trace
class;
(2) Forany R > 0 we have

P5 (Conf ((0, +00), (R, +00))) > 0,
and

PL Conf((0,400),(R,+0)) o
P (Conf ((0, +00), (R, +00))) Jor:

Proof. First, for anyR > 0 we clearly have
R

/js(x,x) dr < 400

0

or, equivalently,

X(0,R) jsX(QR) € fl((O, +00), Leb).

The Lemma follows now from the unique extension propertyhefiessel
point process. The Lemma is proved completely. O

Now lets < —1 and recall that:, € N is defined by the relation
S L c 11
=+ Ny —=,=.
2 2°2

~ JS Ns—
76 = span ys/z7$s/z+17___7M .
VY

Proposition 2.21. We haveiimf/(s) = n, and for anyR > (0 we have

V® [\ Ly((0, +00), Leb) =

In other Words, if a linear combination

Let

a Js 2ns—1( y) ~
) = oy 2V N,
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lies in Ly, then in fact, all the coefficients are zerg; = --- = 0.
First assume that not all coefficients, .. ., as,,_o are zero. Let > 0
be the smallest index such that+£ 0. But then

lim &) (y)y /> = o # 0,
y—0

and a function with asymptotigg/?** at zero cannot be square-integrable.
It remains to consider the case when onjy# 0: but the function

Jsron,—1(\/Y)
\/@ )
by definition, fails to be square-integrable in any noneniptgrval (0, R).
The proposition is proved completely.
Proposition 2.211 immediately implies the existence of tifaite Bessel

point proces®®) and concludes the proof of Proposition]1.1.
Effectuating the change of variable

y=4/z,

we also establish the existence of the modified infinite Bgwsat process
B,

Furthermore, using the characterization of multiplicatiunctionals of
infinite determinantal measures given by Proposition]24d Gorollary
[2.19 , we arrive at the proof of Propositidns|1.5] 1.7.

3. CONVERGENCE OF DETERMINANTAL MEASURES

3.1. Convergence of operators and convergence of measuredle con-

sider determinantal probability measures induced by pesitontractions
and start by recalling that convergence of a sequence ofoperiators in the
space of locally trace-class operators implies the weakeargence of cor-
responding determinantal probability measures in theespédinite mea-
sures on the space of configurations.

Proposition 3.1. Assume that the operatois, € % ..(E, 1), n € N,
K € A 10c(E, 1) induce determinantal probability measut@g, , n € N,
P on Conf(E). If K, = K in 7 1,.(E, ) asn — oo, thenPy, — Py
with respect to the weak topology s, (Conf(E)) asn — oo.

This proposition is immediate from the definition of detemamtal prob-
ability measures and Proposition9.1 from the Appendixni-tioe classical
Heine-Mehler asymptotics (cf. Propositibn8.3 in the Apgighwe now
have the following immediate
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Corollary 3.2. For anys > —1, we have
K® — J,in 7 1,¢((0, +00), Leb)

and
Py — Py in Mg, Conf((0, +00)).

Our next aim is to show that, under certain additional assiomg, the
convergence above persists under passage to induced ggsceswell as
to finite-rank perturbations. We proceed to precise statésne

3.2. Convergence of induced processe®Recall that ifIl is a projection
operator acting orl.;(E, ;1) and g is a nonnegative bounded measurable
function on E such that the operatdr+ (¢ — 1)II is invertible, then we
have set .

B(g, IT) = /gII(1 + (g — D) ' /g.
We now fix g and establish the connection between convergence of the se-
guencdl,, and the corresponding sequer%eg, I1,).

Proposition 3.3. LetII,,,II € .#,,. be orthogonal projection operators,
and letg : £ — [0, 1] be a measurable function such that

V1=gIlly/1—g€ A(E p),\/1-gll\/1-g€ (B pu),neN
Assume furthermore that
(1) IL, — ITin A 1o (E, 1) @asn — oo;
(2) lim try/1 — gIl,\/1 — g = try/1 — glIy/1 — g;
(3) ?ﬁeoooperatorl + (g — 1)ITis invertible.

Then the operators$ + (g — 1)I1,, are also invertible for all suf-
ficiently largen, and we have

B(g,L,) = B(g,11) in A 1oc(E, 1)
and, consequently,

P = Pagm
with respect to the weak topology 81, (Conf(FE)) asn — oo.

Remark. The second requirement could have been replaced by the re-
quirement thatg — 1)I1,, converge tag — 1)II in norm, which is weaker
and is what we shall actually use; nonetheless, in appbicatit will be
more convenient to check the convergence of traces ratharttie norm
convergence of operators.

Proof. The first two requirements and Grumm’s Theorem (Se®%

[40]) imply that
V1—=gll, = \/1—gllin %A(E, p),
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whence, a fortiori,

(9 — DI, = (g — DI
innorm asn — oo. We now take a bounded Borel subget” £ and check
that, asn — oo, we have

(48) XpB(g9,11,)xp = xp in F4(E, 1).B(g, 1) xp
Our assumptions directly imply the norm convergence
(49) 14+ (g—DIL) ™ = (1+(¢g—1)Pi)~".
Furthermore,
XDHn — XDH
asn — oo in the strong operator topology; besides, by our assumgptive
have
lim trxpll,xp = trxpllxp,
n—oo
whence, by Grumm’s Theorem , we haygll,, — x pIl in Hilbert-Schmidt
norm, and, a fortiori, in norm.
It follows that the convergencé (48) also takes place in nofim ver-

ify the desired.#; convergence, by Grimm’s Theorem again, it suffices to
check the relation

(50) lim trypB(g,11,)xp = trxpB(g, Txp-

First, if A is a bounded operator, arid,, K, € %, then one directly
verifies the inequality

tr(KTAK) < |[Kills - [[All - |[ Kzl

It easily follows that the functionr( K AK>) is continuous as long as
K, K, are operators in¥,, and A is a bounded operator. The desired con-
vergence of trace& (50) follows from the said continuitycsin

XpB(g. Mxp = xp/g — HI(1 + (g — DII)"'1I\/g — Ixp,
and we have the norm convergenicel (49) and#h&onvergence
XDHn — XDH

3.2.1. Convergence of finite-rank perturbation#/e now proceed to the
study of convergence of finite-rank perturbations of locathce-class pro-
jection operators. Lek,, L. C Ly(FE, i) be closed subspaces, andllet 11
be the corresponding orthogonal projection operatorsuigswe are given
non-zero vectors™ € Ly(E,pu), n € N, v € Ly(E, ), and letIl,,, II
be the operators of orthogonal projection onto, respdgtittee subspaces
L,+Cv"™ neNandL & Cuv.

Proposition 3.4. Assume
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(1) II,, — II in the strong operator topology as— oc;
(2) v™ — vin Ly(E, ) asn — oo;
B)v¢lL.
Thenll,, — II in the strong operator topology as— occ.
If, additionally,
II, — Iin A 10.(E, 1) asn — oo,

then also B B
II, — Iin A 10c(E, 1) @asn — oo.

Let angle(v, H) stands for the angle between a veat@nd a subspace
H. Our assumptions imply that there exists> 0 such that

angle(vy,, L,) > .
Decompose
o™ = Bn)e™ + o,
wheret™ ¢ LL, 0™ = 1,7 € L,. In this case we have
ﬁn:Hn+P’ﬁ(”)7

wherePs.,: v — (v,7™)5™ _is the operator of the orthogonal projection
onto the subspacg&s™.

Similarly, decompose

v=pP0v+7v
withv e L, ||9]| = 1,7 € L, and, again, write
ﬁn = Hn + Pﬁl )

with P5(v) = (v, v)v.
Our assumptions 2 and 3 imply that) — vin Ly (E, p1). It follows that
P;» — P;5 in the strong operator topology and also, since our opeyator

(2

have one-dimensional range,.if ,..( £, 1), which implies the proposition.
The case of perturbations of higher rank follows by indutticetm € N

be arbitrary and assume we are given non-zero vecf@r,a)é"), Lo e
Ly(E p),n € Nyvy,vg, ..., 0, € Lo(E, ). Let
Ly=L,®Co" @ ...qCo™,
L=L®Cv & @®Cu,,,
and letlL,,, II be the corresponding projection operators.
Applying Propositio 314 inductively, we obtain

Proposition 3.5. Assume
(1) II,, — II in the strong operator topology as— oc;
(2) v,-(") — v in Ly(E,pu) asn — oo foranyi =1,....m;
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(3) Vk ¢L@CU1@"‘@RUk_1,]{?: 1,...,m.
ThenlL, — ITin the strong operator topology as— oc. If, additionally,
II, — Iin A 10.(E, 1) asn — oo,

then also N N
II, — Iin A 10.(E, 1) asn — oo,

and, consequentlf; — Py with respect to the weak topology i, (Conf(£))
asn — oo.

3.3. Application to infinite determinantal measures. Take a sequence
B™ =B (H™, Ey)

of infinite determinantal measures with™ = L(™ 4+ V™ whereL™ is,
as before, the range of a projection operdt6? € .7, ,,.(E, i), andV ™)
is finite-dimensional. Note that the subggtis fixed throughout.

Our aim is to give sufficient conditions for convergenc@g? to a limit
measuréd = B (H, Ey), H = L + V, the subspacé being the range of a
projection operatoll € .7 ,.(E, ).

Proposition 3.6. Assume
(1) O™ — T1in A 10.(E, 1) asn — 0o}
(2) the subspac® ™ admits a basis\", ..., v{" and the subspace
admits a basi®y, . . ., v, such that

vi(") —v; iN Lyjo(E, ) asn—oo forall i=1,...,m.

Letg: £ — [0, 1] be a positive measurable function such that

1) VI—glI"T—ge A(E,p), VI—gllyT—ge A (E,p);

(2) lim try/T — g™ /T =g = try/T — glIyT —g;

n—o0

(3) gV C Lo(E, ), \/gV C Lo(E, p);

@) /g™ — \/guiin C Ly(E, p) asn — oo foralli =1,...,m.
Then

(1) the subspaceg'gH™ and,/gH are closed

(2) the operatorgI@™ of orthogonal projection onto the subspaggH ™
and the operatodl¢ of orthogonal projection onto the subspace

/9 H satisfy

o™ - 119 in A oc(E, ) as n — oo .

Corollary 3.7. In the notation and under the assumptions of Proposition
3.6 we have

(1) ¥, € L,(Conf(E),B™) forall n, ¥, € L,(Conf(E),B);
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2)
v, BM v,B

_>
/ v, dB™ / v, dB

Conf(E) Conf(E)

with respect to the weak topology @Ry, (Conf(E)) asn — oc.

Indeed, the Proposition and the Corollary are immediaten ftloe char-
acterization of multiplicative functionals of infinite d#tinantal measures
given in Propositiorh 2.14 and Corollary2]19, the sufficieanditions of
convergence of induced processes and finite-rank pertansagiven in
Proposition$ 313, 315, and the characterization of corrarg with respect
to the weak topology ofis, (Conf(E)) given in Proposition 3]1.

3.4. Convergence of approximating kernels and the proof of Propsi-
tion [L.3. Our next aim is to show that, under certain additional assump
tions, if a sequence, of measurable functions convergesltothen the
operatord19~ considered in Propositidn 4.7 convergelon %, ..(E, u1).

Given two closed subspacés,, H, in Ly(E, i), let a(H,, Hy) be the
angle betweert{; and H,, defined as the infimum of angles between all
nonzero vectors it{; and Hs; recall that if one of the subspaces has finite
dimension, then the infimum is achieved.

Proposition 3.8. Let L, V, and E, satisfy Assumptid8, and assume addi-
tionally that we havé” N Ly(E, 1) = 0. Letg, : E — (0, 1] be a sequence
of positive measurable functions such that

(1) for all n € Nwe have/1 — ¢,Q\/1— g, € S (E, u);
(2) forall n € N we have,/q,V C Ly(E, p);
(3) there existsy, > 0 such that for alln we have

a(VgnH, \/9V) = a;

(4) for any bounded3 C E we have

nf s (@) > 05 i n(z) — 1] = 0.
neNseEuB Y (z) nL%xGS;%BW (x) — 1

Then, as, — oo, we have
9 — Q in ﬂl,loc(Ea ILL)

Using the second remark after Theorlem 2.11, one can extepds§ition
[3.8 also to nonnegative functions that admit zero valuese Me restrict
ourselves to characteristic functions of the foym, 5 with B bounded, in
which case we have the following
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Corollary 3.9. Let B,, be an increasing sequence of bounded Borel sets
exhausting? \ Ej. If there existsy, > 0 such that for alln we have

a(XEOUBnH7 XEOUBTLV> 2 O[O,

then
HEOUBn — Q in fl,loc(E7 'u)

Informally, Corollary{3.9 means that, asgrows, the induced processes
of our determinantal measure on subgéisf(£; £, U B,,) converge to the
“unperturbed” determinantal point proce&s.

Note that Proposition 1.3 is an immediate corollary of Psipon[3.8
and Corollary 3.B. Proof of Propositién B.8.

We start by showing that, as— oo, we havey,,(Q — @ in norm.

Indeed, take > 0 and choose a bounded g&tin such a way that

82

X B\ (Eo U Bo) @XE\ (B U B.) < T
Sinceg, — 1 uniformly onE) | J B., we have

XEoUB:(gn —1)Q — 0
in norm asn — oo. Furthermore, we have
3

IxE\EUB)QIl = [IXE\E UBHR|l 2 < 5

Consequently, forn sufficiently big, we have:

1(gn = DRIl < [Ix80u 5. (90 = DI + IX2\E U B @l < €

and, since: is arbitrary, we have, as desired, thgt)y — @ in norm as
n — oQ0.
In particular, we have

(1+ (g —1)Q) ™ =1
in norm asn — oo.

Now, sinceg, — 1 uniformly on bounded sets, for any bounded Borel
subsetB C FE, we have

XBV @ — xBQ In F(E, 1)
asn — oo. Consequently, we have

XBVQ (1 + (9. = Q)™ Qvgnxz — xBQXz
in . (F, u) asn — oo, and, sinces is arbitrary, we obtain
an — Q in jl,loc(Enu) .
We now letV,, be the orthogonal complement g, L in /g, L+/9,V,
and letP™ be the operator of orthogonal projection offp
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By definition, we have
[ = Q9 4+ p™
To complete the proof, it suffices to establish thatpas oo, we have
P™ =0 in (B, 1),

to do which, sinceP™ are projections onto subspaces whose dimension
does not exceed that &f, it suffices to show that for any bounded #ttve
haveP™ — 0 in strong operator topology as— oc.

Since the angles between subspaggsL and,/g,V are uniformly bounded
from below, it suffices to establish the strong convergeondgdf the oper-
atorsP™ of orthogonal projections onto the subspageg V.

Let, therefore,p € Ly(FE, 1) be supported in a bounded Borel getit
suffices to show thatP™ || — 0 asn — oo. But sinceV () Ly(E, u) =
0, for anye > 0 there exists a bounded 8t O B such that for any) € V/
we have

Ixsdll _ o

< e’
Ixs. 9l

We have
(51) TP ¢|* = (¢, TP ¢p) =

= (. xsI1%¢) < lo| [IxpI™ ] <
< llell el ol < elle]l [Tl < eflol.

It follows that||TT% || < ¢]|¢|| and, sincey,, — 1 uniformly on B’, also
that||P™¢|| < ¢||¢|| if n is sufficiently large. Since is arbitrary,

|P™ || = 0asn — oo,

and the Proposition is proved completely.

4. WEAK COMPACTNESS OF FAMILIES OF DETERMINANTAL
MEASURES

4.1. Configurations and finite measures.In a similar way as the Bessel
point process of Tracy and Widom is the weak limit of its firdienensional
approximations, the infinite determinantal measBfg, the sigma-finite
analogue of the Bessel point process for the values syhaller than-1,
will be seen to be the scaling limit of its finite dimensionalpaoxima-
tions, the infinite analogues of the Jacobi polynomial erfdesm In this
section, we develop the formalism necessary for obtaintagrgy limits of
infinite determinantal measures. To do so, we will multiply eneasures
by finite densities. normalize and establish convergencaefesulting
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determinantal probability measures. In the Appendix, wealighe well-
known result claiming that, for finite determinantal measuinduced by
projection operators, local trace class convergence afpeeators implies
weak convergence of the determinantal measures (condidermeasures
on the space of Radon measures on the phase space). In omtevé
the vanishing of the “Gaussian parameter” and to estabtiskiergence of
finite-dimensional approximations on the Pickrell set, vilklwowever need
a finer notion of convergence of probability measures onespat config-
urations: namely, under some additional assumptions wecadle config-
urations by finite measures and determinantal measures éyures on the
space of probability measures on the phase space. We prtareeecise
definitions.
Let f be a nonnegative measurable functionfyrset

Confy(E) ={X : Y f(z) < oo},

zeX

and introduce a map; : Conf ((£) — Mg, (E£) by the formula

op(X) =Y f(2)d,.
zeX
(whered, stands, of course, for the delta-measure)at
Recall that thaéntensity(P of a probability measur® on Conf(F) is a
sigma-finite measure of defined, for a bounded Borel sBtC FE, by the
formula

£P(B) — / 45(X)dP(X).
Conf(E)

In particular, for a determinantal measiitg corresponding to an operator
K on Ly(FE, 1) admitting a continuous kerné{ (z, y), the intensity is, by
definition, given by the formula

EPx = K(x,x)p.
By definition, we have the following

Proposition 4.1. Let f be a nonnegative continuous function Bnand let
[P be a probability measure ddonf(E). If f € Ly (E,{P), thenP(Conf;(E)) =
1.

Under the assumptions of Proposition|4.1, the majs P-almost surely
well-defined, and the measuie,).P is a Borel probability measure on the
spacelis, (£), thatis, an element of the spa®&;, (Mg, (E)).
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4.2. Weak compactness and weak convergence in the space of config-
urations and in the space of finite measuresWe start by formulating a
tightness criterion for such families of measures.

Proposition 4.2. Let f be a nonnegative continuous function éh Let
{P,} be a family of Borel probability measures @lonf(£) such that
(1) f € Ly (E,¢P,,) for all o and

sup/fdﬂP’a < +00;
‘B

(2) for anye > 0 there exists a compact sBt C E such that

sup / fdéP, < e.

E\B.
Then the familyo). P, is tight in Mg, (M, (£)).

Remark. The assumptions of Propositibn 4.2 can be equivalently re-
formulated as follows: the measurgsy).P, are all well-defined and the
family f¢P,, is tight in9tg, (E).

Proof of Propositiof 412. Given > 0, our aim is to find a compact set
C C Mg (E) such tha(oy), P, (C) > 1 — ¢ for all a.

Lety : E — R be a bounded function. Define a measurable function
int,, : Mg, (£) — R by the formula

int,,(n) = /E @dn.

Given a Borel subset C FE, for brevity we writeint 4(n) = int, .

The following proposition is immediate from local compaess of the
spacel’ and the weak compactness of the space of Borel probabilia me
sures on a compact metric space.

Proposition4.3.LetL > 0, ¢, > 0, lim ¢, = 0. LetK,, C E be compact
n—oo

sets such that J K,, = E. The set

n=1
{n € Msn(E) : intp(n) < L,int gk, (1) < &, forall n € N}
is compact in the weak topology 0Rg, (E).

The Prohorov Theorem together with the Chebyshev Ineguabiv im-
mediately implies



THE ERGODIC DECOMPOSITION OF INFINITE PICKRELL MEASURES 51

Corollary 4.4. LetL > 0, ¢, > 0, lim ¢, = 0. Let K,, C E be compact

n—oo

sets such that J K,, = E. Then the set

n=1

(52) {v € Mu(Man(E)) : / intg(n)dv(n) < L,
Min (E)

/ intp\ i, (n)dv(n) < e, forall n € N}
EInhn(E)

is compact in the weak topology 0Rg,, ().

Corollary[4.4 implies Propositidn 4.2. First, the total ma$ the mea-
suresf &P, is uniformly bounded, which, by the Chebyshev inequality i
plies, for any= > 0, the existence of the constahtsuch that for allx we
have

(04):Pa({n € Man(E) : n(E) < L}) > 1 —e.

Second, tightness of the famil{f¢P,, precisely gives, for any > 0, a
compact sek(. C F satisfying, for allo, the inequality

/ inte k. (1)d(07).Paln) < <.
EInhn(E)

Finally, choosing a sequeneg decaying fast enough and using Corollary
4.4, we conclude the proof of Proposition]4.2.

We now give sufficient conditions ensuring that convergendke space
of measures on the space of configurations implies conveegehcorre-
sponding measures on the space of finite measures.

Proposition 4.5. Let f be a nonnegative continuous function éh Let
P,.,n € N, P be Borel probability measures dfonf(F) such that

(1) P, — P with respect to the weak topology 0Rg,(Conf(F)) as
n — oo;
(2) f € Ly(E,¢P,) forall n € N;
(3) the family f¢IP,, is a tight family of finite Borel measures @n
ThenP(Conf((£)) = 1 and the measureg;).P,, converge tooy).P
weakly indig, (Mg, (E)) asn — oo,

Proposition 4.6 easily follows from Propositibn 4.2. Firste restrict
ourselves to the open subgete £ : f(x) > 0} which itself is a complete
separable metric space with respect to the induced topoldgxt observe
that the total mass of the measur&®,, is uniformly bounded, which, by
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the Chebyshev inequality, implies, for any> 0, the existence of the con-
stantL such that for all. we have

P, ({X € Conf(E) : Zf(X) < L}) >1—e.
reX

Since the measurds, converge td? weakly in9tg, (Conf(E£)) and the set

{X € Conf(E) : > f(X) < L}isclosedinConf(E), it follows that

zeX

P <{X € Conf(F) : Zf(X) < L}) >1—g¢,
rzeX

and, consequently, th&(Conf;(£)) = 1, and the measure ). P is well-

defined.

The family (o ¢).P, is tight and must have a weak accumulation p@int

Using the weak convergend®, — P in 95, (Conf(E)), we now show
that the finite-dimensional distributions Bf coincide with those ofo ). P.
Here we use the assumption that our functjors positive and, conse-
guently, bounded away from zero on every bounded subsetrdboally
compact spacé.

Indeed, letp,...,¢; : E — R be continuous functions with disjoint
compact supports.

By definition, the joint distribution of the random variablet,, , . .., int,
with respect tqo).[P,, coincides with the joint distribution of the random
variables#,, ¢, ..., #,/s With respect tdP,,. Asn — oo, this joint dis-
tribution converges to the joint distribution &f,, /¢, ..., #,,/; With re-
spect taoP which on the one hand, coincides with the the joint distidut
of the random variablesit,,, . . ., int,, with respect tqo).[P and, on the
other hand, also coincides with the joint distribution & tandom variables
int,,, .. .,int,, with respect td®.

By Propositior 9.11, the finite-dimensional distributioret&trmine a mea-
sure uniquely. Therefore,

P = (Uf)*Pa

and the proof is complete.
4.3. Applications to determinantal point processes.Let f be a nonneg-

ative continuous function ofi. If an operatork’ € .#; 1,.(E, ;1) induces a
determinantal measuf®, and satisfie§ K € .7, (E, 11), then

If, additionally, K is assumed to be self-adjoint, then the weaker require-
menty/ fK+/f € #(E, ;1) also implies[(BB).
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In this special case, a sufficient condition for tightne&ssahe following
form.

Proposition 4.6. Let f be a bounded nonnegative continuous function on
E. LetK, € 4 1,.(E, 1) be a family of self-adjoint positive contractions

such that
sup try/f Kay/f < 400
and such that for any > 0 there exists a bounded sBt C E such that

sup trx g\ B. VK, \/?XE\BS <e.

Then the family of measurééo;), P, } is weakly precompact i, (Mg, (E)).

4.4. Induced processes corresponding to functions assuming wads in
[0,1]. Letg : E — [0, 1] be a nonnegative Borel function, and, as before,
let IT € 4 1..(E, 1) be an orthogonal projection operator with range
inducing a determinantal measuitg on Conf(£). Since the values gf do

not exceed., the multiplicative functionall’, is automatically integrable.
In this particular case Propositibn B.3 of the Appendix camdformulated
as follows:

Proposition 4.7. If \/1—gll\/1—g € #(E,pn) and||(1 —g)lI|| < 1,
then
(1) v, is positive on a set of positive measure;
(2) the subspacg/gL is closed, and the operatdi’ of orthogonal
projection onto the subspagggL is locally of trace class;
(3) we have

U,Py

/ U, dPy

Conf(E)

Remark. Since the operatayT — ¢Ilis, by assumption, Hilbert-Schmidt,
and the the values af do not exceed, the condition||(1 — g)II|| < 1is
equivalent to the conditiof}y/1 — ¢II|| < 1 and both are equivalent to the
nonexistence of a functioh € L supported onthe s¢t: € £ : g(x) = 1}.

In particular, if the functiory is strictly positive, the condition is automati-
cally verified. Proposition 416 now implies

(54) PH!] ==

Corollary 4.8. Let f be a bounded nonnegative continuous functiorfon
Under the assumptions of Propositidry, if

try/fIIN/f < +o0,
tr\/?HQ\/? < +00.

then also
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Proof: Equivalently, we must prove that if the opera{6fII is Hilbert-
Schmidt, then the operatgy fIIY is also Hilbert-Schmidt. Sinc&l? =
VIII(1 + (¢ — DII)~', /g, the statement is immediate from the fact that
Hilbert-Schmidt operators form an ideal.

4.5. Tightness for families of induced processesWe now give a suffi-
cient condition for the tightness of families of measurethefformII? for
fixed g. This condition will subsequently be used for establisiangver-
gence of determinantal measures obtained as products mtendietermi-
nantal measures and multiplicative functionals.

LetIl, € 71 1..(F, 1) be a family of orthogonal projection operators in
Ly(E, ). Let L, be therange dffl,,. Letg : £ — [0, 1] be a Borel function
such that for eaclx the assumptions of Propositibn ¥.7 are satisfied and
thus the operatorHY, and the corresponding determinantal measiigs
are well-defined for altv. Furthermore, lef be a nonnegative function on
E such that such that for all we have

(55) sup try/ fIloy/f < +oo

and such that for any > 0 there exists a bounded Borel 98t C £ such
that

(56) sup trym . v/ fllav/ fXE\B. < €.

(in other words,f is such that all the assumptions of Proposifiod 4.6 are
satisfied for alk). It follows from Corollary 4.8 that the measures;).Pr;s
are also well-defined for adl.

Sufficient conditions for tightness of this family of opeett are given in
the following

Proposition 4.9. In addition to the requirements, for all, of Proposition
4.8and Propositio.7, make the assumption

(57) inf1— /(1 = g)IL,|| > 0.

Then the family of measuré$o; ), Prs } is weakly precompact g, (904.(E)).
Proof. The requirement (57) implies that the norms of the-aipes
(1 + (g - 1)Ha)_l

are uniformly bounded in. Recalling thatlé, = /g1l (1+(9—1)I1.) " *\/g,
we obtain that{(55) implies

(58) sup tr\/?ﬂg\/? < 400,
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while (56) implies
(59) sup trxm s v/ GV Fxes. < e

Proposition 4.9 is now immediate from Proposition 4.6.

4.6. Tightness of families of finite-rank deformations. We next remark
that, under certain additional assumptions, tightnessasgoved by taking
finite-dimensional deformations of determinantal proesss

As before, we letl, € 4 ..(E, p) be a family of orthogonal projection
operators inLy(E, 1). Let L, be the range ofl,. Letv) € Ly(E, ;1) be
orthogonal toL,,, let L}, = La @ Cuv,), and letll}, be the corresponding
orthogonal projection operator. By the Macchi-Soshnitkeorem, the op-
eratorlI?, induces a determinantal measiiig on Conf(£). As above, we
require that all the assumptions of Proposifion 4.6 befsadifor the family
I1,. The following Corollary is immediate from Proposition 4.6

Proposition 4.10. Assume additionally that the family of measufes® |24
is precompact i, (E£). Then the family of measurd$oy), Py, , } is
weakly precompact ithtg, (Mg, (E)).

This proposition can be extended to perturbations of higaek. The
assumption of orthogonality of* to L,, is too restrictive and can be weak-
ened to an assumption that the angle between the vectorasdilspace is
bounded below: indeed, in that case we can orthogonalizaapigt Propo-
sition[4.10.

We thus taken € N and assume that, in addition to the familyldf
of locally trace-class projection operators considereavabfor everyo
we are given vectors&l), e ,v&m) of unit length, linearly independent and
independent froni,,. Set

L™ = La @ CoM @ Co™,

and letII?’" be the corresponding projection operator.

By the Macchi-Soshnikov theorem, the operdif” induces a deter-
minantal measur@»~ on Conf(E). As above, we require that all the as-
sumptions of Propositidn 4.6 be satisfied for the farfiily We letangle(v, L)
stand for the angle between a nonzero vectand a closed subspde

Proposition 4.11. Assume additionally that

(1) the family of measureg|v, ’|*u, over alla andk, is precompact in
mﬁn<E)|
(2) there exist® > 0 such that for anyt = 1, ..., m and alla we have

angle(v®, L, @ CoM @ Co%Y) > 6.
Then the family of measuréséoy), Pryo.m, } is weakly precompact s, (M, (E)).
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The proof proceeds by induction en. Form = 1, it suffices to ap-
ply Propositiori 4.10 to the vector obtained by taking thén@gbnal pro-
jection of +&Y onto the orthogonal complement éf For the induction
step, similarly, we apply Propositidn 4]10 to the vectoraiied by tak-

ing the orthogonal projection of{™ onto the orthogonal complement of
L, ® col @ (Cvém_l)). The proposition is proved completely.

4.7. Convergence of finite-rank perturbations. A sufficient condition for
weak convergence of determinatal measures consideredrasmis of the
spaceNis, (M4, (E)) can be formulated as follows.

Proposition 4.12. Let f be a nonnegative continuous function Bn Let
K,, K € 4, be self-adjoint positive contractions such thgf — K in
A 10c(E, 1) asn — oo. Assume additionally that

(60) VIEN T = VK in A(E, )
asn — oo. Then
(07):Px, = (04)Px
weakly indt (Mg, (£)) asn — oo.
Combining Proposition 4.12 with, on the one hand, Propmrsifd. 9[ 4.7/1

and, on the other hand, Propositi¢ns 8.3] 3.5[and 3.6, weeatithe fol-
lowing

Proposition 4.13. (1) Inthe notation and under the assumptions of Propo-
sition[3.3, additionally require[60) to hold. Then we have

VB9, L)V f =V fB(g. )/ f

in .71 (E, 1), and, consequently,

P,y = Paem

with respect to the weak topology 8its,, (M. (E)) asn — oo.
(2) In the notation and under the assumptions of Proposiidhaddi-
tionally require €0) to hold. Then we have

\/?ﬁn\/} — \/?ﬁ\/f in 7 (E, n) asn — oo,

and, consequentl§; — Pz with respect to the weak topology on
i)ﬁﬁn(’)ﬁﬁn(E)) asn — oQ,

(3) In the notation and under the assumptions of ProposBidhaddi-
tionally require [&0) to hold. Then we have

VIO — I/ f in A(E 1) as n— oo .
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and, consequently,

v, B™ v,B

_>
/ 0, dB™ / v, dB

with respect to the weak topology 8lts, (M. (E)) asn — oo.

5. WEAK CONVERGENCE OF RESCALED RADIAL PARTS OIPICKRELL
MEASURES.

5.1. The cases > —1: finite Pickrell measures.

5.1.1. Determinantal representation of the radial parts of finiteckrell
measuresWe go back to radial parts of Pickrell measures and start with

the cases > —1 . Recall thatP.® stand for the Jacobi polynomials corre-
sponding to the weightl — «)® on the interval—1, 1].

We start by giving a determinantal representation for thikatgpart of
finite Pickrell measures: in other words, we simply rewrite formula [(6)
in the coordinates, ..., \,. Set

n(n+s) 1 "
2n+s (14 X\1)¥2(1 4 Ag)®/?

(s) ((M—1 (s) [ A2—1 (s)  Na—1 () (-1
PO (353) P (351) - B (3 P (322)
A1 — Ao ’

(61) K (Ai,As) =

X
The kernel K is the image of the Christoffel-Darboux kern&l” (cf.
(@I13)) under the change of variable

a1
VS

U;
Another representation for the kerngl” is

R 1
62) K\, \) =
( ) n ( 1) 2) (1+)\1)s/2+1(1+)\2>s/2+lx

n—1
) (M1 () (A2~ 1
xZ(2l+s+1)Pl ()\1+1).Pl ()\2+1 .

=0
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The kernelK'? is by definition the kernel of the operator of orthogonal
projection inL,((0, +oc), Leb) onto the subspace

. 1 A—1
(S,TL): _— (S) 1 = — =
(63) L span<(>\+1)s/2+lpl ()\1+1),l 0,...,n 1)

= ! Al ll—o 1
= span Ot g 11 JA=0,....n .

Propositior 1.1[7 implies the following determinantal eg@ntation the
radial part of the Pickrell measure.

Proposition 5.1. For s > —1, we have
1 R n
(s) — — OISy ‘
(64) (vad, ). = — det K (Mo A7) T dn
i=1

5.1.2. Scaling. For g > 0, lethomg : (0, +00) — (0, +00) be the homo-
thety map that sends to Sz ; we keep the same symbol for the induced
scaling transformation dfonf((0, +00)).

We now give an explicit determinantal representation ferrtiteasure

(65) (conf o hom,,2 o tad,), u',

the push-forward to the space of configurations of the redcadial part
of the Pickrell measurg!?.
Consider the rescaled Christoffel-Darboux kernel

(66) K = n?K (n®A1,n*)s)
of orthogonal projection onto the rescaled subspace

1 n?h\ — 1
67) LGM = p) 1 _
(67) spat ((nz)\ +1)s/2407 0\ n2) +1

= span ! G el ll:O n—1
P (n2)\+1)3/2+1 n2\; +1/) B ’

The kernels\” induces a detrminantal proceds ., on the spac€onf((0, +00)).

Proposition 5.2. For s > —1, we have
S 1 S -
(hom,z2 o tad,), p® = — det KO i, M) [ [ dn
=1
Equivalently,

(conf o hom,2 o tad,,), ,ngf) = PKS)'
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5.1.3. Scaling limit. The scaling limit for radial parts of finite Pickrell mea-
sures is a variant of the well-known result of Tracy and Widd8] claim-
ing that the scaling limit of Jacobi orthogonal polynomiasembles is the
Bessel point process.

Proposition 5.3. For anys > —1, asn — oo, the kerneli(” converges to
the kernelJ®) uniformly in the totality of variables on compact subsets of
(0, +00) x (0, +00). We therefore have

K — J® in .2 1,.((0, +00), Leb)

and

P o = Py in Mg, Conf((0, +00)).

K
Proof. This is an immediate corollary of the classical Heihehler
asymptotics for Jacobi polynomials, see, e.g., Szego [42]
Remark. As the Heine-Mehler asymptotics show, the uniform conver-
gence in fact takes place on arbitrary simply connected eatrgubsets of
(C\0)xC\O.

5.2. The cases < —1: infinite Pickrell measures.

5.2.1. Representation of radial parts of infinite Pickrell measuas infinite
determinantal measure®ur first aim is to show that for < —1, the mea-
sure [[34) is an infinite determinantal measure. Similarlthdefinitions
given in the Introduction, set

(68) V™ = span( ! L <)\_ 1) e

()\ + 1)s/2+17 ()\ + 1)5/2+1 A+1
1 (s+2na—1) (A —1
ppp— 1 .
(o 1)s/2e noms ()\ 1)
(69) [:[(Sm) — V(s,n) D [A/(S+2ns,n—ns).

Consider now the rescaled subspaces

1 1 n?\—1
7 (S’n) _
(70) Vv span((n2)\ T 1)8/2+17 (ng)\ + 1)8/2+1 (TLQ)\ + 1) ) )

1 plst2n-1) n*A—1 )
A 4 1)e /AR 1))

(71) H(s,n) — V(s,n) D L(s+2ns,n—ns).
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Proposition 5.4. Lets < —1, and letR > 0 be arbitrary. The radial
part of the Pickrell measure is then an infinite determinantaasure cor-
responding to the subspaée = H*™ and the subsek, = (0, R):

n

(tad,), 1l = B (ﬁ(s’"), (0, R)) :
For the rescaled radial part, we have
conf,t™ (1) = (conf o hom, o tad,), ¥ =B (H(s’"), (0,R)) .

n

5.3. The modified Bessel point process as the scaling limit of thear
dial parts of infinite Pickrell measures: formulation of Proposition[5.5.
DenoteB*™) = B (H®™, (0,R)). We now apply the formalism of the
previous sections to describe the limit transition of theasugesB*™ to
B®): namely, we multiply our sequence of infinite measures byrver
gent multiplicative functional and establish the conveigeof the resulting
sequence of determinantal probability measures. It wilcbevenient to
take3 > 0 and sety®(z) = exp(—px), while for f it will be convenient to
take the functiorf(z) = min(z, 1). Set, therefore,

L8 = exp(—Fx/2)HE™.

Itis clear by definition that.(™*?) is a closed subspace bf((0, +c0), Leb);
let I1(™=#) be the corresponding orthogonal projection operator. Ralsa
from (I7), [18) the operatdi®*) of orthogonal projection onto the sub-
spaceL ) = exp(—pBz/2)H".

Proposition 5.5. (1) Forall 3 > 0we havel s € L; (Conf(0, +00), B))
and, foralln > —s+1 we also hava s € L; (Conf(0, +00),B*™);
(2) we have
\I/QBIB%(S’")

—— = P
/ W5 dBE")

U B
7 = Pn(sﬁ)?
/ U5 dB

(3) We have
1158 5 1158 in .7 10.((0, 400), Leb)) as n — oo .
and, consequently,
Prcn.ss) — Pre.e

asn — oo weakly in9tg, (Conf ((0, +0)));
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(4) for f(z) = min(z, 1) we have

VIO ST/ f e #((0,400), Leb));
VIO S o /P in #((0,+00), Leb)) as n — oo .

and, consequently,
(O'f>*PH(g,s,n) — (Uf)*PH(Q’S)
asn — oo weakly indMg, (Mg, ((0, +00))).

The proof of Proposition 515 will occupy the remainder oktkéection.
5.4. Proof of Proposition[5.5.

5.4.1. Proof of the first three claimsFors > —1, write

L) = exp(—Ba/2) L), L&) = exp(—Ba/2) L'

Jac

and keep the notatidii™*#) | 11 for the corresponding orthogonal pro-
jection operators. For > —1, using the Propositidn 3.3 on the convergence
of induced processes, we clearly have

——— = Pross;
/ s dP,co
\:[I BP (s)
_ eI Prs.) 5
/ ‘Ilg[j‘ dIP)J(s)

and also
I8 5 1158 in- 7 10.((0, +00), Leb)) as n — oo .
If x, — x asn — oo, then, of course, for any € R we have

1 (0%
nh_)rgo nT(n T, + 1) = 2%,

and, by the Heine-Mehler classical asymptotics, for any —1, we also

have
22, — 1 2
lim 1(n2z + 1)%/2+1pl) I n = Ja /\/E)
n—00 n2x, + 1 NZ
We recall the following statement on linear independendabdished
above in Proposition 2.21. The statement below is obtainad Propo-
sition[2.21 by the change of variablgs= 4/z.
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Proposition 5.6. . For anys < —1, and anyR > 0 the functions

o Js+2ns—1<%)
(72) z 2 1X(R,+oo)a~-~>TfX(R,+oo)

are linearly independent and, furthermore, are independ®m the space
s+2ns
X(R 00 LT

Remark. Recall that Proposition 2.21 yields in fact a stronger restil
a linear combination

Js+2ns—1(%) el

P = QOTX(R#@ + Z ™2 X (R 1o0)
=1
liesin Lo, then in fact, all the coefficients are zerg; = - - - = 0. It follows,
of course, that the functions

6—51’/2 Js+2ns—1(%>
’ VT
are also linearly independent and independent from theespa@” . Th
first three claims of Propositidn 5.5 follow now from its alast counter-
parts established in the previous subsections: the firstrenslecond claim
follow from Corollary[Z.19, while the third claim, from Propition[3.6. We
proceed to the proof of the fourth and last claim of Proposi.5.

(73) e Pe/2yms/2=1

5.4.2. The asymptoticg®) at 0 and atoo. We shall need the asymptptics
of the modified Bessel kerngl®) at( and atco.
We start with a simple estimate for the usual Bessel kefnel

Proposition 5.7. For anys > —1 and anyR > 0 we have

+oo .

(74) / LW g o o,
A Y
Proof. Rewrite[(74) in the form
+00 1 1 +oo
! 2ty — GV
[+ Jovmpaa = [a [P0
R 0 0 tR
- ywminﬂ 1B 1/R/RJ( ))*da + 70—Js<fy—>)2d
— J R, y Yy = / s \/@ xr ) ” 1.

It is immediate from the asymptotics of the Bessel functiansero and at
infinity that both integrals converge, and the propositeproved. Effectu-
ating the charge of variable= 4/x, we arrive at the following
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Proposition 5.8. For any s > —1 and anys > 0 there exists) > 0 such
that

5
/ 2 J) (z, 2)ds < e.
0

We also need the following

Proposition 5.9. For any R > 0 we have
R

/js(y,y)dy < o0.

0

Proof. First note that
R

/ (/B2 dy < +oc

0
since for a fixeds > —1 and all sufficiently small, > 0 we have

(Js(v9))* = Oy").

Now, write
R 1 R

/js(y,y)dyI//Js(\/@)dydtS

0

< (R+1) / (/) dy < +oo,

and the proposition is proved. Making the change of variable 4/x, we
obtain

Proposition 5.10. For any R > 0 we have

/ JO) (z, x)dx < oco.
R

5.4.3. Uniform inn asymptotics at infinity for the kernel§™*). We turn
to the uniform asymptotic at infinity for the kernel§* and the limit
kernel J©). This uniform asymptotics is needed to establish the |astrcl
of Proposition 5.5.

Proposition 5.11. For anys > —1 and any= > 0 there exists? > 0 such
that

+00
(75) sup / K™ (z,2)dr < e,
R

neN
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Proof. We start by verifying the desired estimaté(75)for 0. Butif s >
0 then the classical inequalities for Borel functions andbapolynomials
(see e.g. Szegd [42]) imply the existence of a constant 0 such that for
all z > 1 we have:

C
K (n.s) < —.

The proposition fos > 0 is now immediate.

To consider the remaining casec (—1,0], we recall that the kernels
K™ are rank-one perturbations of the kern&§*~—s+2 and note the
following immediate general

Proposition 5.12. Let K,,, K, K,,, K € % 1,.((0, +00), Leb) be locally
trace-class projections acting ih,((0, +0), Leb). Assume

1) K, - K, K, = Kin A110c((0, +00), Leb) asn — oo;

(2) for anye > 0 there exists? > 0 such that

sup trX(R,+oo)[(nX(R,—i-oo) <g, trX(R,—i—oo)[{X(R,+oo) <g;

n—oo

(3) there exists?, > 0 such that
trX(Ro,—i—oo)[(X(l'%o,-i-oo) <g;

(4) the projection operatofs,, is a rank one perturbation ok.,.
Then for any > 0 there exists? > 0 such that

SUDP X (R +00) n X (R,400) < E-

n—oo

Proposition 5.11 is now proved completely.

5.4.4. Uniform inn asymptotics at zero for the kerngi&™* and comple-
tion of the proof of Propositio®.5 We next turn to the uniform asymp-
totics at zero for the kernel&™*) and the limit kernel/(*). Again, this
uniform asymptotics is needed to establish the last claiRroposition 5.5.

Proposition 5.13. For anye > 0 there exist9 > 0 such that for alln € N
we have

5
(76) / e K™ (2, 2)dx < €.
0

Proof. Going back to the-variable, we reformulate our proposition as
follows:
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Proposition 5.14. For anye > 0 there exists® > 0, ng € N, such that for
all n > ny we have

1-R/n?
1 1 ~
(77) - / U RO (4, w)du < e

n2 1—u "

-1
First note that the functiof“ is bounded above dr-1, 0], and therefore

0 1
1 1 ~ 2 ~ 2
—/ +uKr(Ls)du < —/K,(f)(u,u)du =—.
n
“1

1—u n
-1

We proceed to estimating

1-R/n?

1 1+U~(S)
= / l—uK" (u, u)du

0

Fix x > 0( the precise choice of will be described later).
Write

(78) K (u,u) = <Z(2z +s+1) <Pl(8)(u))2> (1—w)’+

+ <Z<2z +s+1) (Pfs’)2> (1— )

I>kn

We start by estimating
1-R/n?
1 14+ u s s
CHEES'y / U1 s+ )P - w)d
Iskny 2

Using the trivial estimate

max
ue(—1,1]

P w)| = o)

we arrive, for the integral (79), at the upper bound

1— <
n2

(80) const - % Z [ / (1—u)"du
n

I<kn 1
1=z

We now consider three cases> 0, s = 0, and—1 < s < 0.
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The First Caself s > 0, then the integra[(80) is estimated above by the
expression

const - — Z l2er1 - < const - K2
I<kn
The Second Casdf s = 0, then the integral(80) is estimated above by
the expression

const - — Z [- log ) < const - K>

I<kn

The Third CaseFinally, if —1 < s < 0, then we arrive, for the integral
(80), at the upper bound

const - — (Z l25+1> n~2% < const - R°Kk*t?

I<kn

Note that in this case, the upper bound decreasés @®ws. Note that
in all three cases the contribution of the integral (80) camiade arbitrarily
small by choosing: sufficiently small. We next estimate

1
1=32

1 1+u (s)(u) 2
1 — [ (P 1—u)®
(81) n2l§zm(]/1_u<s+s+>(, ) (1~ uydu

Here we use the estimate (7.32.5) in Szegd [42] that gives

1— u)_g_%

N4D

aslong as € [0,1— %] and arrive, for the integral(81), at the upper bound

}PZ(S) (u)} < const(

1 2 3
const - 3 Z I < const -k
I<kn
which, again, can be made arbitrarily small as soon &s chosen suffi-
ciently small.
It remains to estimate the integral

@ Y /”“ (20 + 5+ 1)(PP)2(1 = u)du

1—u
/@n<l<n
Here again we use the estimate (7.32.5) in Szego [42] andmattsince
the ratio% is bounded below, we have a uniform estimate
(1— )31

P(S)
) ! \/ﬁ

< const -
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valid as long asin <[ < n,u € [0,1 — n—%], and in which the constant
depends om and does not grow ak grows.
We thus arrive, for integral (82), at the upper bound

_R
1 2

const 3 const
1 —wu) 2d
n3 Z ( u) 2au /R

rkn<l<n 0
Now choosing: sufficiently small as a function afand thenR sufficiently
large as a function of andx, we conclude the proof of the proposition.
The fourth claim of Propositidn 5.5 is now an immediate damnylof uni-
form estimates given in Propositions 5.11, 5.13 and the géstatement
given in Proposition 4.13.
Proposition 5.5 is proved completely.

IN

6. CONVERGENCE OF APPROXIMATING MEASURES ON THIPICKRELL
SET AND PROOF OFPROPOSITIONST. 18 [1.16.

6.1. Proof of Proposition[1.15. Proposition 1.T5 easily follows from what
has already been established. Recall that we have a natugetting map
conf : Qp — Conf(0, 4+00) thatassignste = (v, x), x = (x1,...,Zn,...),
the configurationv(z) = (z1,...,%,,...). By definition, the mapgonf

is t™ (u(*)-almost surely bijective. The characterization of the meas
conf,t™ (1*) as an infinite determinantal measure given by Propositidn 5.
and the first statement of Proposition]5.5 now imply Propasil.15. We
proceed to the proof of Propositibn 1116.

6.2. Proof of Proposition[1.16. Recall that, by definition, we have
conf, 5P = Pri(sim.g) .-
Recall that Proposition 5.5 implies that, for ang R, 8 > 0, asn — oo
we have
Prsinp — Pres.s

in Mg, (Conf((0, +00))) and, furthermore, setting(z) = min(z, 1), also
the weak convergence

(Uf)*PH(s,n,B) — (Uf)*IP)H(s,B)

in Mg, (M5, ((0,4+00))). We now need to pass from weak convergence of
probability measures on the space of configurations esteddiin Propo-
sition[5.5 to the weak convergence of probability measurethe Pickrell
set.

We have a natural map

s5: Qp — i)ﬁﬁn((O, —|—OO))
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defined by the formula
s(w) = Z min(z; (w), 1)6z,(w) -
=1

The maps is bijective in restriction to the subsef, defined, we recall,
as the subset of = (v, z) € Qp such thaty = ) z;(w).

Remark. The functionmin(z, 1) is chosen only for concreteness: any
other positive bounded function g, +oo) coinciding withz on some
interval (0, £) and bounded away from zero on its complement, could have
been chosen instead.

Consider the set
(83)

5Qp = {n € Mg ((0,+00)) : =Y _ min(a;, 1)d,, for somez; > 0}.
=1

The setsQ)p is clearly closed imﬁﬁn((o, —I—oo)).

Any measure) from the sei2p» admits a unique representatign= sw
for a uniquew € Q9.

Consequently, to any finite Borel measutec Mg, (M, ((0, +0)))
supported on the set)p there corresponds a unique measpifeon 2p
such that

(1) s.pP =P,
(2) pP(Q2p \ Q) = 0.

6.3. Weak convergence imis, Mg, ((0, +-00)) and weak convergence in
M:n(Q2p). The connection of the weak convergence in the space of finite
measures on the space of finite measures on the half-linedk eenver-
gence on the space of measures on the Pickrell set is nhow bivenhe
following

Proposition 6.1. Letv,,, v € MM, ((0, +00)) be supported on the set
sQp and assume that, — v weakly in9ts, Mg, ((0, +00)) asn — oo.
Then

pv, — pv
weakly indg, (2p) asn — oo.

The maps is, of course, not continuous, since the function

w— Zmin(zi(w), 1)

is not continuous on the Pickrell set.
Nonetheless, we have the following relation between tigbsnof mea-
sures orf2p and o, ((0, +00)).
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Lemma 6.2. LetP, € M, (M4 ((0, +00))) be a tight family of measures.
Then the familyP,, is also tight.

Proof. TakeR > 0 and consider the subset
Qp(R) = {w € Qp: y(w) < R,Zmin(xi(w), 1)< R} )
i=1

The subsef)p(R) is compact inf2p.
By definition, we have

5 (Qp(R)) C{n: Mg, ((0,+00)) : n((0,+00) < R}.

Consequently, for any > 0 one can find a sufficiently larg& in such a
way that

(5), P, (s (Qp(R))) <cforall a.
Since all measureB, are supported of?, it follows that

P, (2p(R)) < eforall «,
and the desired tightness is established.
Corollary 6.3. Let
P, € M, (M ((0,400))) ;1 € N, P € My, (Mg ((0, +00)))

be finite Borel measures. Assume

(1) the measureB,, are supported on the sef2p for all n € N;

(2) P, — P converge weakly iMls, (Mg, ((0,+00))) asn — oo,
then the measur@ is also supported on the s&® » andpP,, — pPP
weakly intg, (2p) asn — oo.

Proof. The measur@is of course supported on the sé€lp, since the set
sQp is closed. The desired weak convergenc@ig, (2p) is now estab-
lished in three steps.

The First Step: The FamilyP,, is Tight.

The familypP, is tight by Lemma& 6.2 and therefore admits a weak accu-
mulation pointP’ € My, (2p).

The Second Step: Finite-Dimensional Distributions Cogeer

Let! € N, let¢;: (0,400) — R be continuous compactly supported
functions, setp;(z) = min(z, 1)Yy(x), taket, ..., ¢, € R and observe that,
by definition, for anyw € Qp we have

(84) exp <z Z th <Z Ok (xl(w))>> = exp <z Z tint,, (5w)>
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and consequently

(85) /eXp (Zztk (Z Pk (%(@))) dP'(w) =
— / exp (2 Z tint,, (n)) d(s),P'(n).

Men ((0400)) =

We now write

) [ ex ( >t (Z o (a(w)))) aP'(w) =
l 00
= nh_{go exp (z Z i (Z O, (ml(w))>> dP,(w).
k=1 —1

Qp

On the other hand, sindg, — P weakly in Mg, (Mg, ((0, +00))), we
have

l
(87) nh_{folo / exp (2 Z tpinty, (n)) d(s),P, =
k=1

Men ((0400))

I
— / exp (2 Z tkintwk(n)> dpP .
k=1

Men ((0,400))

It follows that
(88) /eXp (Zztk (Z Pk (%(@))) dP'(w) =

I
— / exp (z Z tkintwk(n)> dP.
k=1

Men ((0400))

l
Since integrals of functions of the forerp (z > tkintwk(n)) determine
k=1

a finite borel measure Omﬁn((O, +oo)) uniquely, we have
(5), P =P.
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The Third Step: The Limit Measure is Supported in
To see thaP’ (Qp\Q%) = 0, write

/e—v(w) dP'(w) = lim [ e"@ dP,(w)

n—oo
Op Op
/6— igl z;(w) d]P),(W) _ / 6—17((0,4-00)) d]P)(n) _
o M ((0,4+00) )
= lim / e_”((0’+°°)) d (o), P, = lim e_i;1 i) dP,, .
n—oo n—oo
M ((0.400)) “r

Since for anyn € N we have

/ e 4P, (w) = / e 5 B, (),

QP QP

it follows that
/e—’y(w) dP/(w) — /e_izll‘i(w) dP/(w)7

QP QP

whence the equality(w) = >~ z;(w) holdsP’-almost surely, an&’ (Q\Q%) =
=1
0.
We thus havé’ = pPP. The proof is complete.
7. PROOF OFLEMMA [1.I4AND COMPLETION OF THEPROOF OF
THeEOREM[III.

7.1. Reduction of Lemmal1.14 to Lemma 711 .Recall that we have intro-
duced a sequence of mappings

t™ : Mat(n,C) = Q% n e N
that toz € Mat(n, C) assigns the point

™ (2) = (trz RGN A"(z),o,...,()),

n2 > n?

where\(z) > ... > \,(z) > 0 are the eigenvalues of the matrixz,
counted with multiplicities and arranged in non-incregsomder. By defi-

nition, we have
n trz*z
A (2)) =

n?
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Following Vershik [44], we now introduce oNlat(N, C) a sequence of
averaging operators over the compact grolips) x U(n).

(89) (Anf) (2) = / f w2y ) dudus,

U(n)xU(n)

wheredu stands for the normalized Haar measure on the gtoup. For
anyU(oco) x U(oo)-invariant probability measure aviat(N, C), the oper-
atorA,, is the operator of conditional expectation with respechtdigma-
algebra ofU(n) x U(n)-invariant sets.

By definition, the functior(A,, f) (z) only depends or™ (z).

Lemma 7.1. Letm € N. There exists a positive Schwartz functipron
Mat(m, C) as well as a positive continuous functigron 2 such that for
anyz € Mat(N, C) and anyn > m we have

(90) FE™(2)) < (Aup) (2).

Remark. The functiony, initially defined onMat(m, C), is here ex-
tended taVlat(N, C) in the obvious way: the value gf at a matrixz is set
to be its value on its: x m corner.

We postpone the proof of the Lemma to the next subsection arweed
with the the proof of Lemma1.14.

Refining the definition of the clagsin the introduction, take: € N and
let F(m) is the family of all Borel sigma-finitd/(co) x U(oco)-invariant
measures on Mat(N, C) such that for any? > 0 we have

v <{z : max |2i5] < R}) < 4o00.
,Jsm

Equivalently, the measure of a set of matrices, whasg m-corners are
required to lie in a compact set, must be finite; in partigutae projections
(m2°),.v are well-defined for alin. For example, ik+m > 0, then the Pick-
rell measure:(*) belongs taF(m). Recall furthermore that, by the results
of [9], [10] any measure € F(m) admits a unique ergodic decomposition
into finite ergodic components: in other words, for any sudhere exists a
unique Borel sigma-finite measuveon (2, such that we have

(92) v= [ n,dv(w).
/

Since the orbit of the unitary group is of course a compagctteetmea-
sures(t™),v are well-defined fon. > m and may be thought of as finite-
dimensional approximations of the decomposing meaguhedeed, recall
from the introduction that, if is finite, then the measureis the weak limit
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of the measureg™),v asn — oco. The following proposition is a stronger
and a more precise version of Lemma1.14 from the introdoctio

Proposition 7.2. Letm € N, letv € F(m), lety and f be given by Lemma
[7.1, and assume
v € Liy(Mat(N,C), v).
Then
(1)
f € Li(Qp, (™),v)
forall n > m;
(2)
fe€ Li(Qp,7);
3)
fE™),v — fo
weakly in9tg, (Qp).

Proof. First Step: The Martingale Convergence Theorem and thedicgo
Decomposition.

We start by formulating a pointwise version of the equal@§)(from the
Introduction: for anyz € Mat,., and any bounded continuous functign
on Mat(N; C) we have

(92) tiw Aupe) = [ faneess
Mat(N;C)

(here, as always, given € Q2p, the symboh,, stands for the ergodic proba-
bility measure corresponding &) Indeed,[(9R) immediately follows from
the definition of regular matrices, the Olshanski-Verslh&racterization of
the convergence of orbital measures [30] and the Reversgngale Con-
vergence Theorem.

The Second Step.

Now let o and f be given by LemmBa 711, and assume

¢ € Li(Mat(N, C), ).

Lemma 7.3. for anye > 0 there exists &/(co0) x U(oo)— invariant set
Y. € Mat(N, C) such that

(1) v(Yz) < +o0;
(2) for all n > m we have

/ FE™(2)dv(z) < e.

Mat(N,C)\ Yz
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Proof. Sincep € L;(Mat(N, C), v), we have

/ / wdn, | dv(w) < 0.

Qp Mat(N,(C)

Choose a Borel subsgt  Qp in such a way thar(Y<) < +o0 and

/ / wdn,, | dv(w) < e.

Ye Mat(N,(C)
The pre-image of the s&t< under the map., or, more precisely, the set
Y. = {2 € Mat, : woo(2) € Y*}

is by definitionl (c0) x U (c0)— invariant and has all the desired properties.
The Third Step.
Lety : Q2p — R be continuous and bounded. Take> 0 and the
corresponding set..
For anyz € Mat,., we have

Tim $((2)) - F(E(2) = Vwnl2)) - F0nl2))

Sincer(Y;) < oo, the bounded convergence theorem gives

©3) Jim [0 S )in(z) -

_ / lwno(2)) - Flarme(2))di(2).

By definition of Y for all n € N, n > m, we have

[ o) f60 )| < sl
at(N,C)\Ye i
It follows that

©a) lm [ vE"E): F)i) -

Mat(N,C)

_ / D(wso(2)) - flwne(2))dr(2),

Mat(N,C)
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which, in turn, implies that

i [ 5de). () = [ ot
Qp

n—o0
Qp

that the weak convergence is established, and that the Lesmpraved
completely.

7.2. Proof of Lemmal7.1. Introduce an inner product) on Mat(m, C)
by the formula(z,, zo) = Rtr(z]z2). This inner product is naturally ex-
tended to a pairing between the projective litiat (N, C) and the induc-
tive limit
Maty = U Mat(m, C).
m=1

For a matrix¢ € Mat, set
=c(2) = expli(C, 2)), = € Mat(N, C).

We start with the following simple estimate on the behavifthe Fourier
transform of orbital measures.

Lemma 7.4.Letm € N. For anye > 0 there exist® > 0 such that for any
n > m and({ € Mat(m, C), z € Mat(N, C) satisfying

tr(¢*Otr (w0 (2))* (1 (2)) < on?
we have
11— AEc(2)] <e.

Proof. This is a simple corollary of the power series repnegen of the
Harish-Chandra—Itzykson—Zuber orbital integral, see §d], [15], [35].
Indeed, letry, - - - , 0,,, be the eigenvalues af 2, and Ietxg"), ., 7' be
the eigenvalues af°(z).

The standard power series representation, see elg. [B}]38], for the
Harish-Chandra—Itzykson—Zuber orbital integral gives,dnyn € N, a
representation

) Q)
AE(E) =14+ a\n)sy(on, - 0m)-sa | 5. - :

n?’ n?
AEY 4

where the summation takes place over theXsetll non-empty Young di-
agrams\, s, stands for the Schur polynomial corresponding to the dragra
A, and the coefficientg(\, n) satisfy

sup |a(A,n)| <1
)\GYJr

The proposition follows immediately.
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Corollary 7.5. Foranym € N, ¢ > 0, R > 0, there exists a positive
Schwartz functiony : Mat(m, C) — (0, 1] such that for alln > m we have

(95) Antp(my(2)) 2 1 —¢
for all z satisfying
tr (737 (2))" (77 (2)) < Rn®.

n

Proof. Lety be a Schwartz function taking values (i, 1]. Assume
additionally that(0) = 1 and that the Fourier transform ¢fis supported
in the ball of radiug, around the origin. A Schwartz function satisfying all
these requirements is constructed without difficulty. Byrlnea[ 7.4, ifz, is
small enough as a function ef, ¢, R, then the inequality (95) holds for all
n > m.Corollary[Z.5 is proved completely.

We now conclude the proof of Lemrhal.1.

Take a sequencg, — oo, and lety,, be the corresponding sequence
of Schwartz functions given by Corollaty 7.5. Take posituemberst,,
decaying fast enough so that the function

n=1

is Schwartz.
Let f be a positive continuous function @0, +00) such that for any.,
if t < R,,thenf(t) <t,/2. Forw € Qp,w = (v, ), set

fw) = f(y(w))

The functionf is by definition positive and continuous. By Corollary
[7.8, the functionsy and f satisfy all requirements of Lemnia 7.1, which,
therefore, is proved completely.

7.3. Completion of the proof of Theorem[1.11.

Lemma 7.6. Let E be a locally compact complete metric space. BgtB
be sigma-finite measures di\ let P be a probability measure of’, and
let f, g be positive bounded continuous functionsfanAssume that for all
n € N we have

g - Ll(E,]Bn>
and that, as» — oo, we have

1)
fBy — [B

weakly indig, (E);
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(2)

9Bn — P
/ gdB,
E
weakly inDg, (F).
Then
g € L,(E,B)
and
p 98
/gdB

E

Proof. Lety be a nonnegative bounded continuous functiononOn
the one hand, as — oo, we have

/ ofgdB, — / o f 9B,
E E
and, on the other hand, we have
/ o fgdB,
(96) E 5 / o fdP.
/gd]Bn %
E
Choosingp = 1, we obtain that
[ fgdB
I B, =~ :
Jim [ gdBy T fdp >0;
E E

the sequenc7/ gdB,, is thus bounded away both from zero and infinity.

E
Furthermore, for arbitrary bounded continuous posifiwge have

[ etate

(97) lim [ gdB, = £ —.
n—oo
5 [osae

E
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Now takeR > 0 and¢(z) = min(1/f(x), R). Letting R tend tooco, we
obtain

(98) lim [ gdB, = /gdB.

n—00
E E

Substituting[(9B) back intd_(96), we arrive at the equality

¢fgdB
/ @ fdP = E//gdB.

E
E

Note that here, as ifn_(96), the functignmay be an arbitrary nonnegative

continuous function o. In particular, taking a compactly supported func-
tion ¢ on E and settingy = ¢/ f, we obtain

Since this equality is true for any compactly supportediémrct) on £, we
conclude that
gB

/gd]B%
E
and the Lemma is proved completely.
Combining Lemm&7]6 with Lemnia 1]14 and Proposition]1.16care
clude the proof of Theorem 1.111.
Theoreni 1.111 is proved completely.

P=

7.4. Proof of Proposition[1.4. In view of Propositiori 1.10 and Theorem
[1.11, it suffices to prove the singularity of the ergodic deposition mea-
sureszi®V, 7i¢*2). Since, by Proposition 1.9, the measuyés’, n(*2) are
mutually singular, there exists a setC Mat(N, C) such that

p(D) = 0, ) (Mat(N,C) \ D) =0.
Introduce the set
D = {z e Mat(N,C) : lim A,xp(z) = 1}.
n—oo
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By definition, the seD is U (o) x U(co)-invariant, and we have
pt*(D) = 0, ut* (Mat(N, C) \ D) = 0.
Introduce now the sed  Qp by the formula
D={wep:n,(D)=1}
We clearly have
V(D) = 0,5 (Qp \ D) = 0.
Proposition 1.4 is proved completely.

8. APPENDIX A. THE JACOBI ORTHOGONAL POLYNOMIAL
ENSEMBLE.

8.1. Jacobi polynomials. Let o, 5 > —1, and letP\*” be the standard
Jacobi orthogonal polynomlals namely, polynomials onuhé interval
[—1, 1] orthogonal with weight

(1—u)*(1+u)’
and normalized by the condition

'n+a+1)
F(n+1)(a+1)

PN =

Recall that the leading term™” of P{*” is given (see e.g. (4.21.6) in
Szeg06([42]) by the formula

I'Cn+a+p+1)
%~Nn+n~mn+a+ﬁ+m
while for the square of the norm we have

k(a 8)

1
(99) hl™A) = / (PP ) - (1= u)*(1+u)? du =
-1
B 2006+ Pln+a+1)I(n+B+1)
S 2mt+a+B+1Tn+ DI (n+a+B+1)

Denote byK ™" (uy, us) then-th Christoffel-Darboux kernel of the Jacobi
orthogonal polynomial ensemble:

(100)
n—1 . P((X?B)

P
K( B (w1, us) Z 1 (Ul) 1 (uz) (1—u1)°‘/2(1+U1)6/2(1—U2)a/2(1+U2)ﬁ/2.
1=0 1
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The Christoffel-Darboux formula gives an equivalent reprgation for the
kernel K\7):

(101) K (uy,uy) =
27 Tn+1)T(n+a+B+1)
2n+a+p Tn+a)l(n+p)
o PP ) P () = P (ua) P ()

'(1—U1)a/2(1+U1)6/2(1—UQ)Q/2(1+U2)6/2 X

n

Uy — U2

8.2. The recurrence relation between Jacobi polynomials We have the
following recurrence relation between the Christoffelrbaux kerneld< ff_;f )
and K> TP,

Proposition 8.1. For anya, 5 > —1 we have

(102) Kr(fi-l (ul,u2) =

a+1Tn+1)I'(n+a+p+2)
— platlp) 1—u)2(1 B/2
9o+p+1 F(n_|_ 5 + 1)F(7’L—|—Oz + 1) n (ul)( ul) ( +u1) X

x PO (45) (1 — ug) (1 + ug)?/?+
+ K;La+2,ﬁ) (Ul, Ug).

Remark. The recurrence relation (1I02) can of course be taken to the
scaling limit to yield a similar recurrence relation for Betkernels: the
Bessel kernel with parameteis thus a rank one perturbation of the Bessel
kernel with parametes + 2. This is also easily esablished directly: using
the recurrence relation

(103) Ten(@) = 2 @)~ Jia(a)

for Bessel functions, one immediately obtains the desieednrence rela-
tion
= = s+1
(104) Jo(2,y) = Joqo(m,y) + ﬁjs+1(\/g)%]s+l<\/§>
for the Bessel kernels.

Proof of Propositioi 8]1. The routine calculation is in@ddor com-
pleteness. We use standard recurrence relations for Jaobmiomials.
First, we use the relation

a+f

(n+ ==+ D (=D P () = (0 1) PG () = (n-+a 1) P ()
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to arrive at the equality

o5y Pl ()P ua) = P (ua) PP )
Ur — U

2t a+ B+ 2w — P () P (ug) — (ug — 1P (up) B (wy)
o 2(n+1) Uy — U .

We next apply the relation
(2n+a+B+1) PP (u) = (n+a+B+1) POt (4) — (n+8) P (1)
to arrive at the equality

(106)
(ug — D)P () PP (ug) = (ug — 1) P () PP (uy)

Ur — Uz
_ n+a+p+1 plati)
2n+a+ B +1

n+ 8 (1= u) P (@) PO (ug) — (1 — ug) P (ug) P (uy)

(ur) PP (ug) +

27’L—|—Oé—|—ﬁ+1 U1 — U

Using next the recurrence relation
J(1=u) P2 (w) = (ntat ) P2 (w) =P (u),

we arrive at the equality

(107)
(1= un) P () PET () = (1= ug) Pa™ 7 (up) AT ()
Urp — U
n
_ plat1p)(,, ) plotip)
ntagiin (u1) Py (ug)+
2n+a+f+1 P ) PP (ug) — P (ug) BT ()

2(n+a+1) (1) (1—uz) U — U
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Combining [106) and (107), we obtain

(108)
(u; — P () P (us) — (ug — 1) P (wg) P (wy)
Ur — Uz N
(a+1)2n+a+p+1)
— platlp) platl,p) +
(n+a+)2n+a+p+1) " () B, ue)
n+ B Py () P (ug) = P (ug) BT (1)

(1-U1)(1-U2)

2(n+a+1) U — Usp
Using the recurrence relation
@ntatp+2) PP (u) = (ntat B2 Bl (u) = (n48) BT (w),
we now arrive at the relation

Pi P ) P (ug) — P (ug) P2 ()

(109) -~ - =

U1 — U2
Contat B+2 PO (u) P (uy) — PO (uy) BT ()
2t a+B4+2 Uy — Us '

Combining[(105),[(108)[(109) and recalling the definitidf1) of Christoffel-
Darboux kernels, we conclude the proof of Propositioh 8.1.

As above, given a finite family of functionf, . . ., f» on the unitinterval
or on the real line, we lefpan(fi, ..., fy) stand for the vector space these
functions span. Fati, 5 € R introduce the subspace

(120) L™ = span((1 — u)*2(1 4+ u)?/%, (1 — w)*>(1 + u)*u, . .
s (1= w)2 (1 4 u)P Py,

Fora, 3 > —1, Proposition 811 yields the following orthogonal direct-
sum decomposition

(111) LB _ plati) g plet2n1)

Jac Jac
Though the corresponding spaces are no longer subspatgsiie relation
(111) is still valid for allae € (=2, —1]; in reformulating it, it is, however,
more convenient for us to shidt by 2.

Proposition 8.2. Forall « > 0, 5 > —1,n € N we have
L(a—2,ﬁ,n) _ CP(a_l’ﬁ) @ L(a,ﬁ,n—l)

Jac Jac

Proof. LetQﬁf“’B) be the function of the second kind corresponding to

the Jacobi ponnomianLa’B). By Szego,[42], formula (4.62.19), for any
u € (—1,1),v > 1 we have
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QQ+a++)III+DIl+a+B84+1) @, \
(112) Z 20-+B+1 Fl+a+DI(I+p+1)"" (W@ (v) =
v =1)"(v+ 1)-#
) (v—u)
2700 T(n+2)0(n+a+8+2) R e () — Qi () P (u)
2n+a+5+2F(n+a+1) (n+pB+1) v—u '

Take the limitv — 1, and recall from Szego [42], formula (4.62.5), the
following asymptotic expansion as — 1 for the Jacobi function of the
second kind

20710 () T(n+ B+ 1)

T(n+a+p+1) (=17

QM (v) ~

Recalling the recurrence formula (22.7.19)in [1]:
P () = (n+a+ B+ 1)PSY — (n+ B+ )P (u)

we arrive at the relation

1L T@T(+2) pa-16) ¢ s
l—-u TIn+a+1) " Jac

which immediately implies Propositidn 8.2.
Now takes > —1 and, for brevity, writeP\*) = P{*?. The leading term
k%) of P is given by the formula

2n+s+1)
2n.n!l-T'(n+s+1)

k) =

while for the square of the norm we have

1

B = / (PO (u)* - (1 = u)® du =

-1

25+1

n+s+1

Denote byf(r(f)(ul, us) the corresponding-th Christoffel-Darboux kernel

n—1 ()
_ P
(113)  KP(upug) =Y (u2)

=1

(1 - U1)8/2(1 - u2)s/2_
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The Christoffel-Darboux formula gives an equivalent reprgation for the
kernel K

(114)
- + 5) Py (ug) P, (u) — P (uz) P, ()
K (s) - L 1—u) 2 (1=u-)3/2. n—1 n—1

o (12 25(2n + s) (1) (1) Uy — Usg

8.3. The Bessel kernel.Consider the half-lin€0, +o0) endowed with the
standard Lebesgue measlirh. Takes > —1 and consider the standard
Bessel kernel

~ Js JS - Js Js
A15) Ju(ys,g) = YITert VI (VIR) = VT (VIR (/)
2(y1 — v2)
(see, e.g., page 295 in Tracy and Widom/ [43]).
An alternative integral representation for the keniehas the form

1
5 1

(116) Tnve) = § [TV

0
(see, e.g., formula (2.2) on page 295 in Tracy and Widom [43])
As (118) shows, the kernel, induces onL,((0, +c0), Leb) the opera-
tor of orthogonal projection onto the subspace of functiwhsse Hankel
transform is supported i, 1] (see[43]).

Proposition 8.3. For anys > —1, asn — oo, the kernelK converges
to the kernelJ, uniformly in the totality of variables on compact subsets of
(0, +-00) x (0, +00).

Proof. This is an immediate corollary of the classical Helihehler
asymptotics for Jacobi orthogonal polynomials, see e.gp@r 8 in Szego
[42]. Note that the uniform convergence in fact takes placebitrary
simply connected compact subsetg©f\ 0) x C\ 0.

9. APPENDIX B. SPACES OF CONFIGURATIONS AND DETERMINANTAL
POINT PROCESSES

9.1. Spaces of configurations.Let £ be a locally compact complete met-
ric space.

A configurationX on E' is a collection of points, callegarticlescon-
sidered without regard to order; the main assumption ispkdicles not
accumulate anywhere i, or, equivalently that a bounded subsetfof
contain only finitely many particles of a configuration.

To a configurationX assign the Radon measure

PP

zeX



THE ERGODIC DECOMPOSITION OF INFINITE PICKRELL MEASURES 85

where the summation takes place over all particleX ofConversely, any
purely atomic Radon measure éhis given by a configuration. The space
Conf(F) of configuration onk is thus identified with a closed subset of
integer-valued Radon measures Brin the space of all Radon measures
on E. This identification endowSonf(E) with the structure of a complete
separable metric space, which, however, is not locally anp

The Borel structure oonf(E) can be equivalently defined as follows.
For a bounded Boral subsBtC FE, introduce a function

#p : Conf(E) — R

that to a configuratiorX assigns the number of its particles that lieAn
The family of functions#5 over alll bounded Borel subsef$ subset E
determines the Borel structure Glonf(E); in particular, to define a prob-
ability measure oi€onf(F) it is necessary and sufficient to define the joint
distributions of the random variablgsgg, , - - - , #p, over all finite collec-
tions of disjoint bounded Borel subse®s, - - - , B, C F.

9.2. Weak topology on the space of probability measures on the spa
of configurations. The spac&onf(F) is endowed with a natural structure
of a complete separable metric space, and the spagé¢Conf(E)) of fi-
nite Borel measures on the space of configurations is coesdgualso a
complete separable metric space with respect to the wealkomp

Lety : F — R be a compactly supported continuous function. Define a
measurable functiog, : Conf(£) — R by the formula

#o(X) = pla).
zeX
For a bounded Borel subsBtC E, of course we havé:, = #, ,.

Since the Borel sigma-algebra d@fonf(F) coincides with the sigma-
algebra generated by the integer-valued random varighlesver all bounded
Borel subset#3 C F, it also coincides with the sigma-algebra generated by
the random variableg, over all compactly supported continuous functions
¢ : E — R. Consequently, we have the following

Proposition 9.1. A Borel probability measur@ € 9, (Conf(E)) is uniquely
determined by the joint distributions of all finite collewts

#5017#5027"'7#4,01

over all continuous functiongy, ..., ¢, : £ — R with disjoint compact
supports.

The weak topology ofig,(Conf(£)) admits the following character-
ization in terms of the said finite-dimensional distribus¢see Theorem
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11.1.Vll in vol.2 of [13]). LetP,,n € N andP be Borel probability mea-
sures orConf(£). Then the measurds, converge tdP weakly asn — oo
if and only if for any finite collectiony, ..., ¢, of continuous functions
with disjoint compact supports the joint distributions bétrandom vari-
ables#.,,, ..., #,, with respect taP, converge, ass — oo, to the joint
distribution of#., , .. ., #,, with respect tdP; convergence of joint distri-
butions being understood according to the weak topologyherspace of
Borel probability measures diY.

9.3. Spaces of locally trace class operators.et i, be a sigma-finite Borel
measure orf. N

Let.# (E, 1) be the ideal of trace class operatéfs Ly (F, 1) — Lo(E, 1)
(see volume 1 of [36] for the precise definition); the symhﬁIH,ﬂ1 will
stand for the.#;-norm of the operatof(. Let . (E, 1) be the ideal of
Hilbert-Schmidt operators’: L,(E, 1) — Lo(E, 1); the symbol| K|,
will stand for the.#;-norm of the operatof(.

Let 7 10.(E, 1) be the space of operatakS: Lo(E, 1) — Lo(E, 1) such
that for any bounded Borel subsgtC E we have

xsKxp € A(E, ).

Again, we endow the spacé j,.(E, ;1) with a countable family of semi-
norms

(117) IxsE X5l
where, as before} runs through an exhausting famify;, of bounded sets.

9.4. Determinantal Point ProcessesA Borel probability measur® on
Conf(F) is calleddeterminantaif there exists an operaté¢ € .# j,.(E, ;1)
such that for any bounded measurable functgofor whichg — 1 is sup-
ported in a bounded sét, we have

(118) EpW, = det<1 + (g — 1)KXB).

The Fredholm determinant in (1118) is well-defined sifte .7 1..(E, 1).
The equation[(118) determines the measkiniquely. For any pairwise
disjoint bounded Borel setB;, ..., B, C F and anyzy,...,z € C from

l
m) we haV@sz&Bl c. zl#Bl = det (1 + Z(Z] — 1)XBJKXIJLBL) .

=1
For further results and background onjdeterminantal pootgsses, see
e.g. [4], [18], [22], [23], [24], [37], [38],[39],[41].
If K belongs to4 o.(E, 1), then, throughout the paper, we denote the
corresponding determinantal measurePly Note thatP is uniquely de-
fined by K, but different operators may yield the same measure. By the
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Macchi—Soshnikov theorern [25], [41], any Hermitian pivgitontraction
that belongs to the clas$g, c(E, i) defines a determinantal point process.

9.5. Change of variables.Let F' : E — E be a homeomorphism. The
homeomorphisn¥' induces a homeomorphism of the sp&aenf(F), for
which, slightly abusing notation, we keep the same symbolergX €
Conf(F), the particles of the configuratidfi(.X ) have the form¥'(z) over
all x € X. Now, as before, let: be a sigma-finite measure dn, and let
P be the determinantal measure induced by an opefater.# 1..(E, 1).
Let the operato¥, K be defined by the formul&, K (f) = K(f o F).
Assume now that the measuresu and . are equivalent, and consider

the operator
dF, dF.,
KF =[S e S
dp du

Note that if K is self-adjoint, then so i&”. If K is given by the kernel
K(z,y), thenKT is given by the kernel

dF,pu _ _ dF.
K¥(z,y) = 2)K(F 'z, Fly Y).
(@) = [ @K Wl w)

Directly from the definitions we now have the following

Proposition 9.2. The action of the homeomorphidrion the determinantal
measurePy is given by the formula

FPy =Pyr.

Note that if K is the operator of orthogonal projection onto the closed
subspacd. C L,(E, u), then, by definition, the operatéf’ is the operator
of orthogonal projection onto the closed subspace

dF,u

T @) € LB,

{poF(x)
9.6. Multiplicative functionals on spaces of configurations.Let g be a
non-negative measurable function éi) and introduce thenultiplicative
functionalV, : Conf(£) — R by the formula

(119) U, (X) =[] g(2).
zeX
If the infinite product[[ ¢(x) absolutely converges toor to oo, then we
zeX

set, respectivelyl,(X) = 0 or U (X) = oo. If the product in the right-
hand side fails to converge absolutely, then the multigiresfunctional is
not defined.
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9.7. Multiplicative functionals of determinantal point processes. At the
centre of the construction of infinite determinantal meastuie the results
of [11], [12] that can informally be summarized as followsdeterminantal
measure times a multiplicative functional is again a deteamtal measure.
In other words, ifPx is a determinantal measure Glonf(E) induced by
the operator’ on Ly (FE, i), then, under certain additional assumptions, it
is shown in[11], [12] that the measutg, P, after normalization yields a
determinantal point process.

As before, lely be a non-negative measurable functionfanf the oper-
atorl + (¢ — 1)K is invertible, then we set

B(g, K) = gK(1+(g— )K)™",  B(g,K) = /gK(1+(g - 1)K) ' /g.

By definition, B(g, K), B(g, K) eNJLmC(E,/,L) sinceK € A oc(E, 1),
and, if K is self-adjoint, then so i (g, K).
We now recall a few propositions from [12].

Proposition 9.3. Let K € .4 1,.(E, 1) be a self-adjoint positive contrac-
tion, and letPx be the corresponding determinantal measureConf (E).
Let g be a nonnegative bounded measurable functioiw@uch that
(120) Vg —1K\/g—1€ S (E, p)
and that the operatot + (¢ — 1)K is invertible. Then

(1) we havel, € L;(Conf(E),Px) and

/‘I/ngP’K :det(1+ Vi —1K+\/g— 1) > 0;

(2) the operatorsB(g, K), (g, K) induce onConf(F) a determinan-
tal measuréPy k) = Py, ) satisfying

U, Py

/ U, dPy

Conf(E)

(121) Py (g, x) =

Remark. Since [12D) holds and( is self-adjoint, the operator +
(g — 1)K is invertible if and only if the operator + /g — 1Ky/g — 1 is
invertible. .

If @ is a projection operator, then the opera®fg, ) admits the fol-
lowing description.

Proposition 9.4. Let L C Ly(FE, 1) be a closed subspace, and {gte the
operator of orthogonal projection ontb. Let g be a bounded measurable
function such that the operatar+ (g — 1)@ is invertible. Then the operator
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%(g, Q) is the operator of orthogonal projection onto the closurettodé
subspace/gL.

We now consider the particular case whids a characteristic function of
a Borel subset. In much the same way as befor®, if £ is a Borel subset
such that the subspage: L is closed (recall that a sufficient condition for
that is provided in Propositidn 2.118), then we €&t to be the operator of
orthogonal projection onto the closed subspagd..

Propositio 9.8 now yields the following

Corollary 9.5. Let@ € .7 1,.(F, 1) be the operator of orthogonal projec-
tion onto a closed subspadec L,(E,u). Let B’ C E be a Borel subset
such thaty g Qxe € A (E, u). Then

Po(Conf(E, E')) = det(1 — xp\m QXp\5)-

Assume, additionally, that for any functigne L, the equalityxzp = 0
impliesy = 0. Then the subspacgs L is closed, and we have

Po(Conf(E, E')) > 0, QF € A 10¢(E, ),
and

]P)Q|Conf(E' E’)
122 :
(122) Po(Conf(E, E'))

The induced measure of a determinantal measure onto thetsaflzon-
figurations all whose particles lie if’ is thus again a determinantal mea-
sure. In the case of a discrete phase space, related indumsebpes were
considered by Lyons [22] and by Borodin and Rains [7].

We now give a sufficient condition for the almost symresitivity of a
multiplicative functional.

— ]PQE/.

Proposition 9.6. If

p({z € E:g(x) =0}) =0
and

Vg = 11K/ lg — 1] € A1(E, ),
then
0 < V¥, (X) < +o0
for Px-almost all.X € Conf(FE).

Proof. Our assumptions imply that fé-almost allX € Conf(E) we
have

S lg(a) — 1] < +oc,

zeX
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which, in turn, is sufficient for absolute convergence ofitifaite product

[] g(x) to afinite non-zero limit.
zeX
We also formulate a version of Proposition]9.3 in the spemaak when

the functiong does not assume values less tharin this case the multi-
plicative functional¥’, is automatically non-zero, and we have

Proposition 9.7. Let1l € . ,,.(E, 1) be the operator of orthogonal pro-
jection onto a closed subspaég, let g be a bounded Borel function afi
satisfyingg(x) > 1 for all x € E, and assume

Vo—1Ul/g—1¢€ A4(E ).

Then:
(1) v, € L1 (Cont(E),Py), and

/\I!ngP’H:det (1+\/g_1n\/g_1);

(2) we have

v,Py

/ U, dPy

wherell? is the operator of orthogonal projection onto the subspace
VIH.

10. APPENDIX C. CONSTRUCTION OFPICKRELL MEASURES AND
PROOF OFPROPOSITIONST.8AND [L.0.

= Png,

10.1. Proof of Proposition[1.8. First we recall that the Pickrell measures
are naturally defined on the spaceaettangularm x n-matrices.
Let Mat(m x n, C) be the space of: x n matrices with complex entries:

Mat(m x n,C) ={z = (25), i=1,..., m;j=1,...,n}
Denotedz the Lebesgue measure diut(m x n, C).

Takes € R. Letmy, ng be such thatng + s > 0,ny + s > 0. Following

Pickrell, takem > mq, n > ny and introduce a measu;é‘i?n on Mat(m x
n, C) by the formula

(123) ), = consts) - det(1+ 2°2)""" x dm(Z),
where

_ o T+ s)
124 t&) =g I —
(124) consty, =7 - [ T(n+1+s)

l=myo

Form; <m,n; <n,let
o Mat(m x n,C) — Mat(my x ny,C)

mi,n1
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be the natural projection map.

Proposition 10.1.Letm,n € N be such that > —m — 1. Then for any
Z € Mat(n, C) we have

(125) / det(1+ 2*2) "™ " 17%dy =
(T ™)~ (Z)
o I(m+1+s)
Fn+m+1+s)
Propositio 1.8 is an immediate corollary of Proposifionlll 0
Proof of Proposition 1011. As we noted in the Introductidw following
computation goes back to the classical work of Hua Loo Ke®j. [Take
z € Mat((m+ 1) x n,C). Multiplying, if necessary, by a unitary matrix
on the left and on the right, represent the maﬁr’i;x* z = z in diagonal

det(1+ z*z)"m "%,

form with positive real entries on the diagong}: = u; > 0,i =1,...,n,
=0 fori # j.
Here we set;; = 0 for ¢ > min(n, m). Denote$; = z,,11,,i=1,...,n
Write

—m—1-n—s
m 12 2
det (1 + 2%2) —melmns Hl—l—u m1"8><<1+§§ Zfi:j;) )

We have

1+u — | +u?’
Integrating ing, we flnd

—m—1—n—s +o0o
- |§z|2 o 2 " / —-1 —m—1—n—
1 dé = 14+u: "1 m=imn=
/( +;1+u3 3 1}( ) Foy [ ) r,
where

n 12
(126) p = ) () 2 3 Llully

i=1

Recalling the Euler integral
+oo

(127) / "N )T =

0
we arrive at the desired conclusion. Furthermore, intredumap

7t Mat((m +1)xn,C) — Mat(mxn,C) x Ry

T(n)-T(m+1+s)
T(n+1+m+s)

Y
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by the formula

Fm+1n (Z) _ (Wm-i-l,n (Z) ’ r(m+1n) (Z)) ,

m,n m,n

wherer(™+1m) () is given by the formuld{126).
Let P(™™*) be a probability measure d&, given by the formula:

I'(n+m+s)
T(n) T(m + )

dP(m,n,S)(r) — Tn_l(l - T)_m_n_sd’f‘ )

The measuré (™) is well-defined as soon as + s > 0.

Corollary 10.2. Foranym,n € Nands > —m — 1, we have

(’Vm+1,n) (s) (s) P(m+17”73) .

™ m,n * lum+1,n :um n

Indeed, this is precisely what was shown by our computation.
Removing a column is similar to removing a row:

(7?72;7:[1 (z))t = 7rm+1 n (z ) )

Write 707+ () = p(+1m) (24) Introduce a map
%m”“ Mat(mx (n+1),C) — Mat(mxn,C) x Ry
by the formula

%m,n—i—l (Z) — (ﬂ.m,n—i-l (Z) ’ ’,,:(m,n—i—l) (Z)) )

Corollary 10.3. Foranym,n € Nands > —m — 1, we have

(~m,n+1) (s) (s) o pntlms)

Trm,n lumn—i-l _:umn

Now taken such that: + s > 0 and introduce a map
Tp Mat(NxN, (C) — Mat(nxn, (C)

by the formula

~ _ 00,00 n+1,n n+1n+1 n+2,n+1 n+2,n+2
o (2) = (ﬁnm (z),r( ), 7 )y ), 7 )

We can now reformulate the result of our computations asvidl

PARERER

Proposition 10.4.1f n + s > 0, then we have

(128) (Tn), 14 X H prtitlntls) o p(nti+lnti+l, s)) .
1=0



THE ERGODIC DECOMPOSITION OF INFINITE PICKRELL MEASURES 93

10.2. Proof of Proposition[1.9. Using Kakutani's theorem, we now con-
clude the proof of Propositidn 1.9. Takdarge enough so that + s > 1,
n + s’ > 1 and compute the Hellinger integral

Hel (n7 s, S/) =K <\/(P(n,n—1,s)x P(n,n,s)) . (P(n,n—l,s’)x P(n,n,s’))) —

_ \/ P@n—1+s) T@n—1+s) T@n+s) T@n+s)
Fn—1DI'(n+s) T'(n—1)T'(n+s) I')l(n+s) I'(n)l'(n+s)

X/ Y1 47) 2”_1_#0%/ 14 ”_—dr_
0

0

VT -1+ T@n—1+5) JT2n+s)T@nts) ([n+=t)

I(2n —1+ £ [(2n + =£) D(n+s)D(n+s)

We now recall a classical asymptotics:tas> oo, we have
NG (¢ 2 1

(+a1) (+02Lz):1+(a1+a2) —|—O )

(D(t 4 afez)) 4t 12

It follows that

AV 1

Hel (n,s,s') =1— (8;;7;)—1-0 (ﬁ) ,

whence, by the Kakutani’s theorem combined with (128), tickrell mea-
suresu® andu(", finite or infinite, are mutually singular i # s'.

REFERENCES

[1] M. Abramowitz and I. Stegun, Handbook of MathematicahEtions, National Bu-
reau of Standards, Department of Commerce of the Unite@sStftAmerica, Tenth
Printing, 1972.

[2] E.M. Baruch, The classical Hankel transform in the HKa#d model,
arxXiv:1010.5184v1.

[3] V.I. Bogachev, Measure theory. Vol. Il. Springer Ver|&grlin, 2007.

[4] A.M. Borodin, Determinantal point processes, in The @xif Handbook of Random
Matrix Theory, Oxford University Press, 2011.

[5] A.Boraodin, A. Okounkov; G. Olshanski, Asymptotics ofRlcherel measures for sym-
metric groups, J. Amer. Math. Soc. 13 (2000), 481-515.

[6] A. Borodin, G. Olshanski, Infinite random matrices andaatic measures. Comm.
Math. Phys. 223 (2001), no. 1, 87-123.

[7]1 A.M. Borodin, E.M. Rains, Eynard-Mehta theorem, Schrogess, and their pfaffian
analogs. J. Stat. Phys. 121 (2005), 291-317.

[8] P. Bourgade, A. Nikeghbali, A. Rouault, Ewens Measure<Compact Groups and
Hypergeometric Kernels, Séminaire de Probabilités XL3pringer Lecture Notes in
Mathematics 2011, pp 351-377.


http://arxiv.org/abs/1010.5184

94 ALEXANDER I. BUFETOV

[9] A.l. Bufetov, Ergodic decomposition for measures gtiasariant under Borel actions
of inductively compact groups, arXiv:1105.0664, May 20tblappear in Matematich-
eskii Sbornik .

[10] A.l. Bufetov, Finiteness of Ergodic Unitarily InvanaMeasures on Spaces of Infinite
Matrices! arXiv:1108.2737, August 2011, to appear in Aasale I'Institut Fourier.
[11] A.l. Bufetov, Multiplicative functionals of determémtal processes, Uspekhi Mat.
Nauk 67 (2012), no. 1 (403), 177-178; translation in Rusklath. Surveys 67 (2012),

no. 1, 181-182.

[12] A. Bufetov, Infinite determinantal measures, ElecicdResearch Announcementsin
the Mathematical Sciences, 20 (2013), pp. 8 — 20.

[13] D.J.Daley, D. Vere-Jones, An introduction to the theof point processes, vol.l-Il,
Springer Verlag 2008.

[14] J. Faraut, Analyse sur les groupes de Lie: une intradngc€Calvage et Mounet 2006.

[15] J. Faraut, Analysis on Lie Groups, Cambridge UnivgrBitess, 2008.

[16] S. Ghobber, Ph. Jaming, Strong annihilating pairs lier Eourier-Bessel transform.
J. Math. Anal. Appl. 377 (2011), 501-515.

[17] S. Ghobber, Ph. Jaming, Uncertainty principles for egmal operators,
arxXiv:1206.1195v1

[18] J.B. Hough, M. Krishnapur, Y. Peres, B. Virag, Detenamtal processes and inde-
pendence. Probab. Surv. 3 (2006), 206—-229.

[19] Hua Loo Keng, Harmonic Analysis of Functions of Sev&amplex Variables in the
Classical Domains, Science Press Peking 1958, Russiatettian Moscow Izd.Inostr.
lit., 1959, English translation (from the Russian) AMS 1963

[20] A. Kolmogoroff, Grundbegriffe der Wahrscheinlichksiechnung, Springer Verlag,
1933.

[21] A. Lenard, States of classical statistical mecharsgatems of infinitely many parti-
cles. I. Arch. Rational Mech. Anal. 59 (1975), no. 3, 219-239

[22] R. Lyons, Determinantal probability measures. Pubdti Inst. Haute&tudes Sci.
No. 98 (2003), 167-212.

[23] R. Lyons, J. Steif, Stationary determinantal procesghase multiplicity, Bernoul-
licity, entropy, and domination. Duke Math. J. 120 (2003), 8, 515-575.

[24] E. Lytvynov, Fermion and boson random point processegsaaticle distributions of
infinite free Fermi and Bose gases of finite density. Rev. MBattys. 14 (2002), no.
10, 1073-1098.

[25] O. Macchi, The coincidence approach to stochastic tppincesses. Advances in
Appl. Probability, 7 (1975), 83-122.

[26] Yu.A. Neretin, Hua-type integrals over unitary grougeed over projective limits of
unitary groups. Duke Math. J. 114 (2002), no. 2, 239-266.

[27] G. Olshanski, The quasi-invariance property for then@ea kernel determinantal
measure. Adv. Math. 226 (2011), no. 3, 2305-2350.

[28] G. Olshanski, Unitary representations of infinite-dimsional pair§G, K) and the
formalism of R. Howe, In: Representation of Lie Groups andaiel Topics, Adv.
Stud. Contemp. Math., 7, Gordon and Breach, NY, 1990, pp-2683, online at
http://wwv. i1tp.ru/upl oad/ user page/ 52/ HoweFor m pdf

[29] G. Olshanski, Unitary representations of infinite-dimsional
classical groups  (Russian), D.Sci Thesis, Institute  of  Ge-
ography of the Russian Academy of Sciences; online at

http://www. iitp.ru/upload/ userpage/ 52/ A shanski thesis. pdf


http://arxiv.org/abs/1105.0664
http://arxiv.org/abs/1108.2737
http://arxiv.org/abs/1206.1195
http://www.iitp.ru/upload/userpage/52/HoweForm.pdf
http://www.iitp.ru/upload/userpage/52/Olshanski_thesis.pdf

THE ERGODIC DECOMPOSITION OF INFINITE PICKRELL MEASURES 95

[30] G. Olshanski, A. Vershik, Ergodic unitarily invariamteasures on the space of infi-
nite Hermitian matrices. In: Contemporary mathematicalsats, Amer. Math. Soc.
Transl. Ser. 2, 175, Amer. Math. Soc., Providence, RI, 1pp6137-175.

[31] D. Pickrell, Mackey analysis of infinite classical matigroups. Pacific J. Math. 150
(1991), no. 1, 139-166.

[32] D. Pickrell, Separable representations of automamtgroups of infinite symmetric
spaces, J. Funct. Anal. 90 (1990), 1-26.

[33] D. Pickrell, Measures on infinite-dimensional Grasemaanifolds, J. Funct. Anal.
70 (1987), 323-356.

[34] M. Rabaoui, Asymptotic harmonic analysis on the spdegoare complex matrices.
J. Lie Theory 18 (2008), no. 3, 645—-670.

[35] M. Rabaoui, A Bochner type theorem for inductive limgfsGelfand pairs. Ann. Inst.
Fourier (Grenoble), 58 (2008), no. 5, 1551-1573.

[36] M. Reed, B. Simon, Methods of modern mathematical ptsysiol.I-1V. Second edi-
tion. Academic Press, Inc. New York, 1980.

[37] T. Shirai, Y. Takahashi, Random point fields associatih fermion, boson and other
statistics. In: Stochastic analysis on large scale intergqsystems, Adv. Stud. Pure
Math., 39, Math. Soc. Japan, Tokyo, 2004, 345-354.

[38] T. Shirai, Y. Takahashi, Random point fields associatél certain Fredholm deter-
minants. |. Fermion, Poisson and boson point processesingt.FAnal. 205 (2003),
no. 2, 414-463.

[39] T. Shirai, Y. Takahashi, Random point fields associatél certain Fredholm deter-
minants. Il. Fermion shifts and their ergodic and Gibbs praps. Ann. Probab. 31
(2003), no. 3, 1533-1564.

[40] B. Simon, Trace class ideals, AMS, 2011.

[41] A. Soshnikov, Determinantal random point fields. (Raisy Uspekhi Mat. Nauk 55
(2000), no. 5(335), 107-160; translation in Russian Mathv&ys 55 (2000), no. 5,
923-975.

[42] G. Szego, Orthogonal polynomials, AMS 1969.

[43] C. A. Tracy, H. Widom, Level spacing distributions artBessel kernel. Comm.
Math. Phys. 161, no. 2 (1994), 289-309.

[44] A.M. Vershik, A description of invariant measures fartians of certain infinite-
dimensional groups. (Russian) Dokl. Akad. Nauk SSSR 2184),949-752.

LABORATOIRE D'ANALYSE, TOPOLOGIE PROBABILITES, AIX-MARSEILLE UNI-
VERSITE, CNRS, MARSEILLE

STEKLOV INSTITUTE OFMATHEMATICS, MOSCOW
INSTITUTE FORINFORMATION TRANSMISSION PROBLEMS, MOSCOW
NATIONAL RESEARCHUNIVERSITY HIGHER SCHOOL OF ECONOMICS, MOSCOW

RICE UNIVERSITY, HOUSTONTX



	1. Introduction
	1.1. Informal outline of the main results.
	1.2. Historical remarks.
	1.3. Organization of the paper.
	1.4. The Infinite Bessel Point Process.
	1.5. The modified Bessel point process.
	1.6. The modified infinite Bessel point process.
	1.7. Unitarily-Invariant Measures on Spaces of Infinite Matrices
	1.8. Classification of ergodic measures
	1.9. Formulation of the main result
	1.10. A skew-product representation of the measure B(s).
	1.11. The general scheme of ergodic decomposition
	1.12. The radial part of the Pickrell measure

	2. Construction and properties of infinite determinantal measures
	2.1. Preliminary remarks on sigma-finite measures
	2.2. The unique extension property
	2.3. Inductively determinantal measures.
	2.4. General construction of infinite determinantal measures .
	2.5. Change of variables for infinite determinantal measures.
	2.6. Example: infinite orthogonal polynomial ensembles.
	2.7. Multiplicative functionals of infinite determinantal measures
	2.8. Infinite determinantal measures obtained as finite-rank perturbations of determinantal probability measures.
	2.9.  Example: the infinite Bessel point process.

	3. Convergence of determinantal measures.
	3.1. Convergence of operators and convergence of measures
	3.2. Convergence of induced processes
	3.3. Application to infinite determinantal measures.
	3.4. Convergence of approximating kernels and the proof of Proposition 1.3.

	4. Weak compactness of families of determinantal measures.
	4.1. Configurations and finite measures
	4.2. Weak compactness and weak convergence in the space of configurations and in the space of finite measures.
	4.3. Applications to determinantal point processes
	4.4. Induced processes corresponding to functions assuming values in [0,1].
	4.5. Tightness for families of induced processes
	4.6. Tightness of families of finite-rank deformations.
	4.7. Convergence of finite-rank perturbations.

	5. Weak convergence of rescaled radial parts of Pickrell measures .
	5.1.  The case s>-1: finite Pickrell measures.
	5.2. The case s-1: infinite Pickrell measures.
	5.3. The modified Bessel point process as the scaling limit of the radial parts of infinite Pickrell measures: formulation of Proposition 5.5.
	5.4. Proof of Proposition 5.5.

	6. Convergence of approximating measures on the Pickrell set and proof of Propositions 1.15, 1.16.
	6.1. Proof of Proposition 1.15
	6.2. Proof of Proposition 1.16.
	6.3. Weak convergence in MfinMfin((0,+)) and weak convergence in Mfin(P)

	7.  Proof of Lemma 1.14 and Completion of the Proof of Theorem 1.11.
	7.1. Reduction of Lemma 1.14 to Lemma 7.1
	7.2. Proof of Lemma 7.1.
	7.3. Completion of the proof of Theorem 1.11
	7.4. Proof of Proposition 1.4.

	8. Appendix A. The Jacobi Orthogonal Polynomial Ensemble.
	8.1. Jacobi polynomials.
	8.2. The recurrence relation between Jacobi polynomials.
	8.3. The Bessel kernel.

	9. Appendix B. Spaces of configurations and determinantal point processes.
	9.1. Spaces of configurations.
	9.2.  Weak topology on the space of probability measures on the space of configurations.
	9.3. Spaces of locally trace class operators.
	9.4. Determinantal Point Processes
	9.5. Change of variables
	9.6. Multiplicative functionals on spaces of configurations.
	9.7. Multiplicative functionals of determinantal point processes.

	10. Appendix C. Construction of Pickrell Measures and proof of Propositions 1.8 and 1.9.
	10.1. Proof of Proposition 1.8.
	10.2. Proof of Proposition 1.9.

	References

