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On n-dependent groups and fields

Nadja Hempel∗

September 9, 2014

Abstract

First, an example of a 2-dependent group without a minimal subgroup of bounded
index is given. Second, all infinite n-dependent fields are shown to be Artin-Schreier
closed. Furthermore, the theory of any non separably closed PAC field has the IPn

property for all natural numbers n and certain properties of dependent (NIP) valued
fields extend to the n-dependent context.

1 Introduction

Superstable fields are algebraically closed (Macintyre [16] and Cherlin-Shelah [5]). Less
is known for supersimple fields. Hrushovski showed that any infinite perfect bounded
pseudo-algebraically closed (PAC) field is supersimple [12], conversly supersimple fields
are perfect and bounded (Pillay and Poizat [17]), and it is conjectured that they are PAC.
More is known about Artin-Schreier extensions of certain fields. Using a suitable chain
condition for uniformly definable subgroups, Kaplan, Scanlon and Wagner showed in [14]
that NIP fields of positive characteristic are Artin-Schreier closed and simple fields have
only finitely many Artin-Schreier extensions. The latter result was generalized to fields
of positive characteristic defined in a theory without the tree property of the second kind
(NTP2 fields) by Chernikov, Kaplan and Simon [7].

We study groups and fields without the n-independence property. Theories without
the n-independence property, briefly n-dependent or NIPn theories, were induced by
Shelah in [19] and are defined as follows:

Definition 1.1. A theory has the n-independence property (IPn) if there exists a formula
ψ(x0, . . . , xn−1; y) and some parameters (aji : i ∈ ω, j ∈ n) and (bI : I ⊂ ωn) such that
|= ψ(a0i0 , . . . , a

n−1
in−1

, bI) if and only if (i0, . . . , in−1) ∈ I.

A theory is called n-dependent if it does not have the IPn.

They are a natural generalization of NIP theories, and in fact both notions coincide
when n equals to 1. For backgroud on NIP theories the reader may consult [22]. It is easy
to see that any theory with the (n + 1)-independence property has the n-independence
property. On the other hand, as for any natural number n the random (n+1)-hypergraph
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is n+ 1-dependent but has the n-independence property, the classes of n-dependent the-
ories form a proper hierarchy of classes. Additionally, since the random graph is simple,
the previous example shows that there are simple unstable n-dependent theories for n
greater than 1. Hence one might ask if there are any non combinatorial examples of
n-dependent theories which have the independence property? And furthermore, which
results of NIP theories can be generalized to n-dependent theories or more specifically
which results of (super)stable theories remains true for (super)simple n-dependent the-
ories? Beyarslan [2] constructed the random n-hypergraph in any pseudo-finite field or,
more generally, in any e-free perfect PAC field (PAC fields whose absolute Galois group is
the profinite completion of the free group on e generators). Thus, those fields lie outside
of the hierarchy of n-dependent fields.

In this paper, we first give an example of a group with a simple 2-dependent the-
ory which has the independence property. Additionally, in this group the A-connected
component does depend on the parameter set A. This establish on the hand a non com-
binatorial example of a proper 2-dependent theory and on the other hand shows that the
existence of an absolute connected component in any NIP group cannot be generalized to
2-dependent groups. Secondly, we find a Baldwin-Saxl condition for n-dependent groups
(Section 3). Using this and connectivity of a certain vector group established in Section
4 we deduce (Section 5) that n-dependent fields are Artin-Schreier closed. Furthermore,
we show in Section 6 that the theory of any non separably closed PAC field has in fact
the IPn property for all n which was establish by Duret for the case n equals to 1 [8].
In Section 7 we extend certain consequences found in [7] for strongly dependent valued
fields as well as in [13] by Jahnke and Koenigsmann for NIP henselian valued field to the
n-dependent context.
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2 Example of a 2-dependent group without a minimal

subgroup of bounded index

Let G be F
(ω)
p where Fp is the finite field with p elements. We consider the structure M

defined as (G,Fp, 0,+, ·) where 0 is the neutral element, + is addition in G, and · is the
bilinear form (ai)i · (bi)i =

∑

i aibi from G to Fp. This example in the case p equals 2
has been studied by Wagner in [23, Example 4.1.14]. He shows that it is simple and that
the connected component G0

A for any parameter set A is equal to {g ∈ G :
⋂

a∈A g · a =
0}. Hence, it’s getting smaller and smaller while enlarging A and whence the absolute
connected component G0 does not exists which holds in any NIP group.

Lemma 2.1. M eliminates quantifiers.
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Proof. A quantifier free formula ϕ(x, ȳ) is a finite disjunction of formulas of the form

φ(x; ȳ) = ψ(ȳ) ∧ x · x = ǫ ∧
∧

i∈I0

x = t0i (ȳ) ∧
∧

i∈I1

x 6= t1i (ȳ) ∧
∧

i∈I2

x · t2i (ȳ) = ǫi

where tji (ȳ) are group terms and ǫ, ǫi are elements of Fp. If I0 is nonempty, the formula
∃xϕ(x, ȳ) is equivalent to

∧

j,l∈I0

t0j(ȳ) = t0l (ȳ) ∧ ψ(ȳ) ∧ t
0
i (ȳ) · t

0
i (ȳ) = ǫ ∧

∧

j∈I1

t0i (ȳ) 6= t1j(ȳ) ∧
∧

j∈I2

t0i (ȳ) · t
2
j(ȳ) = ǫj

for any i ∈ I0. Now, we assume that I0 is the empty set. If there exists an element x′

such that x′ ·zi = ǫi for given z0, . . . , zm in G and ǫi ∈ Fp, one can always find an element
x such that x · x = ǫ and x 6= vj for given v0, . . . , vq in G which still satifies x · zi = ǫi by
modifying x′ at a large enough coordinate. Hence, it is enough to find a quantifier free
condition which is equivalent to ∃x

∧

i∈I2
x · t2i (ȳ) = ǫi. For i ∈ Fp, let

Yi = {j ∈ I2 : ǫj = i}.

Then ∃x
∧

i∈I2
x · t2i (ȳ) = ǫi is equivalent to

p−1
∧

i=0

∧

j∈Yi

t2j(ȳ) /∈







∑

k∈Y0

λ0kt
2
k(ȳ) + · · · +

∑

k∈Yi\j

λi−1
k t2k(ȳ) : λ

l
k ∈ Fp,

i
∑

l=1

k 6=j
∑

k∈Yl

l ·Fp λ
l
k 6= i







which finishes the proof.

Remark 2.2. If the formula ϕ(x, ȳ, z̄) has the 2-independence property then any formula
ψ(x, ȳ, z̄) such that for any tuple ā and b̄, the cardinality of the realizations of the
symmetric difference of ϕ(x, ā, b̄) and ψ(x, ā, b̄) is finite, has it as well.

Lemma 2.3. The structure M is 2-dependent.

Proof. Towards a contradiction, we suppose that there exists a formula φ(x, ȳ, z̄) with
|x| = 1 together with (āi : i ∈ ω) and (b̄j : j ∈ ω) witnessing the 2-independence property.

By Remark 2.2 and an inspection of the formulas we may assume that φ(x, ȳ, z̄) is of
the following form:

φ(x; ȳ, z̄) =

n
∨

m=1





nm
∧

µ=1

[x · (tm,µ(ȳ, z̄)) = ǫm,µ] ∧ x · x = ǫm





As tm,µ(ȳ, z̄) is just a sum of the yi’s and zj’s we may write this formula as follows

φ(x; ȳ, z̄) =

n
∨

m=1





nm
∧

µ=1

[x · (tam,µ(ȳ) + tbm,µ(z̄)) = ǫm,µ] ∧ x · x = ǫm





in which the term tam,µ(ȳ) (resp. tbm,µ(z̄)) is a sum of the element of the tuple ȳ (resp.
z̄). Let

Sij
m := {x :

nm
∧

µ=1

x · (tam,µ(āi) + tbm,µ(b̄j)) = ǫm,µ and x · x = ǫm}
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and note that the set of realisations of φ(x; āi, b̄j) is equal to
⋃n

m=1 S
ij
m. For any m less

or equal to n, an element c belongs to Sij
m if and only if for all µ ≤ nm, we have

eijm,µ(c) = c ·
(

tam,µ(āi) + tbm,µ(b̄j)
)

= ǫm,µ and c · c = ǫm.

Let i, l, j, and k be arbitrary natural numbers.

eijm,µ(c) = c ·
(

tam,µ(āi) + tbm,µ(b̄j)
)

= c ·
(

(tam,µ(āi) + tbm,µ(b̄k)) + (p − 1)(tam,µ(āl) + tbm,µ(b̄k)) + (tam,µ(āl) + tbm,µ(b̄j))
)

= eikm,µ(c) + (p− 1)elkm,µ(c) + eljm,µ(c)

If the element c belongs to Sik
m,µ ∩ Slk

m,µ ∩ Slj
m,µ, the terms eikm,µ, e

lk
m,µ(c), and e

lj
m,µ(c) are

all equal to ǫm,µ and c · c = ǫm. By the equality above we get that eijm,µ(c) is also equals

to ǫm,µ and so c also belongs to Sij
m,µ.

Let I = {(i, j) ⊂ ω2 : i ≤ j}. Using the hypothesis that the formula φ(x, ȳ, z̄) together
with (ai : i ∈ ω) and (bj : j ∈ ω) witnesses the 2-independence property, we can choose
an element cI such that φ(cI ; ai, bj) holds if and only if (i, j) is in I.

By omitting certain ai’s and bj’s, we may choose {mr : r ≤ n + 1} such for r less or
equal to n+1, the element cI ∈ Srs

mr ,µ
if and only if s ≥ r. Thus there exists i < j ≤ n+1

such that mi = mj = m. Then cI ∈ Si,i
m,µ ∩ Si,j

m,µ ∩ Sjj
m,µ but it does not belong to Sji

m,µ

which yields the desiered contradiction and whence M is 2-dependent.

3 Baldwin-Saxl condition for NIPn theories

We shall now prove a suitable version of the Baldwin-Saxl condition for n-dependent
theories. By a subarray I of ωn of size at least mn, we mean that I contains a set
I0 × · · · × In−1 with Ij ⊂ ω and |Ij| ≥ m for 0 ≤ j < n.

Proposition 3.1. Fix a group G defined in an n-dependent theory, an array of parame-
ters (ai,j : i < n, j < ω) and a formula ψ(x; y0, . . . , yn−1). We suppose that

{Hη := ψ(G; a0,i0 , . . . , an−1,in−1
) : η = (i0, . . . , in−1) ∈ ωn}

is a family of uniformly definable subgroups of G. Then there exists a natural number m
such that for every subarray I ⊆ ωn of size at least mn there is ν ∈ mn such that

⋂

η∈I

Hη =
⋂

η∈I,η 6=ν

Hη.

Proof. Suppose, towards a contradiction, that for arbitrarily large m there is a subarray
I ⊆ ωn of size mn such that

⋂

η∈I Hη is strictly contained in any of its proper subinter-
sections. Hence, for every ν ∈ I there is cν ∈

⋂

η 6=ν Hη \
⋂

ηHη.

Now, for every subset J of I, we let cJ :=
∏

η∈J cη (multiplied in lexicographical
order). Note that cJ ∈ Hν whenever ν 6∈ J . On the other hand, if ν ∈ J , all factors
of the product except cν belong to Hν , whence cJ 6∈ Hν . By compactness, this formula
ψ(x; y0, . . . , yn−1) has the IPn property contradicting the assumption.
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4 A special vector group

For this section, we fix an algebraically closed field K of characteristic p > 0 and we let
℘(x) be the additive homomorphism x 7→ xp − x on K.

We analyze the following algebraic subgroups of (K,+)n:

Definition 4.1. For a singelton a in K, we let Ga be equal to (K,+), and for a tuple
ā = (a0, . . . , an−1) ∈ K

n with n > 1 we define:

Gā = {(x0, . . . , xn−1) ∈ K
n| a0 · ℘(x0) = ai · ℘(xi) for 0 ≤ i < n}.

Our aim is to show that Gā is connected for certain choices of ā.

Lemma 4.2. Let k be an algebraically closed subfield of K, the group G be a k-definable
connected algebraic subgroup of (Kn,+) and f be a k-definable algebraic homomorphism
from G to (K,+) which is locally represented by rational functions. Then f is an additive

polynomial in k[X0, . . . ,Xn−1]. In fact, it is of the form
∑m0

i=0 ai,0x
pi

0 + · · ·+
∑mn

i=0 ai,nx
pi

n

with coefficients ai,j in k.

Proof. By compactness, one can find finitely many definable subsets Di of G such that
f is represented by a rational function on Di. Using [3, Lemma 3.8] we can extend f to
a k-definable homomorphism F : (Kn,+) → (K,+) which is also locally rational. Now,
the functions

F0(x) := F (x, 0, . . . , 0), . . . , Fn−1(x) := F (0, . . . , 0, x)

are k-definable homomorphisms of (K,+) to itself. Additionally, they are rational on a
finite definable decomposition of K. Hence every Fi is an additive polynomial in k[X].
Thus

F (X0, . . . ,Xn−1) = F0(X0) + · · ·+ Fn−1(Xn−1)

is an additive polynomial in k[X0, . . . ,Xn−1] as it is a sum of additive polynomials and
by [10, Proposition 1.1.5] it is of the desired form.

Lemma 4.3. Let ā = (a0, . . . , an) be a tuple in K
× for which the set

{

1
a0
, . . . , 1

an

}

is

linearly Fp-independent. Then Gā is connected.

The beginning of the proof follows the one of [14, Lemma 2.8].

Proof. We prove this lemma by induction on the length of the tuple ā which we denote
by n. Let n = 1, then Gā is equal to (K,+) and thus connected since the additive group
of an algebraically closed field is always connected.

Let ā be an (n+1)-tuple such that
{

1
a0
, . . . , 1

an

}

is linearly Fp-independent and suppose

that the lemma holds for tuples of length n. Define ā′ to be the restriction of ā to the
first n coordinates. Observe that the natural map π : Gā → Gā′ is surjective since K is
algebraically closed and that

[Gā′ : π(G
0
ā)] = [π(Gā) : π(G

0
ā)] ≤ [Gā : G0

ā] <∞.
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Hence the definable group π(G0
ā) has finite index in Gā′ . As

{

1
a0
, . . . , 1

an−1

}

is also linearly

Fp-independent, the group Gā′ is connected by assumption. Therefore π(G0
ā) = Gā′ .

Now, suppose that Gā is not connected.

Claim. For every x̄ ∈ Gā′ , there exists a unique xn ∈ K such that (x̄, xn) ∈ G0
ā.

Proof of the Claim. Assume there exists x̄ ∈ K
n+1 and two distinct elements x0n and x1n

of K such that (x̄, x0n) and (x̄, x1n) are elements of G0
ā. As G

0
ā is a group, their difference

(0̄, x0n − x1n) belongs also to G0
ā. Thus, by definition of Gā, its last coordinate x0n − x1n

lies in Fp. So (0̄,Fp) is a subgroup of G0
ā. Take an arbitrary element (x̄, xn) in Gā. As

π(G0
ā) = Gā′ , there exists x′n ∈ K with (x̄, x′n) ∈ G0

ā. Again, the difference of the last
coordinate x′n − xn lies in Fp. So

(x̄, xn) = (x̄, x′n)− (0̄, x′n − xn) ∈ G0
ā.

This leads to a contradiction, as G0
ā is assumed to be a proper subgroup of Gā.

Thus, we can fix a function f : Gā′ → K that sends every tuple to this unique element.
Note that Gā is defined over ā, hence G0

ā is defined over ā, as is f . Now, let x̄ =
(x0, . . . , xn−1) be any tuple in G0

ā. Set L := Fp(a0, . . . , an). Then:

xn := f(x̄) ∈ dcl(ā, x̄)

In other words, xn is definable over L(x0, . . . , xn−1) which simply means that it belongs
to the inseparable closure of L(x0, . . . , xn−1). Since there exists an l ∈ L(x0) such that
xpn − xn − a−1

n l = 0, the element xn is separable over L(x0, . . . , xn−1). So it belongs
to L(x0, . . . , xn−1) which implies that there exists some mutually prime polynomials
g, h ∈ L[X0, . . . ,Xn] such that xn = h(x0, . . . , xn)/g(x0, . . . , xn). Thus, by Lemma 4.2
the definable function f(X0, . . . ,Xn−1) we started with is an additive polynomial in n
variables over Fp(a0, . . . , an)

alg and there exists ci,j’s in Fp(a0, . . . , an)
alg such that

f(X0, . . . ,Xn−1) =

m0
∑

i=0

c0,iX
pi

0 + · · ·+

mn−1
∑

i=0

cn−1,iX
pi

n−1.

Using the identities Xp
i −Xi =

a0
ai
(Xp

0 −X0) in G
0
ā , the function f can be rewritten as

follows:

f(X0, . . . ,Xn−1) = g(X0) +
n−1
∑

j=0

βj ·Xj

with g(X0) =
∑m0

i=1 diX
pi

0 an additive polynomial in Fp(a0, . . . , an)[X0] with summands
of powers of X0 higher or equal to p. Since the image under f of any unitary vector of
K

n has to be in Fp, for 0 < i < n the βi’s have to be elements of Fp. On the other hand,
for any element (x0, . . . , xn) of G

0
ā we have an(x

p
n − xn) = a0(x

p
0 − x0). Replacing xn by

f(x0, . . . , xn−1) we obtain

0 = an [f(x0, . . . , xn−1)
p − f(x0, . . . , xn−1)]− a0(x

p
0 − x0)

= an



g(x0)
p − g(x0) + (βp0x

p
0 − β0x0) +

n−1
∑

j=1

βj(x
p
j − xj)



− a0(x
p
0 − x0).
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Using again the identities xpi − xi =
a0
ai
(xp0 − x0) in G0

ā we obtain a polynomial in one
variable

P (X) = an



g(X)p − g(X) + (βp0X
p − β0X) +

n−1
∑

j=1

βj
a0
aj

(Xp −X)



 − a0(X
p −X)

which vanishes for all elements x0 of K such that there exists x1, . . . , xn−1 in K with
(x0, . . . , xn−1) ∈ Gā′ , these are all elements of K. Hence, P is the zero polynomial.
Notice that g(X) appears in a pth power. Since it contains only summands of power of
X higher or equal to p, the polynomial g(X)p contains only summands of power of X
higher than p. As X only appears in powers less or equal to p in all other summand of
P , the polynomial g(X) has to be the zero polynomial itself. By the same argument as
for the other βj , the coefficient β0 has to belong to Fp as well. Dividing by a0an yields

n
∑

j=0

βj
1

aj
(Xp −X)

with βn := −1 is the zero polynomial. Thus

n
∑

j=0

βj
1

aj
= 0

As βn is different from 0 and all βi are elements of Fp, this contradicts the assumption
and the lemma is established.

Using Lemma 4.3, a stronger version of [14, Lemma 2.8] together with [14, Corollary
2.6], we obtain the following corollary in the same way as Kaplan, Scanlon and Wagner
obtain [14, Corollary 2.9].

Corollary 4.4. Let k be a perfect subfield of K and ā ∈ kn be as in the previous lemma.
Then Gā is isomorphic over k to (K,+). In particular, for any field K ≥ k with K ≤ K,
the group Gā(K) is isomorphic to (K,+).

5 Artin-Schreier extensions

Definition 5.1. Let K be a field of characteristic p > 0 and ℘(x) the additive homo-
morphism x 7→ xp − x. A field extension L/K is called an Artin-Schreier extension if
L = K(a) with ℘(a) ∈ K. We say that K is Artin-Schreier closed if it has no proper
Artin-Schreier extension i. e. ℘(K) = K.

In the following Remark, we produce elements from an algebraically independent array
of size mn which fit the condition of Lemma 4.3.

Remark 5.2. Let {αi,j : i ∈ n, j ∈ m} be a set of algebraically independent elements in
K. Then the tuple (a(i0,...,in−1) : (i0, . . . , in−1) ∈ mn) with a(i0,...,in−1) =

∏n−1
l=0 αl,il and

ordered lexicographically satisfies the condition of Lemma 4.3.
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Proof. Suppose that there exists a tuple of elements (β(i0,...,in−1) : (i0, . . . , in−1) ∈ mn) in
Fp not all equal to zero such that

∑

(i0,...,in−1)∈mn

β(i0,...,in−1)
1

a(i0,...,in−1
)
= 0

Then the αi,j satisfy:

∑

(i0,...,in−1)∈mn

β(i0,...,in−1) ·





∏

{(k,l)6=(j,ij):j≤n−1}

αk,l



 = 0

which contradicts the algebraically independence of the αi,j.

We can now follow the proof in [14] that an infinite NIP field is Artin-Schreier closed
to obtain the same result for a n-dependent field.

Theorem 5.3. Any infinite n-dependent field is Artin-Schreier closed.

Proof. Let K be an infinite n-dependent field that we may assume to be ℵ0-saturated.
We work in a big algebraically closed field K that contains all objects we will consider. Let
k =

⋂

l∈ωK
pl, which is a type-definable infinite perfect subfield of K. We consider the

formula ψ(x; y0, . . . , yn−1) := ∃t (x =
∏n−1

I=0 yi ·℘(t)) which for every tuple (a0, . . . , an−1)
in kn defines an additive subgroup of (K,+). Let m ∈ ω be the natural number given
by Proposition 3.1 for this formula. Now, we fix an array of size mn of algebraically
independent elements {αi,j : i ∈ n, j ∈ m} and set a(i0,...,in−1) =

∏n
l=0 αl,il . By choice of

m, there exists (j0, . . . , jn−1) ∈ mn such that
⋂

(i0,...,in−1)∈mn

a(i0,...,in−1) · ℘(K) =
⋂

(i0,...,in−1)6=(j0,...,jn−1)

a(i0,...,in−1) · ℘(K).(∗)

By reordering the elements, we may assume that (j0, . . . , jn−1) = (m, . . . ,m). Let ā be the
tuple (a(i0,...,in−1) : (i0, . . . , in−1) ∈ mn) ordered lexicographically and ā′ the restriction
the mn − 1 coordinates (one coordinate less).

We consider the groups Gā and respectively Gā′ defined as in Definition 4.1. Using
Remark 5.2 and Corollary 4.4 we obtain the following commuting diagram.

Gā
π

//

≃
��

Gā′

≃
��

(K,+)
ρ

// (K,+)

It can be restricted to K. Note that π, whence ρ stays onto for this restriction by (∗).
Using the fact that the size of ker(ρ) has to be p, we may assume that its kernel is Fp.
Then [14, Remark 4.2] ensures that ρ is of the form a · (xp − x)p

n

. Finally, let l ∈ K be
arbitrary. Since ρ ↾ K is onto and Xpn is an inseparable polynomial in characteristic p,
there exists h ∈ K with l = hp − h. As l ∈ K was arbitrary, we get that ℘(K) = K and
we can conclude.

The proof of [14, Corollary 4.4] adapts immediately and yields the following corollary.

Corollary 5.4. If K is an infinite n-dependent field of characteristic p > 0 and L/K is
a finite separable extension, then p does not divide [L : K].
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6 Non separably closed PAC field

The goal of this section is to generalize a result of Duvet [8], namely that the theory of a
non separably closed PAC field has the IP property. To do so we need the following fact.

Fact 6.1. [8, Lemme 6.2] Let K be a PAC field and let p be a prime number which does
not coincides with the characteristic of K such that K contains all pth roots of unity and
there exists an element in K that doesn’t have a pth root in K. Let (ai : i ∈ ω) be a set
of pairwise different elements of K, I and J finite disjoint subsets of ω, then there exists
k in K such that

{∃x(xp = k + ai) : i ∈ I} ∪ {¬(∃x(xp = k + aj)) : j ∈ J}

Theorem 6.2. Let K be a field and k be an subfield of K that is a non separably closed
PAC field and relatively closed in K. Then, the theory of K has the n-independence
property.

Proof. Assume, as we may, that K is ℵ1-saturated. As in the proof of Duret [8, Théorèm
6.4] we may pass to an separable extension k′ of k which admits a radical extension l.
We pick α such that k′ = k(α) and let K ′ = K(α). We may distinguish two cases:

(1) l is an Artin-Schreier extension of k. As k′ is separable over k, it is algebraically
closed in K ′ by [15, p.59]. Hence K ′ admits an Artin-Schreier extension and con-
sequently its theory has the IPn property. As it an algebraically extension of K,
thus interpretable in K, Th(K) has IPn as well.

(2) l is a Kummer extension of k′ of degree p. Let {ai,j : j < n, i ∈ ω} be a set of
algebraically independent elements of K ′ which exists by saturation of K. This
ensures that

∏n−1
l=0 ail,l 6=

∏n−1
l=0 ajl,l if (i0, . . . , in−1) 6= (j0, . . . , jn−1). Thus we may

apply Fact 6.1 to the infinite set {
∏n−1

l=0 ail,l : (i0, . . . , in−1) ∈ N
n} and deduce that

for the formula ϕ(y;x0, . . . , xn−1) = ∃z(zp = y +
∏n−1

i=0 xi) and for any disjoint
subsets I and J of Nn there exists an element in K ′ that realizes

{ϕ(y; ai0,0, . . . , ain−1,n−1)}(i0,...,in−1)∈I ∪ {¬(ϕ(y; aj0,0, . . . , ajn−1,n−1)}(j0,...,jn−1)∈J

Thus Th(K ′) has the IPn property by compactness. As again K ′ is interpretable
in K, we can conclude that the theory of K has the IPn property as well.

Corollary 6.3. The theory of any non separably closed PAC field has the IPn property.

7 Applications to valued fields

First, we generalize a result for strong depended valued fields to strong valued fields
without the n-independence property.

Definition 7.1. Let T be a complete theory. An inp-pattern of depth κ is a sequence
(āα, ψα(x; yα), kα)α∈κ consisting of tuples āα = (aα,j : j ∈ ω), formulas ψα(x, yα) and
natural numbers kα such that:
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• {ψα(x; aα,j) : j ∈ ω} is kα-inconsistent for every α ∈ κ;

• {ψα(x; aα,f(α)) : α ∈ κ} is consistent for every function f : κ→ ω.

A theory is called strong if there exists no inp-pattern of infinite depth.

In [7] the authors show that an infinite strong field is perfect [7, Proposition 4.7].
Additionally, they prove that a valued field of characteristic p > 0 which has at most
finitely many Artin-Schreier extensions has a p-divisible value group [7, Proposition 3.2].
Hence, this is the case for any NIPn valued field. So we can conclude the following
analogue to [7, Corollary 4.9].

Corollary 7.2. Every strong valued field of characteristic p > 0 without the n-independence
property for some n ∈ ω is Kaplansky, i.e.

• the value group is p-divisible.

• The residue field is perfect and does not admit a finite separable extension whose
degree is divisible by p.

Now, we turn to the question whether a n-dependent henselian valued field can carry
a definable henselian valuation. Note that by a definable henselian valuation v on K we
mean that the valuation ring of (K, v), i. e. the set of elements of K with non-negative
value, is a definable set in the language of rings. We need the following definition:

Definition 7.3. Let K be a field. We say that its absolute Galois group is universal
if for every finite group G there exist finite Galois extensions L ⊆ M of K such that
Gal(M/L) = G.

As any finite extension of an n-dependent field K is still n-dependent, one cannot
find any finite Galois extensions L ⊆ M of K such that their Galois group Gal(M/L)
is of order p. Hence any n-dependent field of positive characteristic has a non-universal
absolute Galois group. Note that Jahnke and Koenigsmann show in [13, Theorem 3.15]
that a henselian valued field whose absolute value group is non universal and which
is neither separably nor real closed admits a non-trivial definable henselian valuation.
Hence this gives the following result which is a generalization of [13, Corollary 3.18]:

Proposition 7.4. Let (K, v) be a non-trivially henselian valued field where K is neither
separably nor real closed. If K is n-dependent and of positive characteristic then K
admits a non-trivial definable henselian valuation.
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