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On n-dependent groups and fields

First, an example of a 2-dependent group without a minimal subgroup of bounded index is given. Second, all infinite n-dependent fields are shown to be Artin-Schreier closed. Furthermore, the theory of any non separably closed PAC field has the IP n property for all natural numbers n and certain properties of dependent (NIP) valued fields extend to the n-dependent context.

Introduction

Macintyre [START_REF] Macintyre | ω 1 -categorical fields[END_REF] and Cherlin-Shelah [START_REF] Cherlin | Superstable fields and groups[END_REF] have shown independently that any superstable field is algebraically closed. However, less is known in the case of supersimple fields. Hrushovski proved that any infinite perfect bounded pseudo-algebraically closed (PAC) field is supersimple [START_REF] Hrushovski | Pseudo-finite fields and related structures, Model theory and applications[END_REF] and conversely supersimple fields are perfect and bounded (Pillay and Poizat [START_REF] Pillay | Corps et Chirurgie[END_REF]), and it is conjectured that they are PAC. More is known about Artin-Schreier extensions of certain fields. Using a suitable chain condition for uniformly definable subgroups, Kaplan, Scanlon and Wagner showed in [START_REF] Kaplan | Artin Schreier extensions in NIP and simple fields[END_REF] that infinite NIP fields of positive characteristic are Artin-Schreier closed and simple fields have only finitely many Artin-Schreier extensions. The latter result was generalized to fields of positive characteristic defined in a theory without the tree property of the second kind (NTP 2 fields) by Chernikov, Kaplan and Simon [START_REF] Chernikov | Groups and fields with NTP 2[END_REF].

We study groups and fields without the n-independence property. Theories without the n-independence property, briefly n-dependent or NIP n theories, were introduced by Shelah in [START_REF] Shelah | Strongly dependent theories[END_REF]. They are a natural generalization of NIP theories, and in fact both notions coincide when n equals to 1. For background on NIP theories the reader may consult [START_REF] Simon | A guide to NIP theories[END_REF]. It is easy to see that any theory with the (n + 1)-independence property has the n-independence property. On the other hand, as for any natural number n the random (n + 1)-hypergraph is n + 1-dependent but has the n-independence property [9, Example 2.2.2], the classes of n-dependent theories form a proper hierarchy. Additionally, since all random hypergraphs are simple, the previous example shows that there are theories which are simple and n-dependent but which are not NIP. Hence one might ask if there are any non combinatorial examples of n-dependent theories which have the independence property? And furthermore, which results of NIP theories can be generalized to ndependent theories or more specifically which results of (super)stable theories remains true for (super)simple n-dependent theories? Beyarslan [START_REF] Beyarslan | Random hypergraphs in pseudofinite fields[END_REF] constructed the random nhypergraph in any pseudo-finite field or, more generally, in any e-free perfect PAC field (PAC fields whose absolute Galois group is the profinite completion of the free group on e generators). Thus, those fields lie outside of the hierarchy of n-dependent fields.

In this paper, we first give an example of a group with a simple 2-dependent theory which has the independence property. Additionally, in this group the A-connected component depends on the parameter set A. This establishes on the one hand a non combinatorial example of a proper 2-dependent theory and on the other hand shows that the existence of an absolute connected component in any NIP group cannot be generalized to 2-dependent groups. Secondly, we find a Baldwin-Saxl condition for n-dependent groups (Section 4). Using this and connectivity of a certain vector group established in Section 5 we deduce that n-dependent fields are Artin-Schreier closed (Section 6). Furthermore, we show in Section 7 that the theory of any non separably closed PAC field has in fact the IP n property for all natural numbers n which was established by Duret for the case n equals to 1 [START_REF] Louis | Les corps faiblement algébriquement clos non séparablement clos ont la propriété d'indépendance, Model Theory of Algebra and Arithmetic[END_REF]. In Section 8 we extend certain consequences found in [START_REF] Kaplan | Artin Schreier extensions in NIP and simple fields[END_REF] for dependent valued fields with perfect residue field as well as in [START_REF] Jahnke | Definable henselian valuations[END_REF] by Jahnke and Koenigsmann for NIP henselian valued field to the n-dependent context. I would like to thank my supervisors Thomas Blossier and Frank O. Wagner for useful comments during the work on this article and on first versions of this paper. Also, I like to thank Artem Chernikov for bringing this problem to my attention and to Daniel Palacín for valuable discussions around the topic.

Preliminaries

In this section we introduce n-dependent theories and state some general facts. The following definition can be found in [START_REF] Shelah | Definable groups for dependent and 2-dependent theories[END_REF]Definition 2.4]. Definition 2.1. Let T be a theory. We say that a formula ψ(ȳ 0 , . . . , ȳn-1 ; x) in T has the n-independence property (IP n ) if there exists some parameters (ā j i : i ∈ ω, j ∈ n) and ( bI :

I ⊂ ω n ) in some model M of T such that M |= ψ(ā 0 i 0 , . . . , ān-1 i n-1 , bI ) if and only if (i 0 , . . . , i n-1 ) ∈ I.
A theory is said to have IP n if one of its formulas has IP n . Otherwise we called it n-dependent. A structure is said to have IP n or to be n-dependent if its theory does.

Both facts below are useful in order to proof that a theory is n-dependent as it reduces the complexity of formulas one has to consider to have IP n . The first one is stated as Remark 2.5 [START_REF] Shelah | Definable groups for dependent and 2-dependent theories[END_REF] and afterwards proved in detail as Theorem 6.4 [START_REF] Chernikov | On n-dependence[END_REF]. Fact 2.2. A theory T is n-dependent if and only if every formula φ(ȳ 0 , ..., ȳn-1 ; x) with |x| = 1 is n-dependent. Fact 2.3. [9, Corollary 3.15] Let φ(ȳ 0 , ..., ȳn-1 ; x) and ψ(ȳ 0 , ..., ȳn-1 ; x) be n-dependent formulas. Then so are ¬φ, φ ∧ ψ and φ ∨ ψ.

Remark 2.4. Note that a formula with at most n free variables cannot witness the nindependence property. Thus, from the previous fact it is easy to deduce that the random n-hypergraph is n-dependent. In fact, more generally any theory in which any formula of more than n free variables is a boolean combination of formulas with at most n free variables is n-dependent.

3 Example of a 2-dependent group without a minimal subgroup of bounded index

Let G be F (ω)
p where F p is the finite field with p elements. We consider the structure M defined as (G, F p , 0, +, •) where 0 is the neutral element, + is addition in G, and

• is the bilinear form (a i ) i • (b i ) i = i a i b i from G to F p .
This example in the case p equals 2 has been studied by Wagner in [START_REF] Frank | Simple Theories[END_REF]Example 4.1.14]. He shows that it is simple and that the connected component G 0 A for any parameter set A is equal to {g ∈ G : a∈A g • a = 0}. Hence, it is getting smaller and smaller while enlarging A and whence the absolute connected component, which exists in any NIP group, does not for this example. Proof. Let t 1 (x; ȳ) and t 2 (x; ȳ) be two group terms in G and let ǫ be an element of F p . Observe that the atomic formula t 1 (x; ȳ) = t 2 (x; ȳ) (resp. t 1 (x; ȳ) = t 2 (x; ȳ)) is equivalent to an atomic formula of the form x = t(ȳ) or 0 = t(ȳ) (resp. x = t(ȳ) or 0 = t(ȳ)) for some group term t(ȳ). Note that 0 = t(ȳ) as well as 0 = t(ȳ) are both quantifier free formulas in the free variables ȳ. Furthermore, the atomic formulas t 1 (x; ȳ) • t 2 (x; ȳ) = ǫ and t 1 (x; ȳ) • t 2 (x; ȳ) = ǫ are equivalent to a boolean combination of atomic formulas of the form x • x = ǫ x , x • t i (ȳ) = ǫ i and t j (ȳ) • t k (ȳ) = ǫ jk (a quantifier free formula in the free variables ȳ) with t i (ȳ) group terms and ǫ x , ǫ i , and ǫ jk elements of F p . Thus, a quantifier free formula ϕ(x, ȳ) is equivalent to a finite disjunction of formulas of the form

φ(x; ȳ) = ψ(ȳ) ∧ x • x = ǫ ∧ i∈I 0 x = t 0 i (ȳ) ∧ i∈I 1 x = t 1 i (ȳ) ∧ i∈I 2 x • t 2 i (ȳ) = ǫ i
where t j i (ȳ) are group terms, ǫ, ǫ i are elements of F p , and ψ(ȳ) is a quantifier free formula in the free variables ȳ. If I 0 is nonempty, the formula ∃xφ(x, ȳ) is equivalent to

ψ(ȳ) ∧ j,l∈I 0 t 0 j (ȳ) = t 0 l (ȳ) ∧ t 0 i (ȳ) • t 0 i (ȳ) = ǫ ∧ j∈I 1 t 0 i (ȳ) = t 1 j (ȳ) ∧ j∈I 2 t 0 i (ȳ) • t 2 j (ȳ) = ǫ j
for any i ∈ I 0 . Now, we assume that I 0 is the empty set. If there exists an element x ′ such that x ′ • z i = ǫ i for given z 0 , . . . , z m in G and ǫ i ∈ F p , one can always find an element x such that x • x = ǫ and x = v j for given v 0 , . . . , v q in G which still satisfies x • z i = ǫ i by modifying x ′ at a large enough coordinate. Hence, it is enough to find a quantifier free condition which is equivalent to

∃x i∈I 2 x • t 2 i (ȳ) = ǫ i . For i ∈ F p , let Y i = {j ∈ I 2 : ǫ j = i}. Then ∃x i∈I 2 x • t 2 i (ȳ) = ǫ i is equivalent to p-1 i=0 j∈Y i t 2 j (ȳ) / ∈    k∈Y 0 λ 0 k t 2 k (ȳ) + • • • + k∈Y i \j λ i k t 2 k (ȳ) : λ l k ∈ F p , i l=1 k =j k∈Y l l • Fp λ l k = i    which finishes the proof. Lemma 3.2. The structure M is 2-dependent.
Proof. We suppose, towards a contradiction, that M has IP 2 . By Fact 2.2 we can find a formula φ(ȳ 0 , ȳ1 ; x) with |x| = 1 which witnesses the 2-independence property. By the proof of Lemma 3.1 and as being 2-dependent is preserved under boolean combinations (Fact 2.3), it suffices to prove that none of the following formulas can witness the 2independence property in the variables (ȳ 0 , ȳ1 ; x):

• quantifier free formulas of the form ψ(ȳ 0 , ȳ1 ),

• the formula x • x = ǫ with ǫ in F p ,
• formulas of the form x = t(ȳ 0 , ȳ1 ) for some group term t(ȳ 0 , ȳ1 ),

• formulas of the form x • t(ȳ 0 , ȳ1 ) = ǫ for some group term t(ȳ 0 , ȳ1 ) and ǫ in F p .

As the atomic formula ψ(ȳ 0 , ȳ1 ) does not depend on x and x • x = ǫ does not depend on ȳ0 nor ȳ1 they cannot witness the 2-independence property in the variables (ȳ 0 , ȳ1 ; x). Furthermore, as for given ā and b, the formula x = t(ā, b) can be only satisfied by a single element, such a formula is as well 2-dependent. Thus the only candidate left is a formula of the form x • t(ȳ 0 , ȳ1 ) = ǫ with t(ȳ 0 , ȳ1 ) some group term in G and ǫ an element of F p . Thus, we suppose that the formula x • t(ȳ 0 , ȳ1 ) = ǫ has IP 2 and choose some elements {ā i : i ∈ ω}, { bi : i ∈ ω} and {c I : I ⊂ ω 2 } which witnesses it. As t(ȳ 0 , ȳ1 ) is just a sum of elements of the tuple ȳ0 and ȳ1 and G is commutative, we may write this formula as

x • (t a (ȳ 0 ) + t b (ȳ 1 )) = ǫ in which the term t a (ȳ 0 ) (resp. t b (ȳ 1 )
) is a sum of elements of the tuple ȳ0 (resp. ȳ1 ). Let

S ij := {x : x • (t a (ā i ) + t b ( bj )) = ǫ}
be the set of realizations of the formula x • (t a (ā i ) + t b ( bj )) = ǫ. Note, that an element c belongs to S ij if and only if we have that e ij (c) defined as

e ij (c) = c • t a (ā i ) + t b ( bj )
is equal to ǫ. Let i, l, j, and k be arbitrary natural numbers. Then,

e ij (c) = c • t a (ā i ) + t b ( bj ) = c • (t a (ā i ) + t b ( bk )) + (p -1)(t a (ā l ) + t b ( bk )) + (t a (ā l ) + t b ( bj )) = e ik (c) + (p -1)e lk (c) + e lj (c).
If the element c belongs to S ik ∩ S lk ∩ S lj , the terms e ik (c), e lk (c), and e lj (c) are all equal to ǫ. By the equality above we get that e ij (c) is also equal to ǫ and so c also belongs to S ij .

Let I = {(1, 1), (1, 2), (2, 2)}. Then c I ∈ S 22 ∩ S 12 ∩ S 11 but c I ∈ S 21 which contradicts the precious paragraph letting i and k be equal to 2 and l and j be equal to 1. Thus the formula x • t(ȳ 0 , ȳ1 ) = ǫ is 2-dependent, hence all formulas in the theory of M are 2-dependent and whence M is 2-dependent.

Baldwin-Saxl condition for n-dependent theories

We shall now prove a suitable version of the Baldwin-Saxl condition [START_REF] Baldwin | Jan Saxl: Logical stability in group theory[END_REF] for n-dependent formulas.

Proposition 4.1. Let G be a group and let ψ(ȳ 0 , . . . , ȳn-1 ; x) be a n-dependent formula for which the set ψ( b0 , . . . , bn-1 ; G) defines a subgroup of G for any parameters b0 , . . . , bn-1 . Then there exists a natural number m ψ such that for any d greater or equal to m ψ and any array of parameters

(ā i,j : i < n, j ≤ d) there is ν ∈ d n such that η∈d n H η = η∈d n ,η =ν H η
where H η is defined as ψ(ā 0,i 0 , . . . , ān-1,i n-1 ; x) for η = (i 0 , . . . , i n-1 ).

Proof. Suppose, towards a contradiction, that for an arbitrarily large natural number m one can find a finite array (ā i,j : i < n, j ≤ m) of parameters such that η∈m n H η is strictly contained in any of its proper subintersections. Hence, for every ν ∈ m n there exists c ν in η =ν H η \ η H η . Now, for any subset J of m n , we let c J := η∈J c η . Note that c J ∈ H ν whenever ν ∈ m n \ J. On the other hand, if ν is an element of J, all factors of the product except of c ν belong to H ν , whence c J ∈ H ν . By compactness, one can find an infinite array of parameters (ā i,j : i < n, j ≤ ω) and elements {c J : J ⊂ ω n } such that c J belongs to H ν if and only if ν ∈ J. Hence, the formula ¬ψ(ȳ 0 , . . . , ȳn-1 ; x) has IP n and whence by Fact 2.3 the original formula ψ(ȳ 0 , . . . , ȳn-1 ; x) has IP n as well contradicting the assumption.

A special vector group

For this section, we fix an algebraically closed field K of characteristic p > 0 and we let ℘(x) be the additive homomorphism x → x p -x on K.

We analyze the following algebraic subgroups of (K, +) n : Definition 5.1. For a singleton a in K, we let G a be equal to (K, +), and for a tuple ā = (a 0 , . . . , a n-1 ) ∈ K n with n > 1 we define:

G ā = {(x 0 , . . . , x n-1 ) ∈ K n : a 0 • ℘(x 0 ) = a i • ℘(x i ) for 0 ≤ i < n}.
Recall that for an algebraic group G, we denote by G 0 the connected component of the unit element of G. Note that if G is definable over some parameter set A, its connected component G 0 coincides with the smallest A-definable subgroup of G of finite index.

Our aim is to show that G ā is connected for certain choices of ā, namely G ā coincides with G 0 ā. Lemma 5.2. Let k be an algebraically closed subfield of K, let G be a k-definable connected algebraic subgroup of (K n , +) and let f be a k-definable homomorphism from G to (K, +) such that for every ḡ ∈ G there are polynomials P ḡ(X 0 , . . . , X n-1 ) and

Q ḡ(X 0 , . . . , X n-1 ) in k[X 0 , . . . , X n-1 ] such that f (ḡ) = P ḡ(ḡ) Q ḡ(ḡ) .
Then f is an additive polynomial in k[X 0 , . . . , X n-1 ]. In fact, there exists natural numbers m 0 , . . . , m n such that f is of the form m 0 i=0 a i,0

X p i 0 + • • • + mn i=0 a i,n X p i n with coefficients a i,j in k.
Proof. By compactness, one can find finitely many definable subsets D i of G and polynomials P i (X 0 , . . . , X n-1 ) and Lemma 3.8] we can extend f to a k-definable homomorphism F : (K n , +) → (K, +) which is also locally rational. Now, the functions F 0 (X) := F (X, 0, . . . , 0), . . . , F n-1 (X) := F (0, . . . , 0, X) are k-definable homomorphisms of (K, +) to itself. Additionally, they are rational on a finite definable decomposition of K, so they are rational on a cofinite subset of K. Hence every

Q i (X 0 , . . . , X n-1 ) in k[X 0 , . . . , X n-1 ] such that f is equal to P i (x)/Q i (x) on D i . Using [3,
F i is an additive polynomial in k[X]. Thus F (X 0 , . . . , X n-1 ) = F 0 (X 0 ) + • • • + F n-1 (X n-1 )
is an additive polynomial in k[X 0 , . . . , X n-1 ] as it is a sum of additive polynomials. By [12, Proposition 1.1.5] it is of the desired form. Proof. So suppose first that 1 a 0 , . . . , 1 an is linearly F p -dependent. Thus we can find elements b

0 , . . . , b n-1 in F p such that b 0 • 1 a 0 + • • • + b n-1 1 a n-1 = 1 a n .
Now, let ā′ be the tuple ā restricted to its first n coordinates and fix some element (x 0 , . . . x n-1 ) in G ā′ . Let t be defined as a 0 (x p 0 -x 0 ). Hence, by the definition of G ā′ , we have that t is equal to a i (x p i -x i ) for any i < n. Furthermore, we have that (x 0 , . . . , x n-1 , x) belongs to G ā if and only if

t = a n (x p -x) ⇔ 0 = 1 a n t -(x p -x) ⇔ 0 = b 0 a 0 t + • • • + b n-1 a n-1 t -(x p -x) ⇔ 0 = b 0 • (x p 0 -x 0 ) + • • • + b n-1 • (x p n-1 -x n-1 ) -(x p -x) ⇔ 0 = (b 0 • x 0 + • • • + b n-1 • x n-1 -x) p -(b 0 • x 0 + • • • + b n-1 x n-1 -x).
In other words, (x 0 , . . . , x n-1 , x) belongs to G a if and only if b 0

• x 0 + • • • + b n-1 x n-1 -x is an element of F p .
With this formulation we consider the following subset of G ā:

H = {(x 0 , . . . x n ) ∈ G ā : (x 0 , . . . x n-1 ) ∈ G ā′ and b 0 • x 0 + . . . b n-1 x n-1 -x n = 0}
This is in fact a definable subgroup of G ā of finite index. Hence G ā is not connected.

We prove the other implication by induction on the length of the tuple ā which we denote by n. Let n = 1, then G ā is equal to (K, +) and thus connected since the additive group of an algebraically closed field is always connected.

Let ā = (a 0 , . . . , a n ) be an (n+1)-tuple such that 1 a 0 , . . . , 1 an is linearly F p -independent and suppose that the statement holds for tuples of length n. Define ā′ to be the restriction of ā to the first n coordinates. Observe that the natural map π : G ā → G ā′ is surjective since K is algebraically closed and that

[G ā′ : π(G 0 ā)] = [π(G ā) : π(G 0 ā)] ≤ [G ā : G 0 ā] < ∞.
Hence the definable group π(G 0 ā) has finite index in G ā′ . As 1 a 0 , . . . , 1 a n-1 is also linearly F p -independent, the group G ā′ is connected by assumption. Therefore π(G 0 ā) = G ā′ . Now, suppose that G ā is not connected.

Claim. For every x ∈ G ā′ , there exists a unique

x n ∈ K such that (x, x n ) ∈ G 0 ā.
Proof of the Claim. Assume there exists x ∈ K n and two distinct elements x 0 n and x 1 n of K such that (x, x 0 n ) and (x, x 1 n ) are elements of G 0 ā. As G 0 ā is a group, their difference ( 0, x 0 n -x 1 n ) belongs also to G 0 ā. Thus, by definition of G ā, its last coordinate x 0 n -x 1 n lies in F p . So ( 0, F p ) is a subgroup of G 0 ā. Take an arbitrary element (x,

x n ) in G ā. As π(G 0 ā) = G ā′ , there exists x ′ n ∈ K with (x, x ′ n ) ∈ G 0 ā. Again, the difference of the last coordinate x ′ n -x n lies in F p . So (x, x n ) = (x, x ′ n ) -( 0, x ′ n -x n ) ∈ G 0 ā.
This leads to a contradiction, as G 0 ā is assumed to be a proper subgroup of G ā.

Thus, we can fix a definable additive function f : G ā′ → K that sends every tuple to this unique element. Note that G ā and hence also G 0 ā are defined over ā. So the function f is defined over ā as well. Now, let x = (x 0 , . . . , x n-1 ) be any tuple in G ā′ and set L := F p (a 0 , . . . , a n ). Then:

x n := f (x) ∈ dcl(ā, x).

In other words, x n is definable over L(x 0 , . . . , x n-1 ) which simply means that it belongs to the purely inseparable closure n∈N L(x 0 , . . . , x n-1 ) p -n of L(x 0 , . . . , x n-1 ) by [5, Chapter 4, Corollary 1.4]. Since there exists an l ∈ L(x 0 ) such that x p n -x n -a -1 n l = 0, the element x n is separable over L(x 0 , . . . , x n-1 ). So it belongs to L(x 0 , . . . , x n-1 ) which implies that there exists some mutually prime polynomials g, h ∈ L[X 0 , . . . , X n-1 ] such that x n = h(x 0 , . . . , x n-1 )/g(x 0 , . . . , x n-1 ). Thus, by Lemma 5.2 the definable function f (X 0 , . . . , X n-1 ) we started with is an additive polynomial in n variables over L alg and there exists c j,i in L alg and natural numbers m j such that

f (X 0 , . . . , X n-1 ) = m 0 i=0 c 0,i X p i 0 + • • • + m n-1 i=0 c n-1,i X p i n-1 .
Using the identities X p i -X i = a 0 a i (X p 0 -X 0 ) in G 0 ā, there are β j in L alg and g(X 0 ) = m 0 i=1 d i X p i 0 an additive polynomial in L alg [X 0 ] with summands of powers of X 0 greater or equal to p such that

f (X 0 , . . . , X n-1 ) = g(X 0 ) + n-1 j=0 β j • X j .
Since the image under f of the vectors (0, 1, 0, . . . , 0), (0, 0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1) has to be an element of F p , for 0 < i < n the β i 's have to be elements of F p . On the other hand, for any element (x 0 , . . . , x n ) of G 0 ā we have that a n (x p n -x n ) = a 0 (x p 0 -x 0 ). Replacing x n by f (x 0 , . . . , x n-1 ) we obtain

0 = a n [f (x 0 , . . . , x n-1 ) p -f (x 0 , . . . , x n-1 )] -a 0 (x p 0 -x 0 ) = a n   g(x 0 ) p -g(x 0 ) + (β p 0 x p 0 -β 0 x 0 ) + n-1 j=1 β j (x p j -x j )   -a 0 (x p 0 -x 0 ).
Using again the identities x p i -x i = a 0 a i (x p 0 -x 0 ) in G 0 ā we obtain a polynomial in one variable

P (X) = a n   g(X) p -g(X) + (β p 0 X p -β 0 X) + n-1 j=1 β j a 0 a j (X p -X)   -a 0 (X p -X)
which vanishes for all elements x 0 of K such that there exists x 1 , . . . , x n-1 in K with (x 0 , . . . , x n-1 ) ∈ G ā′ . In fact, this is true for all elements of K. Hence, P is the zero polynomial. Notice that g(X) appears in a pth-power. Since it contains only summands of power of X greater or equal to p, the polynomial g(X) p contains only summands of power of X strictly greater than p. As X only appears in powers less or equal to p in all other summands of P , the polynomial g(X) has to be the zero polynomial itself. By the same argument as for the other β j , the coefficient β 0 has to belong to F p as well.

Dividing by a 0 a n yields that

n j=0 β j 1 a j (X p -X)
with β n := -1 is the zero polynomial. Thus

n j=0 β j 1 a j = 0
As β n is different from 0 and all β i are elements of F p , this contradicts the assumption and the lemma is established. Corollary 5.4. Let k be a perfect subfield of K and ā ∈ k n be as in the previous lemma. Then G ā is isomorphic over k to (K, +). In particular, for any field K ≥ k with K ≤ K, the group G ā(K ) is isomorphic to (K, +).

6 Artin-Schreier extensions Definition 6.1. Let K be a field of characteristic p > 0 and ℘(x) the additive homomorphism x → x p -x. A field extension L/K is called an Artin-Schreier extension if L = K(a) with ℘(a) ∈ K. We say that K is Artin-Schreier closed if it has no proper Artin-Schreier extension i. e. ℘(K) = K.

In the following remark, we produce elements from an algebraically independent array of size m n which fit the condition of Lemma 5.3. Remark 6.2. Let {α i,j : i ∈ n, j ∈ m} be a set of algebraically independent elements in K. Then the tuple (a (i 0 ,...,i n-1 ) : (i 0 , . . . , i n-1 ) ∈ m n ) with a (i 0 ,...,i n-1 ) = n-1 l=0 α l,i l and ordered lexicographically satisfies the condition of Lemma 5.3.

Proof. Suppose that there exists a tuple of elements (β (i 0 ,...,i n-1 ) : (i 0 , . . . , i n-1 ) ∈ m n ) in F p not all equal to zero such that

(i 0 ,...,i n-1 )∈m n β (i 0 ,...,i n-1 ) 1 a (i 0 ,...,i n-1 ) = 0
Then the α i,j satisfy:

(i 0 ,...,i n-1 )∈m n β (i 0 ,...,i n-1 ) •   {(k,l) =(j,i j ):j≤n-1} α k,l   = 0
which contradicts the algebraic independence of the α i,j .

We can now adapt the proof in [START_REF] Kaplan | Artin Schreier extensions in NIP and simple fields[END_REF] showing that an infinite NIP field is Artin-Schreier closed to obtain the same result for a n-dependent field. Theorem 6.3. Any infinite n-dependent field is Artin-Schreier closed.

Proof. Let K be an infinite n-dependent field and we may assume that it is ℵ 0 -saturated. We work in a big algebraically closed field K that contains all objects we will consider. Let k = l∈ω K p l , which is a type-definable infinite perfect subfield of K. We consider the formula ψ(x; y 0 , . . . , y n-1 ) := ∃t (x = n-1 i=0 y i • ℘(t)) which for every tuple (a 0 , . . . , a n-1 ) in k n defines an additive subgroup of (K, +). Let m ∈ ω be the natural number given by Proposition 4.1 for this formula. Now, we fix an array of size m n of algebraically independent elements {α i,j : i ∈ n, j ∈ m} in k and set a (i 0 ,...,i n-1 ) = n l=0 α l,i l . By choice of m, there exists (j 0 , . . . , j n-1 ) ∈ m n such that (i 0 ,...,i n-1 )∈m n a (i 0 ,...,i n-1 ) • ℘(K) = (i 0 ,...,i n-1 ) =(j 0 ,...,j n-1 )

a (i 0 ,...,i n-1 ) • ℘(K). (6.1) 
By reordering the elements, we may assume that (j 0 , . . . , j n-1 ) = (m, . . . , m). Let ā be the tuple (a (i 0 ,...,i n-1 ) : (i 0 , . . . , i n-1 ) ∈ m n ) ordered lexicographically and ā′ the restriction to m n -1 coordinates (one coordinate less).

We consider the groups G ā and respectively G ā′ defined as in Definition 5.1. Using Remark 6.2 and Corollary 5.4 we obtain the following commuting diagram.

G ā π / / ≃ G ā′ ≃ (K, +) ρ / / (K, +)
As the vertical isomorphisms are defined over k, this diagram can be restricted to K.

Note that π and therefore also ρ stays onto for this restriction by equality (6.1) and that the size of ker(ρ) has to be p. Choose a nontrivial element c in the kernel of ρ and let ρ ′ be equal to ρ(c • x). Observe that ρ ′ is still a morphism from (K, +) to (K, +), its restriction to K is still onto and its kernel is equal to F p . Then [START_REF] Kaplan | Artin Schreier extensions in NIP and simple fields[END_REF]Remark 4.2] ensures that ρ ′ is of the form a • (x p -x) p n for some a in K. Finally, let l ∈ K be arbitrary. Since ρ ′ ↾ K is onto and X p n is an inseparable polynomial in characteristic p, there exists h ∈ K with l = h p -h. As l ∈ K was arbitrary, we get that ℘(K) = K and we can conclude.

The proof of [START_REF] Kaplan | Artin Schreier extensions in NIP and simple fields[END_REF]Corollary 4.4] adapts immediately and yields the following corollary.

Corollary 6.4. If K is an infinite n-dependent field of characteristic p > 0 and L/K is a finite separable extension, then p does not divide [L : K].

Non separably closed PAC field

The goal of this section is to generalize a result of Duret [START_REF] Louis | Les corps faiblement algébriquement clos non séparablement clos ont la propriété d'indépendance, Model Theory of Algebra and Arithmetic[END_REF], namely that the theory of a non separably closed PAC field has the IP property. To do so we need the following two facts.

Fact 7.1. [10, Lemme 6.2] Let K be a field and k be a subfield of K which is PAC. Let p be a prime number which does not coincide with the characteristic of K such that k contains all pth roots of unity and there exists an element in k that does not have a pth root in K. Let (a i : i ∈ ω) be a set of pairwise different elements of k and let I and J be finite disjoint subsets of ω, then K realizes {∃y(y p = x + a i ) : i ∈ I} ∪ {¬∃y(y p = x + a j ) : j ∈ J}.

Fact 7.2. [10, Lemme 2.1] Every finite separable extension of a PAC field is PAC.

Theorem 7.3. Let K be a field and k be a subfield of K which is a non separably closed PAC field and relatively algebraically closed in K. Then, the theory of K has the nindependence property.

Proof. If k is countable, we may work in an elementary extension of the tuple (K, k) for which it is uncountable. As k is non separably closed, there exists a proper Galois extension l of k. Let p be a prime number that divides the degree of l over k. Then there is a separable extension k ′ of k such that the Galois extension l over k ′ is of degree p. We may distinguish two cases:

(1) The characteristic of k is equal to p. As l is a cyclic Galois extension of degree p of k ′ , a field of characteristic p, it is an Artin-Schreier extension of k ′ . We pick α such that k ′ = k(α) and let K ′ = K(α). As k ′ is separable over k, it is relatively algebraically closed in K ′ by [17, p.59]. Hence K ′ admits an Artin-Schreier extension and consequently its theory has IP n by Theorem 6.3. As it is an algebraic extension of K, thus interpretable in K, the theory Th(K) has IP n as well.

(2) The characteristic of k is different than p. Since l is a separable extension of k ′ , we can find an element β of l such that l is equal to k ′ (β). Let ω be a primitive p-root of unity and let k ′ ω = k ′ (ω) and l ω = l(ω). Note that l ω is equal to k ′ ω (β) and that the degree [l ω : k ′ ω ] is at most p and the degree [k ′ ω : k ′ ] is strictly smaller than p. Additionally, we have:

[l ω : k ′ ω ] • [k ′ ω : k ′ ] = [l ω : k ′ ] = [l ω : l] • [l : k ′ ] = [l ω : l] • p. Thus [l ω : k ′ ω ]
is divisible by p and hence equal to p. Furthermore, the conjugates of β over k ′ ω are the same as over k ′ . Hence, as l is a Galois extension of k ′ , they are contained in l and whence in l ω . Thus, the field l ω is a cyclic Galois extension of the field k ′ ω and k ′ ω contains the p-roots of unity. In other words, l ω is a Kummer extension of k ′ ω of degree p. So there exists an element δ in k ′ ω that does not have a p root in it. Furthermore, as k ′ ω is a finite separable extension of k, it is also PAC by Fact 7.2 and it is relatively algebraically closed in K ′ ω = K ′ (ω) by [17, p.59]. Thus, the element δ has no p-root in K ′ ω as well. Let {a i,j : j < n, i ∈ ω} be a set of algebraic independent elements of k ′ ω which exists as it is an uncountable field. This ensures that n-1 l=0 a i l ,l = n-1 l=0 a j l ,l for (i 0 , . . . , i n-1 ) = (j 0 , . . . , j n-1 ). Thus we may apply Fact 7.1 to K ′ ω , k ′ ω and the infinite set { n-1 l=0 a i l ,l : (i 0 , . . . , i n-1 ) ∈ N n }. We deduce that for the formula ϕ(y; x 0 , . . . , x n-1 ) = ∃z(z p = y + n-1 i=0 x i ) and for any disjoint finite subsets I and J of N n there exists an element in K ′ ω that realizes {ϕ(y; a i 0 ,0 , . . . , a i n-1 ,n-1 )} (i 0 ,...,i n-1 )∈I ∪ {¬ϕ(y; a j 0 ,0 , . . . , a j n-1 ,n-1 )} (j 0 ,...,j n-1 )∈J Thus Th(K ′ ω ) has the IP n property by compactness. As again K ′ ω is interpretable in K, we can conclude that the theory of K has the IP n property as well.

Corollary 7.4. The theory of any non separably closed PAC field has the IP n property.

In the special case of pseudo-finite fields or, more generally, e-free PAC fields the previous corollary is a consequence of a result of Beyarslan proved in [START_REF] Beyarslan | Random hypergraphs in pseudofinite fields[END_REF], namely that one can interpret the n-hypergraph in any such field.

Applications to valued fields

In [START_REF] Kaplan | Artin Schreier extensions in NIP and simple fields[END_REF] the authors deduce that an NIP valued field of positive characteristic p has to be p-divisible simply by the fact that infinite NIP fields are Artin-Schreier closed [START_REF] Kaplan | Artin Schreier extensions in NIP and simple fields[END_REF]Proposition 5.4]. Thus their result generalizes to our framework.

For the rest of the section, we fix some natural number n. Corollary 8.2. Every n-dependent valued field of positive characteristic p whose residue field is perfect, is Kaplansky, i.e.

• the value group is p-divisible;

• the residue field is perfect and does not admit a finite separable extension whose degree is divisible by p. Now, we turn to the question whether an n-dependent henselian valued field can carry a nontrivial definable henselian valuation. Note that by a definable henselian valuation v on K we mean that the valuation ring of (K, v), i. e. the set of elements of K with non-negative value, is a definable set in the language of rings. We need the following definition: Definition 8.3. Let K be a field. We say that its absolute Galois group is universal if for every finite group G there exist a finite extensions L of K and a Galois extension M of L such that Gal(M/L) ∼ = G.

As any finite extension of an n-dependent field K of characteristic p > 0 is still ndependent and of characteristic p, one cannot find a finite extensions L ⊆ M of K such that their Galois group Gal(M/L) is of order p. Hence any n-dependent field of positive characteristic has a non-universal absolute Galois group. Note that Jahnke and Koenigsmann showed in [START_REF] Jahnke | Definable henselian valuations[END_REF]Theorem 3.15] that a henselian valued field whose absolute value group is non universal and which is neither separably nor real closed admits a non-trivial definable henselian valuation. Hence this gives the following result which is a generalization of [15, Corollary 3.18]: Proposition 8.4. Let (K, v) be a non-trivially henselian valued field of positive characteristic p which is not separably closed. If K is n-dependent then K admits a non-trivial definable henselian valuation.

Lemma 3 . 1 .

 31 The theory of M eliminates quantifiers.

Lemma 5 . 3 .

 53 Let ā = (a 0 , . . . , a n ) be a tuple in K × . Then G ā is connected if and only if the set 1 a 0 , . . . , 1 an is linearly F p -independent.Parts of the proof follows the one of[START_REF] Kaplan | Artin Schreier extensions in NIP and simple fields[END_REF] Lemma 2.8].

Corollary 8 . 1 .

 81 If (K, v) is an n-dependent valued field of positive characteristic p, then the value group of K is p-divisible.Together with Corollary 6.4, we can conclude the following analogue to[START_REF] Kaplan | Artin Schreier extensions in NIP and simple fields[END_REF] Corollary 5.10].
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