# Rock magnetic investigation of possible sources of the Bangui magnetic anomaly Mariane Ouabego, Yoann Quesnel, Pierre Rochette, François Demory, E. M. Fozing, T. Njanko, Jean-Claude Hippolyte, Pascal Affaton ## ▶ To cite this version: Mariane Ouabego, Yoann Quesnel, Pierre Rochette, François Demory, E. M. Fozing, et al.. Rock magnetic investigation of possible sources of the Bangui magnetic anomaly. Physics of the Earth and Planetary Interiors, 2013, 224, pp.11-20. 10.1016/j.pepi.2013.09.003. hal-00933326v1 ## HAL Id: hal-00933326 https://hal.science/hal-00933326v1 Submitted on 20 Jan 2014 (v1), last revised 3 Mar 2014 (v2) **HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. ## Elsevier Editorial System(tm) for Physics of the Earth and Planetary Interiors Manuscript Draft Manuscript Number: PEPI-D-12-00113R1 Title: Rock magnetic investigation of possible sources of the Bangui magnetic anomaly Article Type: Research Paper Keywords: Bangui magnetic anomaly, magnetization, geological source, modelling, banded iron formation Corresponding Author: Dr. Yoann Quesnel, Corresponding Author's Institution: Aix-Marseille University, CNRS First Author: Mariane Ouabego Order of Authors: Mariane Ouabego; Yoann Quesnel; Pierre Rochette, Pr.; François Demory, Dr.; Eric M Fozing; Théophile Njanko; Jean-Claude Hippolyte; Pascal Affaton Abstract: The Bangui Magnetic Anomaly (BMA) is the largest lithospheric magnetic field anomaly on Earth at low latitudes. Previous studies investigated its geological source using constraints from satellite and ground magnetic field measurements, as well as from surface magnetic susceptibility measurements on rocks from the Panafrican Mobile Belt Zone (PMBZ). Here we combine magnetic field data modelling and rock magnetic property measurements (susceptibility and natural remanent magnetization, NRM) on many samples from this PMBZ and the surrounding formations. It reveals that NRM is a significant component of the total magnetization (Mt) of the BMA source, which reaches 4.3 A/m with maximum thicknesses of 38 and 54 km beneath the western and eastern parts of the BMA. Only the isolated and relatively thin banded iron formations and some migmatites show such Mt values. Thus we suggest that the thick BMA source may be composed either by overlapped slices of such metamorphic rocks, or by an iron-rich mafic source, or by a combination of these two geological structures. **Cover Letter of revised manuscript** Dr. QUESNEL Yoann Physics of the Earth and Planetary Interiors CEREGE, Aix-Marseille University Europole de l'Arbois, BP80 13545 Aix-en-Provence cedex 04, FRANCE Ph.: +33-442971590 Email: quesnel@cerege.fr Aix-en-Provence (France), March, 15<sup>th</sup> 2013 Object: cover letter for revised manuscript submission in PEPI Dear Editors, the following manuscript entitled « Rock magnetic investigation of possible sources of the Bangui magnetic anomaly » submitted to Physics of the Earth and Planetary Interiors (PEPI) was revised. Most of the reviewers' comments were taken into account, and the standard of English was improved. As suggested by Reviewer 1, we revised the introduction of the Bangui magnetic anomaly (BMA), particularly by adding the suggested references. This reviewer also suggested to submit this work to another journal but we still feel that PEPI fits the main issue of this paper: investigating the magnetization of the rock formations at the origin of the Bangui magnetic anomaly (BMA). The most important part of our study concerns the magnetic property measurements of rock samples from the BMA area. The numerical modeling of the source of the BMA was just used here to compare with those rock magnetism observations (also using previously-published numerical models). Using the helpful specific comments from Reviewer 1, we revised the final model and investigated the non-unicity. Some of these additional results are now shown in a new Supplementary Material file that is cited in the revised manuscript. We confirm that the initial mean value (4.3 A/m) of total magnetization (Mt) associated to the BMA source indeed corresponds to the best model to explain the magnetic field observations (even if larger Mt values produce reasonable models), and fits the magnetic property measurements of few rock samples of this area. One figure (Figure 8) was added to better highlight the fact that such strongly-magnetized rocks are not common (but exist) in the Panafrican belt area whatever the location. The first author (M. Ouabego) and all co-authors (Y. Quesnel, P. Rochette, F. Demory, E.M. Fozing, T. Njanko, J.C. Hippolyte and P. Affaton) confirm that the data, results and ideas were not previously published or under consideration for publication elsewhere. The second author, Y. Quesnel, is still the corresponding author for this manuscript. All authors were involved in the work, approve the revised manuscript, and still agree to submit it to PEPI. The revised manuscript now contains 51 references, 2 tables and 8 figures (Figures 2, 3 in colors), as well as a Supplementary Material. Sincerely, Dr. Yoann Quesnel ## Letter of reply to reviews of 'Rock magnetic investigation of possible sources of the Bangui magnetic anomaly' by M. Ouabego, Y. Quesnel, P. Rochette, F. Demory, E.M. Fozing, T. Njanko, J.-C. Hippolyte, and P. Affaton #### Introduction Our manuscript entitled 'Rock magnetic investigation of possible sources of the Bangui magnetic anomaly' submitted to Physics of the Earth and Planetary Interiors (PEPI) has been revised considering the comments from the reviewers. In the following letter, our responses to their comments (in italic) are described. Their constructive criticisms greatly helped us to improve this manuscript. One figure (Figure 8) has been added in the article to show modelled total magnetization range for Cameroon and Centrafrican Republic rock samples. #### 1 – Reply to comments of Reviewer 1 Referee 1 made both broad and specific comments, which are dealt with below in order in which he made them. The specific comments correspond to the annotations of our manuscript in the PDF file associated to the review. ## 1.1 – Broader comments This paper uses a few rock magnetic property measurements in the region of the Central African Republic and models a couple of gravity and magnetic profiles across the Bangui magnetic anomaly. Unfortunately, the manuscript has a lot of problems (discussed below and in the extensively annotated manuscript) and should be rejected. I have tried to be helpful and made several comments and suggestions that could be used to revise the research as well as the manuscript. The revision will make it possible to submit it to a journal like J. of African Earth Sciences. Some context of the previous research and its discussion is appropriate here since the authours mention only a few of the key references and so I must conclude that they are not familiar with the other papers. Regan and Marsh (1982) modelled this anomaly as crustal scale physical property contrasts between cratonic regions and collisional belts. Ravat (1989, see Girdler et al., 1992 paper) modelled this feature as a concentrated near-surface ore-like body ("Fe-Ni-rich meteorite or Fe-rich iron formation") in addition to the crustal scale physical property contrasts similar to Regan and Marsh. See also Ravat et al. (1992, Tectonophysics paper related to South American and African regions affected by the breakup of Pangaea) and the vertical cross-section of the model in Langel and Hinze (1998, a book). Girdler et al. (1992) modelled it as an 800 km diameter disclike region of thermal, shock, and/or chemical remanent magnetisation adding up to 10 A/m, and remanent inclination and declination of +25° and N18°W, respectively. (Caveat: Only remanent magnetisation cannot be the source of this anomaly since the tectonic and geologic contrasts can be reasonably justified as least as part of the source region.) Ravat et al. (2002, J. Geodynamics - be careful if using the methods in this paper since there are errors in some of the equations in this paper) used gradient-based interpretation methods like the Euler method and the Analytical Signal (which should really be called total gradient for 3-dimensional sources) whose results agree with the disc-like source of Girdler et al. and so a source similar to theirs must have a significant contribution toward the long-wavelength part of the Bangui magnetic anomaly. Hemant and Maus (2005, JGR) used GIS-based geologic provinces from the CGMW geology and tectonic maps of the world to suggest that the Bangui anomaly, for the most part, can be modelled also as originating from geologic and tectonic contrasts like Regan and Marsh, but the Hemant and Maus model for the geologic boundaries is more objective than Regan and Marsh's. Each of these papers have added some new method, idea or an additional supporting evidence for an older idea with a new methodology or a refined geologic boundary information. **Answer:** the numerical modeling of the source of the Bangui Magnetic Anomaly (BMA) is not the key purpose of our publication, and we acknowledge that by its own it would not have warranted publication. Our most original contribution is the rock magnetic part. However, the modeling is necessary (also using previously-published models) to place some magnetization constraints about the potential rocks that we investigated. Still, we have to mention that the modeling of ground magnetic data (western profile) was never performed in previous publications. Nevertheless, we agree with the reviewer that the description of the previously-published models of the source of the BMA was too short. Therefore we completed the introduction section using reviewer's indications, in particular adding the references mentioned above. The associated modifications concern: Previous version → Page 2, Section 1 (Introduction), Paragraph 1, Lines 37 to 45 Revised version → Page 2, Section 1 (Introduction), Paragraph 1, Lines 38 to 51 The most valuable outcome of this study could have been to assess the NRM directions and the direction of primary remanence (unless nothing useful could deduced from these directions, in which case the reasons should be discussed and would be of some interest). This could have been done in the context of the model of Girdler et al. (1992) and the supporting results of Ravat et al. (2002). It is really surprising that the authours do not discuss this at all since they themselves collected the rocks and made the rock magnetic measurements, presumably for this very purpose. Answer: unfortunately we did not have the possibility to take the orientation of our samples, because the main purpose of this sampling mission was to improve the geological understanding of the Bangui area. The idea of studying the magnetization of these sampled rocks came afterwards. Therefore we only deal with magnetization intensities in our study. Besides many difficulties (mainly because of rare outcrops) arose during the sampling campaign in Centrafrica. Now we hope to get new - and perhaps oriented - rock samples in future campaigns, but the actual political situation (Feb 2013) and the lack of fundings prevents us to organize such missions. One has to realize that Centrafrica's politico-economic situation makes it very hazardous to organize field work. The authours also discuss some interesting alternative interpretations in the discussion section. However, instead of modelling those alternatives and examining their feasibility, the authours present a contrived model that appears geologically unfeasible and indefensible. This choice is baffling to me. The authours also make many assumptions (see the heavily annotated manuscript) that are either incorrect or indefensible. For example, what is the connection between magnetisation of surface rocks and postulating a deep high magnetization and low density layer? There is none and it appears that the model is generated to simply fit the anomaly profiles by thinning and thickening layers. As a result, this manuscript requires a lot of additional work and therefore I am recommending the rejection. **Answer:** the question raised by the reviewer is really the key point to understand the BMA's geological source. We ackowledge in the text (the word 'assumption' is used Line 291 in Discussion section of the revised manuscript) that the surface lithologies are not necessarily represented at depth. However, the fact that successive orogenies have « stirred » the crustal section by complex vertical differential movements indicates a non zero probability that the deep lithologies could be found outcropping. Our manuscript just wants to highlight that surface rocks like Banded Iron Formations or others can carry remanent magnetization intensities compatible with those predicted by BMA source models (including ours, even if it concerns only two profiles; see also below our answer to the specific comment (« Lines 168 to 182 ») about the used modeling method). This rock magnetization investigation was not made until now. It does not mean that these strongly-magnetized rocks are the source of the BMA, but they are good candidates to contribute to the anomaly (see Discussion section 6 of the revised manuscript). ## 1.2 – Specific comments I have several other comments which can be found in the attached annotated manuscript. I have also suggested several improvements in the logic, the research and the language. See the blue inserts which need to be clicked on and opened. See also the blue and red text deletions. **Answer:** almost all annotations (in the PDF file attached to the review email) from this reviewer concerning the suggestions to improve the logic, the research and the language, as well as the suggestions of text deletions were applied. In the following we only answered to his comments/questions inserted as text annotations (in red) in the PDF file. Lines 37-45: There are actually several interpretations of the anomaly. See summary comments in the review document. **Answer:** it corresponds to one of the broad comments abovementioned. The associated modifications concern: Previous version $\rightarrow$ Page 2, Section 1 (Introduction), Paragraph 1, Lines 37 to 45 Revised version $\rightarrow$ Page 2, Section 1 (Introduction), Paragraph 1, Lines 38 to 51 Lines 44: what about partly shock remanence suggested by Girdler et al. ? **Answer:** these authors suggested that the high magnetization of the BMA source body may be related to iron input from the putative impactor. We put forward that this is unrealistic (see the revised version of the Introduction section 1). An impact indeed remagnetizes the preexisting crust, but it does not necessarily enhance the magnetization with respect to a TRM of metamorphic origin for example. The associated modifications concern: Previous version → Page 2, Section 1 (Introduction), Paragraph 1, Line 44 Revised version → Page 2, Section 1 (Introduction), Paragraph 1, Lines 45-50 *Line 64-65: use Ga and Ma everywhere instead of Gy and My.* **Answer:** this has been done. The associated modifications concern: Previous version → Page 3, Section 2 (Geological context), Paragraph 1, Lines 60, 66-67 Revised version → Page 3, Section 2 (Geological context), Paragraph 1, Lines 66 and 72-73 Line 77: it would be good to show these nappe trends with boulder lines on the figure. **Answer**: this has been done on the revised Figure 1c, and the associated formation is mentioned in the revised manuscript. The associated modifications concern: Previous version → Page 4, Section 2 (Geological context), Paragraph 1, Lines 75-76 Revised version → Page 4, Section 2 (Geological context), Paragraph 1, Lines 81-82 Line 81: Generally, Bangui anomaly is seen as having three lobes, a negative in the center and positive and negative lobes in the north and south. Why does this paper and modelling in it consider primarily only the central and northern lobes? Not clear... **Answer:** we agree with the reviewer. Our description was incorrect. Therefore we modified this sentence. We also added later in this section that no ground data were available over the southern positive lobe. Therefore only the central and northern parts of the anomaly were considered in this study. The associated modifications concern: Previous version → Page 4, Section 3 (Geophysical context), Paragraph 1, Line 81 Revised version → Page 4, Section 3 (Geophysical context), Paragraph 1, Lines 87-88 and Paragraph 2, Line 99 Line 89: This is an assumption. Remove at this point and say that you use this assumption at an appropriate juncture. **Answer:** we removed the corresponding sentence. The associated deletion concerns: Previous version → Page 4, Section 3 (Geophysical context), Paragraph 1, Line 88-89 Line 95: This processing is incorrect. For the field measured at a particular epoch should be processed with the IGRF of that epoch. That is what an anomaly is. This needs to be redone. The main field has changed sufficiently from 1960 to 2010 that the subsequent analysis and the induced assumption in the modelling are in principle problematic. (Note that it will make an iota of difference to the conclusions of this paper, but there are also other problems...) **Answer:** our sentence was not clear. We considered the model published by Finlay et al. (2010), but using DGRF coefficients of year 1960. Thus this is really the 1960 main field that we applied. We modified this sentence to clarify this point. The associated modifications concern: Previous version → Page 4, Section 3 (Geophysical context), Paragraph 1, Lines 95-96 Revised version → Page 5, Section 3 (Geophysical context), Paragraph 2, Lines 103-104 Lines 100-101: Reword. This sentence makes no sense at all. I can't guess what is meant here to be able to fix it. **Answer:** we agree with the reviewer. This sentence was linked to the previous one but this analysis of the anomaly is vague. We modified and completed this sentence to better describe the differences in the shape of the anomaly between satellite and ground data maps. The associated modifications concern: Previous version $\rightarrow$ Page 5, Section 3 (Geophysical context), Paragraph 1, Lines 100-101 Revised version $\rightarrow$ Page 5, Section 3 (Geophysical context), Paragraph 2, Lines 106-115 Line 103: This is a huge lobe. Confine is a wrong choice of verbs. One cannot « confine nearby » anything...If you want to use confine then use confine to an area between latitudes xxx and xxx and longitudes xxx and xxx. **Answer:** we removed this sentence since it is linked with the shape of the ground data signal better described in the revised manuscript (see our answer to the previous comment). The associated modifications concern: Previous version → Page 5, Section 3 (Geophysical context), Paragraph 1, Lines 103-104 Revised version → Page 5, Section 3 (Geophysical context), Paragraph 2, Lines 106-115 Line 107: Not clear how this follows from aforementioned thoughts. Need to explain better the reason. **Answer:** we removed this sentence. The associated deletion concerns: Previous version → Page 5, Section 3 (Geophysical context), Paragraph 1, Line 107 Lines 119-121: For the ground magnetic the original data should be used and if there are problems with the 1960 IGRF in this region, then the CM4 for the closest epoch to observations should be used. This is fine for the satellite magnetic anomaly, but not for the airborne magnetic anomaly. **Answer:** we effectively set the 2011 Bangui geomagnetic field vector directions to the magnetization vector of the source body at the beginning of the modelling process, whatever the origin of the used data (satellite or ground). The reviewer is right: for ground data we should apply the 1960 Bangui geomagnetic field vector ( $I = -14.5^{\circ}$ ; $D = -5^{\circ}$ ; F = 33400 nT), even if it is very similar to the 2011 vector ( $I = -16.7^{\circ}$ ; $D = 0.2^{\circ}$ ; F = 33580 nT). It has no significant consequences on the new resulting parameters, but this has been applied to obtain the results described in Section 5.1 of the revised manuscript. We then modified the corresponding sentence in the revised version of the manuscript. ## The associated modifications concern: Previous version → Page 5, Section 4.1 (Magnetic anomaly modeling), Paragraph 1, Lines 119-121 Revised version → Page 6, Section 4.1 (Magnetic anomaly modeling), Paragraph 1, Lines 133-136 Line 133: Why randomly selected? Do you mean « randomly selected » from a suite of high susceptibility samples? If so, reword. **Answer:** this first set of samples contains at least 1 sample for each lithology, and was randomly selected in the whole collection. Later, we selected among the remaining collection all samples with high susceptibility to complete this first set (to obtain 22 samples). We then modified the corresponding sentence in the revised version of the manuscript. ## The associated modifications concern: Previous version → Page 6, Section 4.2 (Sampling and rock magnetic measurements), Paragraph 1, Line 133 Revised version → Pages 6-7, Section 4.2 (Sampling and rock magnetic measurements), Paragraph 1, Lines 149-153 ## Line 152: why is this not done vectorially? **Answer:** as we mentioned in a previous answer, we do not study the directions of magnetization since no orientation was acquired during sampling, but we are investigating the total magnetization intensity assuming that remanence is colinear to induced magnetization, as stated 2 sentences after this equation. Therefore no vector representation is needed for this equation. No modifications are needed. ## *Line 154: why 2.7? Is this representative?* **Answer:** this value corresponds to the mean density for a crust composed of metamorphic or magmatic rocks; as we are discussing large contrasts for magnetization, it is not necessary to have an accuracy better than a few % on density. No density measurements were done in our study. The chosen density for itabirite correspond to 25% hematite, 75% quartz, as determined by magnetic measurements. We slightly modified the corresponding sentence. ## The associated modifications concern: Previous version $\rightarrow$ Page 7, Section 4.2 (Sampling and rock magnetic measurements), Paragraph 3, Line 154 Revised version → Page 7, Section 4.2 (Sampling and rock magnetic measurements), Paragraph 3, Lines 172-173 ## Line 156: not valid? If you measured NRM, why assume this? **Answer:** the NRM directions have no meaning without the original orientation of rock samples on the field (see our answer to a previous broad comment). This assumption (of NRM and induced magnetization to be colinear) will thus give the most important Mt values. If the colinearity is false, then the resulting Mt will be weaker. We added a sentence to be clearer. #### The associated modifications concern: Previous version $\rightarrow$ Page 7, Section 4.2 (Sampling and rock magnetic measurements), Paragraph 3, Line 156 Revised version → Page 8, Section 4.2 (Sampling and rock magnetic measurements), Paragraph 3, Lines 176-177 Lines 168 to 182: how can one infer this from unconstrained non-unique forward modelling? All this is based on unconstrained and non-unique forward modelling. These models don't look anything like geologically feasible geophysical models. The models look like they are contrived polygons made to fit the profiles...Nothing seems confirmed based on this modelling. In this type of modelling, if you increase magnetisation, the thickness will decrease. Answer: no other information than surface geology, magnetic and gravimetric data are available in Centrafrica. Therefore we can't constrain much the models. In previous studies dealing with BMA source modeling, reasonable assumptions (not 'data') about the parameters of the different magnetic blocks in the crust of this area were used to constrain the models. All these previously published models are also non-unique, sometimes as « geologically unrealistic » as ours, and consist of 'contrived polygons made to fit the profiles' too. Each is guided by an idea of geometry associated to a particular geological origin (like the disk to model the magnetic remains of an impactor (Girdler et al., 1992)). We do not want to question the quality of these previous models: they correspond to the best that one can do with the available data, and being guided by an idea of geological origin is a good way to work. Like mentioned in the manuscript in Section 4.1, we here considered the surface geology (on the western profile mainly), gravimetric and specifically magnetic data to produce a model in order to assess the total magnetization of the BMA source at two locations (western and eastern profiles). Of course this is still non-unique but, at least, it fits the three kind of observations (no previously-published model was produced to fit all these data) on both the western and eastern part of the BMA. This continuity (of magnetic properties and average crustal depths) between the western and eastern BMA source models was a criterion to constrain the resulting models. Besides, the non-unicity was investigated during the revision of this manuscript. Indeed no good fits of the two profiles have been obtained using simple geometries like large crustal prisms (approximately similar to those used in some previous publications like Regan and Marsh, 1982), particularly for the western magnetic and gravimetric profiles. So, more complex geometries (and not only the one shown in the publication) for the most magnetic source were tested. The used software (Oasis montaj – GM-SYS modelling module) allows to perform a constrained inversion on the geometry, densities and susceptibilities once the user has set preliminary nodes, density and susceptiblity values to each layer. Thus the resulting model is constrained both by the user (manual forward modelling) and by the data (inverse modelling with spatial modifications that depend on the initial variability/uncertainty). Here, to find the possible total magnetization value associated to the geological source of the BMA (and to compare this value with those measured on the sampled geological formations), one of these 'geometric' models - that were able to fit both the western and eastern, magnetic and gravimetric profiles - was selected to apply different magnetization (and so, thickness) values. The general lateral N-S shape was kept (at least for closed Mt values), but the maximum thickness was particularly modified for each tested magnetization value. Table A1 included in a new Supplementary Material PDF file shows the resulting RMS on magnetic and gravity data along the two profiles for each case of total magnetization (associated to a maximum thickness) of the most magnetic source. These models result from a similar modeling methodology than the one above-mentioned: $1 \rightarrow$ forward manual modeling (for instance, modification of the maximum thickness in response to the tested Mt value), $2 \rightarrow$ by inversion, limited (i.e. constrained by the uncertainty) adjustments of this thickness and of the other nodes of the most magnetic body to converge towards the best configuration of these nodes. However, for the western satellite magnetic data and eastern ground magnetic data profiles, no good fits could be obtained. This is due to the reasons mentioned in Section 4.1 of the main manuscript: the western profile is too short to solve for the long-wavelentgth signal observed by the satellite data (the downward continuation to 2.5 km cannot reproduce the small wavelengths), and, on the other hand, only few ground magnetic data – probably representing very small 'local' wavelengths – exist along the long eastern profile. For the ground magnetic data along the eastern profile, the 4.3 A/m model is still the 'best' one among all models (RMS=232.2 nT). The most important result is that, looking on all kind of data (particularly ground magnetic data of the western profile and satellite-derived magnetic data of the eastern profile), the 4.3 A/m model is the best one while its shape and associated density explain the gravimetric signal too. This is why we chose to show it in the manuscript with Table 1 (revised) and Figure 3 (revised). Figures A1 and A2 of the Supplementary Material show the 2.3 A/m and 10.3 A/m best models (i.e. 2 and 10 A/m remanent magnetization associated to the most magnetic layer), to compare with Figure 3. As mentioned earlier, the general shape is slightly equivalent whatever the Mt values, but the maximum thickness is different. The shape of the other non-magnetic layers (that mainly fit the gravimetric anomaly) may be more 'non-unique'. We are aware that these tests do not solve for the non-unicity, but at least they investigate the Mt value of the most magnetic layer. This value is then discussed by the rock magnetic measurements in the next Section of the manuscript. We modified the structure of Section 5.1, also mentioning the revised results on the Mt value investigations (Supplementary Material) and the corresponding 4.3 A/m best model (revised Figure 3 and Table 1). We stress that this is a minimum value, other more complex models with larger Mt values could be designed. This is confirmed by Table A1 in the Supplementary Material, which shows that larger Mt models (like 8.3 A/m, even 10.3 A/m) are still able to explain the data along the two profiles. ## The associated modifications concern: Previous version $\rightarrow$ Pages 7-8, Section 5.1 (Magnetic anomaly modeling), Paragraph 1, Lines 161-182 Revised version $\rightarrow$ Pages 8-9, Section 5.1 (Magnetic anomaly modeling), Paragraph 1, Lines 182-208 but see particularly Lines 184-187. In addition, and as a separate point, how do you associate huge amount of iron with density as low as 2.68? These magnetizations and densities could work only with serpentinised peridotites. And the geometry and depth of the layers are inconsistent with serpentinised peridotite. This model is nothing like Regan and Marsh (1982) model and appears less plausible because of mafic lower crustal rock composition. Answer: this comment highlights the main issue concerning the BMA source: a negative gravimetric anomaly is correlated with this magnetic anomaly. First we realized that, in our previously-submitted model, the host more dense rocks (formations 2, 3 and 4), assumed to be metabasalts, granulites and amphibolites, have unrealistic low densities. Granulites can have average densities as high as 3.0, with a mean value close to 2.9, while typical densities for metabasalts and amphibolites are about 3.0 and 2.85 (Christensen and Mooney, 1995; Rudnick and Fountain, 1995; Tripathi et al., 2012). So we reset our assumed densities with these larger values, allowing a density of 2.87 for the BMA source. We slightly modified the 'Results' section with these new density contrasts (see Lines 200-203). The geological implications of our results/investigations are fully discussed in the Discussion Section 6 (see particularly Paragraph 2, Lines 299-315). One non-unique hypothesis would be that the source is composed by about 10% of itabirites (banded iron formations with M=50 A/m) and 90% of a lower density and non-magnetic metasedimentary rock (schist, quartzite), and more magnetic amphibolite with density lower than 2.87. Note that in the itabirite hypothesis there is no need for a "huge amount of iron": a 5 A/m magnetization can be reached with an average amount within the BMA body of only 2.5% of hematite (see Discussion in the revised text). Serpentinized peridotites are not consistent with the expected geology and the depth and geometry of the source layer, as pointed out by the reviewer. A mafic lower crustal rock composition is not warranted in fact. The density constrast may be linked to metamorphism only: more metamorphic granulites as the host rock, less metamorphic and thus less dense rocks for the BMA. #### References: Christensen N.I., Mooney W.D., 1995. Seismic velocity structure and composition of the continental crust; a global view. Journal of Geophysical Research 100, 9761–9788. Rudnick R.L., Fountain D.M., 1995. Nature and composition of the continental crust: A lower crustal perspective. Reviews of Geophysics 33, 267–309. Tripathi P., Pandey, O.P., Rao M.V.M.S., Koti Reddy G., 2012. Elastic properties of amphibolite and granulite facies mid-crustal basement rocks of the Deccan volcanic covered 1993 Latur-Killari earthquake region, Maharastra (India) and mantle metasomatism. Tectonophysics ## The associated modifications concern: Previous version → Pages 7-8, Section 5.1 (Magnetic anomaly modeling), Paragraph 1, Lines 173-182 Revised version → Pages 8-9, Section 5.1 (Magnetic anomaly modeling), Paragraph 1, Lines 196-203. Lines 207-208: Based on Fig 6, 8603 doesn't have >50 % initial susceptibility left.. **Answer:** we agree that this is not easy to see on the lower-left panel of Figure 6. However 8603 has an initial normalized magnetic susceptibility value of 0.14, and after 650°C, the value is 0.11. Thus it remains about 78% of the initial susceptibility, in accordance with our sentence. No modifications are needed. Line 223: say which ones specifically...unclear **Answer:** we specified those samples in the revised corresponding sentence. The associated modifications concern: Previous version → Page 10, Section 5.2 (Magnetic property measurements), Paragraph 3, Line 223 Revised version → Page 10, Section 5.2 (Magnetic property measurements), Paragraph 3, Lines246-247 Line 244: the authors need to model the contribution of iron formations. They are not the sole source, but they must contribute at least a little... In this collisional environment, the banded iron formations are likely to be tectonically thickened...like Kursk, where roughly 25% of the Kursk magnetic anomaly source is the BIFs. See Ravat et al. (1993, Tectonophysics). This has been confirmed later by an unpublished study. See Langel and Hinze book. Answer: this point is largely developped in the Discussion Section (6), especially the link between the results from the magnetic profile modelling and from magnetization measurements. Indeed the banded-iron formations (BIFs) may compose the main magnetic source expected by modelling (here they can partially compose this model...and their magnetization is measured). However, a large pure BIF source is not possible since it will result in a too large magnetic field anomaly. We agree with the reviewer that the source is most probably composed by BIFs but mixed with another rock formation too. The main magnetic body of our modelling represents this heterogeneous magnetic source with Mt as a mean magnetization intensity. The thoughts derived from the results (modelling + magnetization measurement) are located in the Discussion Section . No modifications about the model are needed (see our previous answer to comments on Lines 168-182). Line 260: No idea what this means. Rephrase...how are the banded iron-formations brought up? They are mostly formed in the near-surface environment and thickened in a compressive regime. **Answer:** we agree with the reviewer that this sentence is unclear...therefore we modified it in the revised version of the manuscript, using the suggestion of the reviewer. The associated modifications concern: Previous version → Page 11, Section 6 (Discussion), Paragraph 1, Line 260 Revised version → Page 12, Section 6 (Discussion), Paragraph 1, Lines 296-298 Line 267: See comment on the previous page... **Answer:** we modified the sentence and the references, according to the suggestions of the reviewer. The associated modifications concern: Previous version → Page 11, Section 6 (Discussion), Paragraph 2, Line 267 Revised version → Page 12, Section 6 (Discussion), Paragraph 2, Line 305 Line 271: 5 km BIF is a bit too much without other evidence but the itabirite percentage may be more. 50-55 km crustal thickness may be a bit too much. Mention of thick BIFs is done in discussion section like an afterthought. If anything, this should be part of the model. **Answer:** we agree with the reviewer and modified the corresponding values to 3-4 km of BIFs, so a BMA source with about 20% of itabirites. However, as mentioned above, no model that can fit most of the data along the two studied profiles is able to differentiate between itabirites and other BMA source formations. Only the mean value (Mt) of the total magnetization for this source can be investigated, as we did. The associated modifications concern: Previous version → Page 12, Section 6 (Discussion), Paragraph 2, Line 271 Revised version → Page 13, Section 6 (Discussion), Paragraph 2, Line 309 Lines 290-292: Geology and crustal rocks are not understood by 10 % of this and 10 % of that. One needs constraints to develop meaningful models. Answer: we agree with the reviewer, but these thoughts are located in the Discussion section after the results of modelling and magnetization measurements. For the modelling part, as mentioned earlier and in Section 4.1, we did the best we could do with the constraints we had access to: magnetic properties of rocks from surface geology, magnetic and gravimetric anomaly data. We tried other possibility of number, geometry and magnetization of the layers of the model (Table A1 of Supplementary Material). We found that no reasonable models are able to detail the composition of the most magnetic layer beneath the BMA: we can only investigate its mean total magnetization (Mt) assuming a geometry suitable to fit most of the data along the two studied profiles. No modifications are needed. Line 307-309: Amen! In this paper, it should be done. **Answer:** the corresponding sentence was not correct. We modified it. The associated modifications concern: Previous version → Page 13, Section 7 (Conclusion), Paragraph 2, Lines 307-309 Revised version → Page 14, Section 7 (Conclusion), Paragraph 2, Lines 347-350 *Lines 447-453: grammar: sentence fragment?* **Answer:** we splitted up this too long sentence, as the reviewer suggests. The associated modifications concern: Previous version → Page 19, Figure 1 caption, Lines 447-452 Revised version $\rightarrow$ Page 22, Figure 1 caption, Lines 521-525 Line 462: use filled circles as they are too small to consider them as « disks ». **Answer:** this has been modified. The associated modifications concern: Previous version → Page 19, Figure 1 caption, Line 462 Revised version → Page 22, Figure 1 caption, Lines 536-537 Lines 474-475: the shades used are difficult to distinguish even in the high resolution version. Need to use distinctive colours or patterns. **Answer:** this figure is now in color version, which allows to better distinguish the different layers of the model. Line 475-476: why not? **Answer:** these ground magnetic (interpolated) observations and predictions are now shown in the revised version of Figure 3. There are too few ground magnetic measurements along or near this profile, so the interpolated profile cannot really represent the real ground magnetic field anomaly signal. We replaced the two last sentences of the caption by one sentence about the magnetization intensity of the most magnetic layer of the models. The associated modifications concern: Previous version $\rightarrow$ Page 20, Figure 3 caption, Lines 475-477 Revised version → Page 23, Figure 3 caption, Lines 549-551 Figure 1: If you want to use the extracted part (b), then you need to show South America in part (a). I think it is a good idea to show South America in both (a) and (b). **Answer:** South America palaeogeographic position is now inserted in both panels (also with Africa position in (b)) on the revised version of Figure 1, and the corresponding caption is modified. The associated modifications concern: Revised version $\rightarrow$ Page 21, Figure 1 caption, Lines 519-520 and Lines 526-527. Figure 1: difficult to distinguish even on the high-resolution figure. **Answer:** we agree with the reviewer and modified the patterns of formations 2 and 4 on the revised version of Figure 1. Figure 1: would be good to show where the « nappes » mentioned in the text in the geology section are. **Answer:** these are shown by formation 6, as it is indicated in the Figure 1 caption. We added this detail in the text where the nappes are cited, to help the reader. The associated modifications concern: Revised version → Page 4, Section 2 (Geological context), Paragraph 1, Lines 81-82 Figure 2: add country names. **Answer:** the country names are now included in the revised version of Figure 2, and consequently the last sentence of the caption was removed. The associated deletions concern: Revised version → Page 20, Figure 2 caption, Lines 468-469 Figure 2: why the seismic colour scale? Generally only used to hide variations. **Answer:** the colour scale has been modified in the revised version of Figure 2. Figure 3: Shades are not distinguishable even on the high resolution figure. Certainly won't be in the journal. Use distinguishable colours or patterns. **Answer:** Figure 3 is now in color in its revised version. Figure 3: geologically simply unrealistic. **Answer:** see above our answer to the comment on « Lines 168-182 » . Figure 3: why is ground magnetics not modelled? **Answer:** see above our answer to the comment on «Lines 475-476», but now these data are included in the revised version of Figure 3. Table 1: Problem using this direction for a ground magnetic survey done in 1960s. **Answer:** see above our answer to the comment on « Line 95 ». Table 1: Unrealistic unless they are serpentinites, and the source geometries and their depths are not consistent with serpentinite composition. **Answer:** see above our answer to the second part of the comment on « Lines 168-182 » (comment starting with 'In addition...'). Table 1: Seems like metabasalt should have density much higher. Are you suggesting that these layers were originally oceanic crust and mantle? **Answer:** as stated above (see Answer to the second comment on Lines '168 to 182'), we have revised densities toward higher values after a more thorough bibliography. Metabasalts (and/or amphibolites) should be around 2.9. In the Precambrian huge sequence of basalts have been emplaced on continental crust, so a oceanic hypothesis is not necessary. Table 1: These rock types are really inferred (?) from modelled gravity and magnetics Answer: we agree that this is tentative to attribute a rock type to each layer. However, as indicated earlier, this model just gives some reasonable constraints on the properties of the potential source(s) of the BMA, based on geology, gravity and magnetics. Again, our study aims at investigating the range of magnetization intensities plausible for this source. No modifications are needed. #### 2 – Reply to comments of Reviewer 2 Referee 2 made a broad comment and several substantative comments, which are dealt with below in order in which he made them. This paper by Ouabego et al. on the Bangui magnetic anomaly is well presented and should be published after minor amendments. Substantative comments: Line 171: 'huge amount of iron' is a strange comment. 4 A/m magnetistion corresponds to about 3% magnetite, and if it is lamellar magnetism then maybe much less! **Answer:** we agree with the reviewer and modified the corresponding sentence. The associated modifications concern: Previous version → Page 7, Section 5.1 (Magnetic anomaly modeling), Paragraph 1, Line 171 Revised version → Page 8, Section 5.1 (Magnetic anomaly modeling), Paragraph 1, Line 196 Line 182: Not sure why this is unrealistic. Some gabbro/norites and pyroxenites are in this range. But I'm sure remanence is 'realistic' too. **Answer:** the reviewer is right, but the suggested rocks are not observed on surface in this area. They would also not fit with the low density constrain. Therefore we modified the corresponding sentence to precise that such high susceptibility values are unrealistic for the expected rocks in this area. The associated modifications concern: Previous version $\rightarrow$ Page 8, Section 5.1 (Magnetic anomaly modeling), Paragraph 1, Line 182 Revised version $\rightarrow$ Page 9, Section 5.1 (Magnetic anomaly modeling), Paragraph 1, Lines 206-207. Line 208 Why wasn't BG240 taken to 690°C above the Néel point to confirm it is hematite and not instrument drift. It is a weak signal and unless the sample is removed and replaced to confirm the zero level at the peak temperature it is not possible to differentiate drift from signal. **Answer:** we agree with the reviewer and added a sentence to highlight this possibility, even if hematite was identified by hysteresis measurements. We had problems with our furnace preventing heating above 650°C. The associated modifications concern: Previous version → Page 9, Section 5.2 (Magnetic property measurements), Paragraph 2, Line 208 Revised version → Page 10, Section 5.2 (Magnetic property measurements), Paragraph 2, Line 235-236. Line 218 What about sample BG243 where you have '0.8 measured' compared with '7.5 modelled' the opposite way around so can't be lightning? **Answer:** it may be the case of a multicomponent NRM, with opposite directions, or our assumed NRM/SIRM ratio is not relevant for that sample. We then modified the corresponding sentences. The associated modifications concern: Previous version → Page 9, Section 5.2 (Magnetic property measurements), Paragraph 3, Lines 216-218 Revised version → Page 10, Section 5.2 (Magnetic property measurements), Paragraph 3, Lines 247-248. Line 301 Sentence beginning "This highlights the interest of..." needs rewording - confusing. **Answer:** the corresponding sentence has been modified. The associated modifications concern: Previous version → Page 13, Section 7 (Conclusion), Paragraph 1, Line 301 Revised version $\rightarrow$ Page 14, Section 7 (Conclusion), Paragraph 1, Line 339-342. Fig. 1 Suggest you check the scale. $1^{\circ}$ of longitude near the equator (and $1^{\circ}$ latitude anywhere for that matter) is approximately 110 km. According to the scale $1^{\circ} = 270$ km. **Answer:** the scale has been modified in the revised version of Figure 1. Fig. 2 Maybe add "The box corresponds to c) in Fig. 1"? Also suggest you include IGRF ( $D=0.2^{\circ}$ , $I=-15^{\circ}$ , F=33680 nT or whatever it is ) which means the area is south of the geomagnetic equator and a magnetic high to the north is normal. **Answer:** this reference to Fig 1c is clearly written in the caption of Figure 2, so we did not modify Figure 2 itselve. The comment about the location of the area south to the geomagnetic equator is now included in the text, in the first paragraph of Section 3. The associated modifications concern: Revised version → Page 4, Section 3 (Geophysical context), Paragraph 1, Line 88. Fig. 3 'Crustal magnetic models (bottom panels)'? Must be a legacy of an earlier version of the figure since the western profile is now the top panel. The satellite survey is downward continued to 2.5 km, so why should the predicted satellite profile in a) be the same as the ground profile? I didn't see anything about upward continuing the ground data to 2.5 km. I must have missed something. Answer: indeed Figure 3 is difficult to introduce. They are 3 sub-figures in this Figure: on top right is the legend, on top left is the western profile plus the resulting associated model, and on bottom is the eastern profile plus the resulting associated model. In the latter top left and bottom subfigures, the bottom panels represent the crustal models. The caption describes this and so no modifications about this remark have been made. Concerning the second part of the reviewer's comment, the predicted satellite profile (dotted-dashed black line in the revised version of Figure 3) is slightly different than the ground data observed and predicted profiles (solid and dashed red lines), but very different than the observed satellite profile (solid black line). Indeed the downward continuation of the satellite data cannot resolve short wavelengths of the geomagnetic anomaly signal that we should really detect by an aeromagnetic survey at 2.5 km of altitude, for instance. The modelling predicts these wavelengths. Therefore the predicted 2.5 km altitude signal looks like to (but not completely) the ground data signal. The revised version (with colors) of Figure 3 should be clearer. Fig 4. Hysteresis involves not only induced magnetisation. The magnetisation might be mostly induced for the top pair but it is mostly remanence for the bottom pair (Mrs/Ms > 0.5). The ordinate should be relabelled 'magnetisation'. It is actually more strictly 'specific magnetisation' since it refers to both induced and remanent magnetic moment normalised to mass = specific magnetisation. **Answer:** the reviewer is right; this figure and its associated caption have been modified using the reviewer's suggestions. The associated modifications concern: Previous version $\rightarrow$ Page 20, Figure 4 caption, Line 479. Revised version $\rightarrow$ Page 23, Figure 4 caption, Line 553. Fig 5. The ordinate label is 'Normalized Remanent Magnetisation' but then an induced magnetisation curve has been added, floating in space - maybe you could put the induced ordinate axis on the right hand side. **Answer:** we just modified the ordinate label of the bottom figure where induced magnetization curve is shown too. Minor editing: Lines 63 - 69 west-african, Congolese, neoproterozoic and panafrican should all be capitalised. There are many other words throughout that should be capitalised. In addition in some places English English is used and in others American English e.g modelled vs modeled. Line 315 even French! Sacre bleu.. **Answer:** all these minor corrections have been made. ## \*Highlights (for review) - We investigate the source of the Bangui magnetic anomaly - We use satellite and ground magnetic field measurements - We measure magnetic susceptibility and natural remanent magnetization on samples - Few surface rocks have the required total magnetization to account for the BMA - The whole crust beneath the BMA is strongly magnetic 2 5 9 ## 1 Rock magnetic investigation of possible sources of the Bangui magnetic anomaly - 3 Ouabego<sup>1,2</sup>, M., Quesnel<sup>2\*</sup>, Y., Rochette<sup>2</sup>, P., Demory<sup>2</sup>, F., Fozing<sup>3</sup>, E.M., Njanko<sup>3</sup>, T., - 4 Hippolyte<sup>2</sup>, J.-C., Affaton<sup>2</sup>, P. - 6 1 Geosciences Laboratory, Bangui University, Bangui, Centrafrican Republic - 7 2 Aix Marseille University, CNRS, IRD, CEREGE UM34, 13545 Aix-en-Provence, France - 8 3 Environmental Geology Laboratory, Dschang University, BP67, Dschang, Cameroon - 10 \*Corresponding author: - 11 Quesnel Yoann - 12 Aix Marseille University, CNRS, IRD, CEREGE UM34, 13545 Aix-en-Provence, France - 13 Ph.: +33 442971590 - 14 Fax: +33 442971595 - 15 Email: <a href="mailto:quesnel@cerege.fr">quesnel@cerege.fr</a> #### 17 Abstract 16 - 18 The Bangui Magnetic Anomaly (BMA) is the largest lithospheric magnetic field anomaly on - 19 Earth at low latitudes. Previous studies investigated its geological source using constraints - 20 from satellite and ground magnetic field measurements, as well as from surface magnetic - 21 susceptibility measurements on rocks from the Panafrican Mobile Belt Zone (PMBZ). Here - 22 we combine magnetic field data modelling and rock magnetic property measurements - 23 (susceptibility and natural remanent magnetization, NRM) on many samples from this PMBZ - 24 and the surrounding formations. It reveals that NRM is a significant component of the total - 25 magnetization (Mt) of the BMA source, which reaches 4.3 A/m with maximum thicknesses of 38 and 54 km beneath the western and eastern parts of the BMA. Only the isolated and relatively thin banded iron formations and some migmatites show such Mt values. Thus we suggest that the thick BMA source may be composed either by overlapped slices of such metamorphic rocks, or by an iron-rich mafic source, or by a combination of these two geological structures. **Keywords:** Bangui magnetic anomaly, magnetization, geological source, modelling, banded 33 iron formation #### 1 – Introduction Located in Centrafrican Republic, the Bangui Magnetic Anomaly (BMA) is one of the largest lithospheric magnetic field anomaly on Earth, proeminent even at satellite altitude. Different models have been proposed concerning its geological source. First, Regan and Marsh (1982) suggested that a geological metamorphic process affected the entire crust of this area during the Panafrican orogenesis, creating physical property contrasts between cratonic regions and collisional belts. Ravat (1989) reinforced this model but suggested an additional concentrated near-surface ore-like body (see also Ravat et al., 2002 and Langel and Hinze, 1998). This shallow body could correspond to the remains of an iron meteorite that fell in this area during the Proterozoic era (Girdler et al., 1992; see also De et al., 1998 and Gorshkov et al., 1996). Shock, thermal and/or chemical remanent magnetizations acquired during and after the impact should have led to this highly-magnetized body. However, the impact hypothesis is less suitable since the impactor material does not survive in significant amount in large craters and thus cannot contribute to such a large magnetic anomaly (Koeberl, 1998). Furthermore no shock remanent magnetization was observed on the rock samples from this area (Marsh, 1977). All these studies lack of constraints from magnetic property measurements on the corresponding rocks of this area. Here we combined rock magnetic measurements with magnetic field anomaly modelling in order to investigate the possible source of the BMA. In the first section, we summarize the geological context of the Centrafrican Republic, especially in our studied area. Then, the BMA is introduced before the description of the methods used. The next section details the results of magnetic property measurements and BMA modelling over the studied area. The last section corresponds to a discussion on the origin of the BMA, in the context of the general challenge involved in understanding large and deep crustal anomalies using limited access to rock samples (e.g. Frost and Shive, 1986; McEnroe et al., 2004, Rochette et al., 2005). ## 2 – Geological context Central Africa is a key area of the African Plate since it constitutes the transition between several old cratons (Figure 1a,b). This transition corresponds to several orogenic belts such as the Panafrican belt (Nickles, 1952; Gérard, 1958; Black, 1966; Mestraud, 1971; Alvarez, 1992, 1995; Rolin, 1995a,b). These belts are mobile zones of the Panafrican Orogenesis at 600 ± 100 Ma (Kennedy, 1964; Rocci, 1965; Black, 1966). During this orogeny plate movements closed oceanic areas leading to a belt of suture zones around the cratons in the African regions of Gondwana. Our study area corresponds to Central Africa (Cameroon, Centrafrican Republic, Chad and Congo) where the West-African and Congolese cratons are separated by the Precambrian and Palaeozoic Oubanguides mobile zones (Figure 1b; Nickles, 1952; Gérard, 1958; Mestraud, 1971; Rolin, 1995b). Four geological domains are observed in this area from the rare outcrops of the Archean terranes (about 3.5 Ga), the Eburnean basement (2.4-2.2 Ga), the Neoproterozoic Panafrican cover (600 Ma) and the post-Panafrican domain (Figure 1b,c). We focus our study on the southwestern part of the Centrafrican Republic (Figure 1c) where the Oubanguides Panafrican Belt borders to the north the Congo craton. Syn- and post-glacial Marinoen sediments cover the Neoproterozoic layers (Alvarez, 1999; Rolin, 1995a). A collision of an oceanic plate led to the presence of metamorphic rocks that were sampled in this area (granulites, quartzites including Banded Iron Formations (BIF), migmatites, orthogneisses, metabasalts, metasediments and metaperidotites). All metamorphic grades are found from granulite to green schist. The whole sequence was remobilized during the Panafrican orogenesis in nappes (formation 6 on Figure 1c) cut by N140 and N70-trending reverse faults (Figure 1c). ## 3 – Geophysical context The western part of Central Africa shows one of the most prominent large-scale magnetic anomaly on Earth: the Bangui magnetic anomaly (BMA; Figure 2). It corresponds to a multipolar magnetic anomaly with a negative central lobe and two positive north and south lobes (all are located south to the geomagnetic equator). It reaches about 800 km of N-S wavelength and about 1000 nT of amplitude at ground level. Its E-W axial extension also reaches about 700 km. Near the magnetic equator and in the sub-tropical zone, this is the largest magnetic field anomaly. Here we use the anomaly field from the Magnetic Field model 7 (MF7; modified from the MF6 of Maus et al. (2008)) and downward continued to near the Earth's surface (2.5 km altitude – but this is considered as the 'satellite' signal in the following). This model was derived using 2007-2010 magnetic data from the low-Earth orbit CHAMP satellite. It resolves the crustal magnetic field anomalies with wavelengths larger than 300 km, for example the long-wavelength part of the BMA. Ground magnetic data with a heterogeneous spatial resolution are also used in this study. They were acquired by LeDonche and Godivier (1962) in Centrafrican Republic and Chad (therefore no ground data were acquired at the southern lobe of the BMA). The published maps are of the horizontal and vertical components of the total magnetic field, as well as the declination. To recover the total magnetic field (TF) anomaly, they substracted the corresponding International Geomagnetic Reference Field (IGRF) model values from TF values. We preferred to apply the Definitive Geomagnetic Reference Field (DGRF) model for year 1960 (coefficients published in Finlay et al. (2010)) to derive the anomaly. It should be noted that the TF anomaly values are close to the horizontal component anomaly values, as expected for such low latitudes near the magnetic equator. The shape of the BMA differs between the satellite data map and the ground data map. Indeed the latter reveals that the western limit of the negative lobe of the satellite-derived anomaly is more heterogeneous at ground level, with a local positive E-W elongated central anomaly nearby (5°N, 17°E) surrounding by local negative lobes south and north. Also, the E-W transition between the central negative lobe and the northern positive one on the satellite-derived anomaly map is about 0.3° north than the same transition on the ground data map. This could indicate that the main source body lies in the lower and middle crusts but that only several branches of this source may really reach the upper crust. The negative lobe of the anomaly is more intense (-1000 nT) on the ground data map than on the satellite anomaly map (-400 nT). It is also very well correlated to a negative Bouguer gravimetric anomaly (data from Boukéké et al., 1995) of -125 mGal, indicating that the magnetization contrasts in the crust of this area may be correlated to rock density contrasts from the same source region. 119 120 122 123 124 125 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 ## 4 – Methods ## 121 *4.1 – Magnetic anomaly modelling* To investigate the magnetic properties of the BMA source, we first used a modelling method with the observed (ground as well as satellite-derived) magnetic and ground gravimetric anomaly fields. The GM-SYS module of the GEOSOFT Oasis montaj software was used. Gravity (Boukéké et al., 1995) and magnetic anomaly data along the NW-SE profiles shown on Figure 2 were considered. The geometry of the different geological layers was constrained by 1) our own field observations (only near the western profile), 2) data from previous geological maps (Rolin, 1995a), and 3) gravimetric and magnetic anomaly data. Along the western profile, only the surface geology, ground magnetic and gravimetric data really constrained the model, because the satellite-derived magnetic signal cannot reproduce the short wavelengths observed at 2.5 km altitude. On the other hand, along the long eastern profile, too few surface observations, probably representing very 'local' anomalies, exist to consider the interpolated profile as a reasonable constraint. The directions of the remanent magnetization vector of the source body were initially set to the 2011 and 1960 Bangui magnetic field directions (Finlay et al., 2010) for modelling of satellite-derived and ground data, respectively, but could vary if necessary during the inversion. The main aim of the magnetic modelling was to infer the approximate range of total magnetization (Mt) of the most magnetic formation beneath the BMA under the assumptions of induced magnetization constraint and of a source model geometry able to fit the data whatever the location (western or eastern profiles). ## 4.2 – Sampling and rock magnetic measurements Over 50 large hand samples were obtained in the area of Figure 1c, during several field missions. Sampling was designed to cover all lithologies and degrees of metamorphism observed in this area. Petrography was determined using thin sections and, in some cases, X-ray diffraction and chemical analysis. Low field magnetic susceptibility measurements were carried out using SM30 susceptibility meter (ZH Instruments) for large samples and KLY2 susceptibility meter (AGICO) for small samples. Mass susceptibility $\chi$ was calculated using the weight of the samples. For remanence and further rock magnetic measurements a first set of samples (chosen to be representative of all lithologies) was completed by all samples with high susceptibility remaining in the collection: therefore the proportion of high susceptibility samples is higher in the studied set. A total of 22 samples were thus fully investigated magnetically. The Natural Remanent Magnetization (NRM) as well as saturation isothermal remanent magnetization (SIRM) acquired at 1 T were measured using a spinner magnetometer Minispin (Molspin) for large samples. In one case NRM was analysed by alternating field demagnetization of a small sample using a superconducting rock magnetometer 760R (2G enterprises). To characterize the magnetic minerals, thermomagnetic curves were acquired using a MFK1 susceptibility meter (AGICO) with CS3 furnace (up to 650°C under argon atmosphere), ambient temperature hysteresis measurements were performed with a vibrating sample magnetometer Micromag 3900 (PMC) and its cryostat allowed measuring low temperature remanent magnetizations. To compare with the magnetic properties of somewhat similar formations within the Panafrican belt, we analysed susceptibility data from East Cameroon (Betaré Oya area, see Figure 1a,b and Kankeu et al., 2009) as well as West Cameroon (after Njanko et al., 2012 and ongoing magnetic anisotropy investigations of amphibolites and granitoids). Some samples from W Cameroon were also measured for rock magnetic properties. Mass normalized rock magnetic measurements were used to evaluate in-situ Mt (in A/m) of the sampled formations using the following formula: 170 $$Mt = \rho (NRM + \chi H)$$ with $\rho$ the rock density (2.7 g/cm<sup>3</sup> for all rocks – a typical value for deep continental crust, see Table 1 - except itabirites which were assumed to be 3.2 g/cm<sup>3</sup>) and H the present magnetic field intensity in Bangui (33.6 $\mu$ T, i.e. 26.8 A/m). Using field intensities at the dates of the discussed magnetic field surveys makes negligible changes. This formula assumes that the induced and remanent magnetization components are colinear. Thus the resulting Mt values computed with this equation will be maximum values. The Koenigsberger ratio $(Q=NRM/\chi\ H)$ was also calculated. 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 176 177 178 ## 5 – Results ## 5.1 – Magnetic anomaly modelling The best models to represent the crustal magnetization and density variations beneath the western and eastern BMA profiles are shown in Figure 3, and the parameters associated to each layer are indicated in Table 1. For the most magnetic layer, using a shape similar than the one shown in Figure 3 but with different Mt value and associated thickness, a Mt of 4.3 A/m indeed results in the best predictions of the data along both eastern and western profiles (see Table A1, Figures A1 and A2 in Supplementary Material). Only the 2.5 km-altitude satellitederived magnetic data of the western profile and the ground magnetic data of the eastern profile are not well predicted, as expected (see explanations in Section 4.1). The resulting magnetization directions are similar to the input values. Similarly to the results of previous BMA modelling studies, the superficial geological layers seem to be weakly magnetized. With the selected shape, the top of the main magnetic source (layer 1) is 9 km deep beneath the short western profile, 5 km deep beneath the long eastern profile. The total magnetic thickness of this layer reaches 38 and 54 km beneath the western and eastern profiles, respectively, even if significant lateral N-S thickness variations are observed beneath the western profile (Figure 3). This confirms that a huge amount of strongly magnetized rocks is preserved in the crust of Centrafrican Republic, even beneath the sampled area near Bangui. The gravity and magnetization contrasts in the models are similar to those of the model proposed by Marsh (1977) and Regan and Marsh (1982) using satellite data only and modelling the whole BMA. In particular, the magnetic source seems to be less dense (density contrast of about -0.03 g/cm<sup>3</sup>) than the deep non-magnetic surrounding rocks (mainly layer 3), but denser (> 0.2 g/cm<sup>3</sup>) than the superficial non-magnetic formations (not considered in model (b) of Figure 3). Note that a small relief of the Moho is necessary to completely explain the shape of the gravity signal along the two profiles. Concerning the 4.3 A/m magnetization intensity for the most magnetic layer of the best model, using only induced magnetization would require a rather unrealistically high k of 16 $10^{-2}$ SI for the rocks of the studied area. Therefore we arbitrarily separated this Mt value into a NRM of 4 A/m and a volumic susceptibility k of $10^{-2}$ SI (Table 1). ## 5.2 – Magnetic property measurements Table 2 shows the magnetic properties of the 22 studied samples. Most of our strongly magnetic samples have Koenigsberger ratios (Q) larger than 1 (minimum values 0.3), stressing the importance of not relying only on susceptibility measurements. Only two samples corresponding to migmatite (8576) and itabirite (8603), have Mt over 4.3 A/m, while five other samples have 0.8<Mt<2.3 A/m, from the above lithologies plus granodiorite (8632) and orthogneiss (240). Other lithologies (metaperidotites, metabasalts, granulite and non itabiritic metasedimentary rocks) have negligible Mt. The strong Mt values are coherent with the susceptibility measurements made by Marsh (1977) on outcrops from the area beneath the large Bangui magnetic anomaly, eastward from our own sampling. Those samples with the largest observed magnetic susceptibilities are itabirites from Bakala (*k* around 0.1 SI) and charnockites from Kaga Bandaro (*k* around 0.02 SI). We do not elaborate further on Marsh (1977) data obtained using a Bison large coil applied on the outcrops, as their precision and cross-calibration with our more precise data is unknown. Hysteresis loops obtained on chips from the 6 most magnetic samples reveal 4 samples (Figure 4; including 8576) typical of multidomain magnetite -Mrs/Ms<0.02, Bcr/Bc>5, Bcr<20 mT- and two samples (8603 and 240) typical of hematite -Mrs/Ms>0.5, Bcr/Bc≈1.3, Bcr>20 mT. Hematite appears multidomain for the itabirite sample (8603) and single domain for the orthogneiss (240). To confirm these identifications, we measured low temperature remanent magnetizations on the two most magnetic samples (Figure 5) and high-temperature susceptibility on the 4 samples showing multidomain magnetite (Figure 6). At low temperature, Morin and Verwey transitions are visible on 8603 and 8576 respectively (Figure 5), indicating that pure hematite and pure magnetite are indeed present in these rocks. Magnetite Curie point (at 580°C; Figure 6) is observed on all samples but in 8603 and 240 over 50% of initial susceptibility remains over 650°C, indicative of hematite that should carry most of the remanence. For sample 240, this weak residual signal may also correspond to instrument drift, but the previous hysteresis measurements have shown hematite. For surface rock samples, the measured NRM intensities can be biased by the viscous remanent magnetization (VRM) component and other possible spurious unwanted magnetizations, especially lightning induced IRM that can generate anomalously high NRM (Verrier and Rochette, 2002). Therefore we scaled measured NRM with saturation IRM, and computed theoretical in situ NRM intensities from measured SIRM. For samples containing magnetite, we applied a theoretical NRM/SIRM ratio of 2% (Gattacceca and Rochette, 2004) using a thermo-remanent magnetization (TRM) in the present magnetic field in Bangui. These modelled Mt values are shown in the last column of Table 2. Only two samples exhibit modelled values significantly different from the value computed using our NRM and susceptibility measurements: magnetite-bearing migmatite (8576) and hematite-bearing gneiss (243). For the latter, modelled value is much higher, possibly due to a multicomponent IRM with opposite directions. Measured value for 8576 is 3 times larger than the modelled Mt, suggesting that lightning has biased our NRM measurement, although much larger NRM/SIRM ratios are commonly observed for samples affected by lightning (Verrier and Rochette, 2002). An alternative-field demagnetization experiment with REM' ratio computed following Gattacceca and Rochette (2004) does confirm that 8576 NRM is affected by lightning, with REM' peaking at 30%. For samples containing hematite (8603 and 240), the modelled Mt values (using NRM/SIRM = 50% after Kletetschka et al., 2000, and Dunlop and Kletetschka, 2001) are similar to the observed ones (30 to 50%). 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 Finally, we compare the magnetic properties of our samples with those measured on other rock samples from the Panafrican belt in Cameroon (Figure 7). For West Cameroon Fomopea amphibolites (Njanko et al., 2012; geographic position near 5.5N and 10E), among 16 sites (with 2 to 4 samples per sites), the maximum k is 9 $10^{-2}$ SI, with 25% of the sites above 10<sup>-2</sup> SI. In the Nkambé area (6N and 10E), mostly with granitoids but also with accessory amphibolites, the maximum k is 5 $10^{-2}$ SI in both lithologies, with 16% of the over 1200 samples above 10<sup>-2</sup> SI (Fozing et al., in preparation). Rock magnetic measurements, including hysteresis loops and thermomagnetic curves, have been performed on a selection of 48 samples (Table A2 of the Supplementary Material). They all show a multidomain to large pseudo-single domain magnetite signal. Modelled Mt has been computed after SIRM and susceptibility measurements (Figure 8). Only 15 samples yield values over 1 A/m, a single one being over 4 A/m (at 6.8 A/m). For those strong samples, Q ratio is always over 1 (average around 2), stressing again the need to take remanence into account, even for multidomain magnetite. For the East Cameroon study of Kankeu et al. (2009, at 5.5N and 14E), the susceptibility of 65 metasediments (schist, quartzite and gneiss) and 18 deformed granites was measured. For these two classes, the maximum k is 2 and 5 $10^{-2}$ SI, with 5 and 61% of the samples above 10<sup>-2</sup> SI, respectively. It appears from Figure 7 that the mean magnetic susceptibility distribution is roughly similar regardless of the location in the Panafrican belt, with metamorphic rocks derived from basalts and granites having the strongest magnetic susceptibilities. These histograms confirm on a larger scale the conclusion from our samples: no surface lithologies are able to account for the BMA by induced magnetization alone (e.g. Shive, 1989). A review of the extensive magnetic anisotropy work in Panafrican intrusives from NE Brasil (e.g. Archanjo et al., 1995, 1998, 2002) confirms this conclusion. When taking into account remanence it appears that magnetite-bearing crustal rocks (granitoids and amphibolite) exceptionally reaches the BMA total magnetization (Figure 8). #### 6 – Discussion These results indicate that a single lithology -hematite-bearing itabirites, i.e. BIF, interstratified with amphibolites and other metasediments- shows strong enough total magnetization Mt to be the magnetic source of the BMA (Mt > 4.3 A/m). Lithologies rich in multidomain magnetite (some amphibolites and granites) fail by about a factor 2 to account for the BMA, assuming no significant enhancement of NRM at depth. No magnetic field observations were made at the itabirite sampling locations (LeDonche and Godivier, 1962), but such outcrops should result in a local small-wavelength high-amplitude magnetic field anomalies. Our assumption that the deep crustal lithologies responsible for the BMA could be outcropping over the BMA relies on the possibility that some slices from these deep lithologies have been brought to the surface through orogenic processes (e.g. Rolin, 1991). Our modelling shows that the deep magnetic source seems to be less dense than the deep non-magnetic surrounding rocks (granulites?), but denser than most of the superficial non-magnetic formations (quartzites and schists). We also note the numerous reverse faults in this Panafrican belt around Bangui that witness a compressive regime which may have favored the thickening of the iron-rich formations (Figure 1c). The total magnetization intensity and the expected volume of the geological source of the BMA are coherent with a mafic (basaltic) lower crust, as Pin and Poidevin (1987) and Hemant and Maus (2005) suggested. This metabasalt or amphibolitic part of the Central Africa's lower crust may be the root of the migmatite basement. However, our results also suggest that BIF may compose the source of the BMA because of their magnetization. These rocks are assumed to compose about 25% of the source of the Kursk magnetic anomaly in Russia (Taylor, 1987; Ravat et al., 1993; Langel and Hinze, 1998). In such case, a positive gravimetric anomaly should be associated to the BMA, as Schmidt et al. (2007) observed on a similar geological formation in Australia (magnetization up to 100 A/m). However as itabirite can be an order of magnitude more magnetized than the BMA source, a volume occupied by a mixture of 10% itabirite (i.e. a maximum thickness of 2 km) and 90% of low density and less magnetic rock can account for the BMA without inducing a significant excess of mass. As mentioned earlier, a negative gravimetric contrast is associated to the BMA in its central part, but a positive one is found west of Bangui nearby Cameroon border (Boukéké et al., 1995), where a positive magnetic anomaly and itabirites are also observed. Finally, the combination of these two possible magnetic formations (itabirites and amphibolite) may explain the long wavelength and large intensity of the BMA. It is interesting to note that probably all Panafrican metamorphic crustal formations, including these magnetic rocks from the lower crust, may be found on surface today in the Centrafrican Republic, while for other large magnetic anomalies like the Beattie magnetic anomaly in South Africa, the source is from the upper and middle crust but covered by the Karoo basin sediments (Quesnel et al., 2009). Two key points of our interpretation are the possible Curie isotherm -deepened in case of hematite-bearing rocks- in the Central Africa lithosphere, as well as the magnetic mineralogy that carries these strong magnetization intensities at such depth (Frost and Shive, 1986; McEnroe et al., 2004). If it is hematite, our study puts forward a candidate lithology: itabirite or BIF. If it is multidomain magnetite, then the candidate lithology has not been sampled at the surface. It should be two times richer in magnetite than the most magnetite-rich granitic and amphibolitic samples studied so far. Such a high Fe amount should correspond to a positive gravity anomaly that is not observed. However, a "homogeneous" tectonic mixing of BIF slices, a few km thick in total, with other metasediments and a few tens of km thick series of magnetite-rich metamagmatic rocks may be the best solution to account for all geophysical data. #### 7 – Conclusion Using modelling and rock magnetism constraints, we investigated the source of the BMA using samples obtained over the anomaly in Centrafrican Republic, as well as geologically related areas in Cameroon. Modelling implies a total magnetization of the order of 4 A/m on a thickness up to 54 km, possibly associated with relatively moderate density of 2.87. No surface sample can account for this magnetization based only on induced magnetization. Large enough remanent magnetization intensities are observed for only two surface samples, but lightning has affected one. This highlights the fact that modelled in-situ NRMs based on IRM and magnetic mineralogy may be a more reliable indicator in magnetic anomaly interpretation, compared to NRM actually measured on surface samples, which can yield strongly-biased values with respect to NRM at depth. The only remaining lithology, with NRM up to 50 A/m, is hematite-bearing itabirites (BIF) that are Neoproterozoic iron-rich metasediments. Other magmatically-derived lithologies rich in multidomain magnetite (migmatite, amphibolite, granite) can account for only a few A/m at most. We suggest that the two types of geological formation may compose the deep crust of this area and particularly the extended deep magnetic source. Further constraints given by drilling or by other geophysical methods like seismics or magnetotellurics are needed to validate (or not) this interpretation and the previously-published models. Concerning magnetics, new high-resolution ground and airborne magnetic 351 field measurement surveys will surely improve the characterization of this source, including 352 its possible extensions toward the surface. In the same time, one should benefit from the upcoming SWARM satellite mission (Friis-Christensen et al., 2006) that will allow the use of 353 354 lateral and vertical magnetic gradients to study such large magnetic anomalies. 355 **Acknowledgments** 356 357 The Bangui University is acknowledged for its support to this work, as well as the OSU-358 Institut Pytheas. We also thank the two anonymous reviewers who greatly contributed to 359 improve the first state of this manuscript. 360 361 References 362 Almeida, F.F.M., Brito Neves, B.B., de Carneiro, C.D.R., 2000. The origin and evolution of 363 the South American Platform. Earth Sci. Rev., 500, 77-111. 364 Alvarez, P., 1992. Répartition de la sédimentation dans le golfe Protérozoïque supérieur du 365 366 Schisto-calcaire au Congo et au Gabon: Implications en Afrique centrale. Palaeogeogr. 367 Palaeoclimat. Palaeoecol., 96, 281-297. 368 Alvarez, P., 1995. Evidence for a Neoproterozoic carbonate ramp on the northern of the Central African craton: relations with the Late Neoproterozoic troughs. Rundschau, 369 370 84, 636-648. Alvarez, P., 1999. Un segment proximal de rampe carbonatée d'âge protérozoïque supérieur 371 372 au Nord du craton d'Afrique Centrale (Sud-Est de la République Centrafricaine). 373 J. Afr. Earth Sci., 23, 263-266. - 374 Archanjo, C.J., Launeau, P., Bouchez, J.-L., 1995. Magnetic fabric vs. magnetite and biotite - shape fabrics of the magnetite-bearing granite pluton of Gameleiras (Northeast Brazil). - 376 Phys. Earth Planet. Int., 89, 63-75. - 377 Archanjo, C.J., Macedo, J.W.P., Galindo, A.C., Araujo, M.G.S., 1998. Brasiliano crustal - extension and emplacement fabrics of the mangerite-charnockite pluton of Umarizal, - 379 North-east Brazil. Precambr. Res., 87(1-2), 19-32. - 380 Archanjo, C.J., Trindade, R.I.F., Bouchez, J.-L., Ernesto, M., 2002. Granite fabrics and - regional-scale strain partitioning in the Serido belt (Borborema Province, NE Brazil). - 382 Tectonics, 21, doi:10.1029/2000TC001269. - 383 Black, R., 1966. Sur l'existence d'une orogénie riphéenne en Afrique occidentale. C.R. Acad. - 384 Sci. Paris, 262, D, 1046-1049. - Boukéké, D.-B., Legeley-Padovani, A., Poudjom-Djomani, Y.-H., Foy, R., Albouy, Y., 1995. - Gravity map of Central African Republic: Bouguer anomalies. ORSTOM, Institut - 387 français de recherche scientifique pour le développement en coopération. Carte - 388 1/6000000, Lever gravimétrique de reconnaissance. - 389 De, S., Heaney, P.J., Hargraves, R.B., Vicenzi, E.P., Taylor, P.T., 1998. Microstructural - 390 observations of polycristalline diamond: a contribution to the carbonadro conundrum. - 391 Earth Planet. Sci. Lett., 164, 421-433. - 392 Dunlop, D.J., Kletetschka, G., 2001. Multidomain hematite: A source of planetary magnetic - anomalies?. Geophys. Res. Lett., 28, 3345-3348. - 394 Ferré, E., Dereris, J., Bouchez, J.L., Lar, A.U., Peucat, J.J., 1996. The Pan-African - reactivation of Eburnean and Archean provinces in Nigeria: structural and isotopic - 396 data. J. Geol. Soc. London, 153, 719-728. - 397 Feybesse, J.L., Johan, V., Triboulet, C., Guerrot, C., Mayaga-Mikolo, F., Bouchot, V., Eko - Ndong, J., 1998. The West Central African belt: a model of 2.5–2.0 Ga accretion and - two-phase orogenic evolution. Precambr. Res., 87, 161–216. - 400 Finlay, C.C., Maus, S., Beggan, C.D., Bondar, T.N., Chambodut, A., Chernova, T.A., - 401 Chulliat, A., Golovkov, V.P., Hamilton, B., Hamoudi, M., Holme, R., Hulot, G., - Kuang, W., Langlais, B., Lesur, V., Lowes, F.J., Lühr, H., Macmillan, S., Mandea, M., - 403 McLean, S., Manoj, C., Menvielle, M., Michaelis, I., Olsen, N., Rauberg, J., Rother, - M., Sabaka, T.J., Tangborn, A., Tøffner-Clausen, L., Thébault, E., Thomson, A.W.P., - Wardinski, I., Wei, Z. and Zvereva, T.I., 2010. International Geomagnetic Reference - Field: the eleventh generation. Geophys. J. Int., 183, 1216-1230. - 407 Friis-Christensen, E., Lühr, H., Hulot, G., 2006. Swarm: A constellation to study the Earth's - 408 magnetic field. Earth Planets Space, 58, 351-358. - 409 Frost, B.R., Shive, P.N., 1986. Magnetic mineralogy of the lower continental crust. J. - 410 Geophys. Res., 91, 6513–6522. - 411 Gattacceca, J., Rochette, P., 2004. Toward a robust paleointensity estimate for meteorites. - 412 Earth Planet. Sci. Lett., 227, 377-393. - 413 Gérard, G., 1958. Carte géologique de l'Afrique Equatoriale Française au 1/2000000. Notice - 414 explicative. Pub. DGM AEF. - 415 Girdler, R.W., Taylor, P.T., Frawley, J.J., 1992. A possible impact origin for the Bangui - 416 magnetic anomaly (central Africa). Tectonophysics, 212, 45–58. - 417 Gorshkov, A.I., Titkov, S.V., Pleshakov, A.M., Sivtsov, A.V., Bershov, L.V., 1996. Inclusions - of native metals and other mineral phases into Carbonado from the Ubangi Region - 419 (Central Africa). Geology of Ore Deposits, 38, 114-119. - 420 Hemant, K., Maus S., 2005. Geological modeling of the new CHAMP magnetic anomaly - maps using a geographical information system technique. J. Geophys. Res., 110, - 422 B12103, 1–23. - 423 Kankeu, B., Greiling, R.O., Nzenti, J.P., 2009. Pan-African strike-slip tectonics in eastern - Cameroon-Magnetic fabrics (AMS) and structure in the Lom basin and its gneissic - 425 basement. Precambr. Res., 174, 258–272. - 426 Kennedy, W.Q., 1964. The structural differenciation of Africa in the Panafrican (+/- 500 - millions years) tectonic episode. 8<sup>th</sup> ann. Rep. Res. Inst. afro Geal. Leeds Univ., U.K., - 428 48-49. - 429 Kletetschka, G., Wasilewski, P.J., Taylor, P.T., 2000. Unique thermoremanent magnetization - of multidomain-sized hematite: Implications for magnetic anomalies. Earth Planet. - 431 Sci. Lett., 176, 469-479. - 432 Koeberl, C., 1998. Identification of meteoritical components in impactites. In: M.M. Grady, - 433 R. Hutchison, G.H.J. McCall, D.A. Rothery (Editors). Meteorites: Flux with Time and - 434 Impact Effects. Geol. Soc. London, Spec. Publ., 140, 133–152. - 435 Langel, R.A., Hinze, W.J., 1998. The magnetic field of the Earth's lithosphere: the satellite - perspective. Cambridge University Press, 429 p. - 437 LeDonche, L., Godivier, R., 1962. Réseau magnétique ramené au 1<sup>er</sup> janvier 1956: - 438 République Centrafricaine, Tchad méridional. ORSTOM, Office de la recherche - scientifique et technique outre mer, cartes 1/2500000, Cahiers ORSTOM / - Géophysique, No 1. - 441 Marsh, B.D., 1977. On the origin of the Bangui magnetic anomaly, Central African Empire, - 442 NASA Report, 63 p. - 443 Maus, S., Yin, F., Lühr, H., Manoj, C., Rother, M., Rauberg, J., Michaelis, I., Stolle, C., - Müller, 2008. Resolution of direction of oceanic magnetic lineations by the sixth- - generation lithospheric magnetic field model from CHAMP satellite magnetic - 446 measurements. Geochem. Geophys. Geosyst., 9, Q07021, - 447 doi:10.1029/2008GC001949. - 448 McEnroe, S.A., Langenhorst, F., Robinson, P., Bromiley, G., Shaw, C., 2004. What's - magnetic in the lower crust?. Earth Planet. Sci. Lett., 226, 175–192. - 450 Mestraud, J.L., 1971. Afrique centrale. In: Tectonique de l'Afrique. UNESCO, Paris, 461-507. - Nickles, M., 1952. Les formations géologiques de la cuvette tchadienne. In: Rapport de la - commission scientifique du Logone et du Tchad. Paris, 13p. - Njanko, T., Fozing, E.M., Kwékam, M., Yakeu Sandjo, A.F., Njonfang, E., 2012. Magnetic - characterization of amphibolite from the Fomopéa pluton (West Cameroon): their - 455 implication in the Pan-African deformation of the central african fold belt. Acta - 456 Geologica Sinica, 86, 1, 73-84. - Penaye, J., Toteu, S.F., Tchameni, R., Van Schmus, W.R., Tchakounté, J., Ganwa, A., Minyem, - D., Nsifa, E.N., 2004. The 2.1 Ga West Central African Belt in Cameroon extension - and evolution. J. Afr. Earth Sci., 39, 159–164. - 460 Pin, C., Poidevin, J.L., 1987. U-Pb Zircon evidence for a Pan-African granulite facies - 461 metamorphism in the central African Republic: A new interpretation of the high-grade - series of the northern border of the Congo craton. Precambr. Res., 36, 303–312. - 463 Poidevin, J.L., 1991. Les ceintures de roches vertes de la République Centrafricaine - 464 (Mbomou, Bandas, Boufoyo, Bogoin): contribution à la connaissance du Précambrien - du Nord du craton du Congo. PhD Thesis, Sci. Univ. Clermont-Ferrand, 440p. - 466 Quesnel, Y., Weckmann, U., Ritter, O., Stankiewicz, J., Lesur, V., Mandea, M., Langlais, B., - Sotin, C., Galdéano, A., 2009. Simple models for the Beattie Magnetic Anomaly in - South Africa. Tectonophysics, doi:10.1016/j.tecto.2008.11.027. - 469 Ravat, D.N., 1989. Magsat investigations over the greater African region. Ph.D. Thesis, - 470 Purdue University. - Ravat, D.N., Hinze, W.J., Taylor, P.T., 1993. European tectonic features observed by Magsat. - 472 Tectonophysics, 220, 157-173. - 473 Ravat, D., Wang, B, Wildermuth, E., Taylor, P.T., 2002. Gradients in the interpretation of - satellite-altitude magnetic data: an example from central Africa. J. Geodyn., 33, 131- - 475 142. - 476 Regan, R. D., Marsh, B.D., 1982. The Bangui magnetic anomaly: Its geological origin. J. - 477 Geophys. Res., 87, 1107–1120. - 478 Rocci, G., 1965. Essai d'interprétation de mesures géochronologiques : La structure de l'Ouest - 479 Africain. Coll. Int. Géochronol., Nancy Sci. Terre, X, 461-478. - 480 Rochette, P., Gattacceca, J., Chevrier, V., Hoffmann, V., Lorand, J.P., Funaki, M., Hochleitner, - 481 R., 2005. Matching Martian crustal magnetization and meteorite magnetic properties. - 482 Meteorit. Planet. Sci, 40, 529-540. - Rolin, P., 1991. Présence d'un chevauchement ductile majeur d'âge panafricain dans la partie - centrale de la République Centrafricaine : résultats préliminaires. C.R. Acad. Sci. Paris, - 485 315, II, 467-470. - 486 Rolin, P., 1995a. Carte tectonique et géologique de la République Centrafricaine au - 487 1/1.000000, ORSTOM. - 488 Rolin, P., 1995b. La zone de décrochements panafricains des Oubanguides en République - 489 Centrafricaine. C.R. Acad. Sci. Paris, 320, IIa, 63-69. - 490 Schmidt, P.W., McEnroe, S.A., Clark, D.A., Robinson, P., 2007. Magnetic properties and - 491 potential field modeling of the Peculiar Knob metamorphosed iron formation, South - 492 Australia: An analog for the source of the intense Martian magnetic anomalies?. J. - 493 Geophys. Res., 112, b03102-b004495. | 494 | Shive, P.N., 1989. Can remanent magnetisation in the deep crust contribute to long | |-----|----------------------------------------------------------------------------------------------| | 495 | wavelength magnetic anomalies?. Geophys. Res. Lett., 16, 89-92. | | 496 | Taylor, P.T., Frawley, J.J., 1987. Magsat anomaly data over the Kursk region, U.S.S.R. Phys. | | 497 | Earth Planet. Inter, 45, 255-265. | | 498 | Toteu, S.F., Van Schmus, W.R., Penaye, J., Michard, A., 2001. New U-Pb, and Sm-Nd data | | 499 | from North-central Cameroon and its bearing on the pre-Pan-African history of central | | 500 | Africa. Precambr. Res., 108, 45–73. | | 501 | Verrier, V., Rochette, P., 2002. Estimating peak currents at Ground Lightning Impact using | | 502 | Remanent Magnetization. Geophys. Res. Lett., 29, 10.1029/2002GL015207. | | 503 | | | 504 | | | 505 | | | 506 | | | 507 | | | 508 | | | 509 | | | 510 | | | 511 | | | 512 | | | 513 | | | 514 | | ## Figure captions 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 515 Figure 1: Location (a), regional (b) and local (c) geological contexts of the studied area. In (a), the black rectangle and disks correspond to the sampled areas in Centrafrican Republic and Cameroon, respectively. The dotted-dashed line delineates the coastline of South America, translated and rotated next to Africa. A zoom is shown in (b) where the relationships between the different Archean blocks are reconstituted. Zone A corresponds to the Paleoproterozoic rocks with Archean inheritances underlining the border of the mega-Congo craton. Zone B are the Pan-African rocks with Paleoproterozoic inheritances. Zone C represents the nappes of the 600 Ma Central African Belt. Zone D corresponds to the Mesozoic sediments of the Benue trough and Zone E are the oceanic rocks. PF, Pernambuco fault; ADF, Adamawa fault; TBF, Tchollire-Banyo fault; dotted-dashed lines: reconstituted South America (SW one) and Africa (NE one) coastlines. This (b) regional map is modified from Penaye et al. (2004), Poidevin (1991), Ferré et al. (1996), Feybesse et al. (1998), Almeida et al. (2000) and Toteu et al. (2001). The dashed rectangle corresponds to the Centrafrican sampled area (c), while the black disks show the approximate locations of the sampled areas in Cameroon. In (c), modified from Rolin (1995a), details about the surface lithology and the structural features of the studied area nearby Bangui are shown. 1, Archean gneissic basement; 2, Paleoproterozoic migmatitic domain; 3, Lower-Neoproterozoic domain with (a) quartzites and (b) itabirites; 4, Upper-Neoproterozoic schists; 5, Upper-Neoproterozoic limestones/marbles; 6, Panafrican Gbayas Nappe with orthogneisses, granulites and granites; 7, Post-Panafrican cover with sandstones and clays. Black filled circles with names indicate the sampling sites. **Figure 2**: Interpolated magnetic anomaly maps near the surface over Centrafrican Republic and Chad. On left, gridded data from the satellite MF7 model (derived from Maus et al. (2008) downward continued to 2.5 km of altitude). On right, ground magnetic data interpolated from LeDonche and Godivier (1962). The solid lines correspond to the selected profiles for modelling, while the rectangle indicates the location of Figure 1c. Figure 3: Crustal magnetic models (bottom panels) along the NW-SE western (a) and eastern (b) profiles (top panels) shown on Figure 2. Sat, satellite-derived magnetic data; Ground, ground magnetic data; Gravi, ground gravity data (Boukéké et al., 1995); Obs, observations, Pred, predictions. For models, layer density and magnetization properties are represented by the filling color and/or pattern (see Table 1 for details). Formation 1 has a total magnetization intensity (Mt) of 4.3 A/m, which corresponds to the best model with this source geometry (see Supplementary Material). **Figure 4**: Hysteresis curves (specific magnetization) of four samples. Bc, coercitive field; Ms, saturation magnetization; Mrs, remanent magnetization at saturation; Bcr, coercitive field of the remanent magnetization, derived from the back-field curve. **Figure 5**: Low-temperature remanent magnetization (RM) curves for two samples (cooling and subsequent heating of a room temperature IRM), showing the Verwey (in a) and Morin (in b) transitions. For (b) is also shown the induced magnetization (IM) heating and cooling curves, measured in a 0.3 T field. Figure 6: Effect of heating (black) and cooling (gray) on the normalized magnetic susceptibility of the same four samples as in Figure 4. Figure 7: Histogram (in logarithmic representation) of k<sub>m</sub>, the mean magnetic susceptibility, for Cameroon and Centrafrican Republic (CR) rock samples. Figure 8: Histogram of modelled total magnetization (Mt) derived from IRM and susceptibility measurements on Panafrican magnetite-bearing rocks from Cameroon (black) and Centrafrican Republic (white). 564 Figure 1 revised Click here to download high resolution image Figure 3 revised Click here to download high resolution image Figure 4 revised Click here to download high resolution image Figure 6 Click here to download high resolution image Figure 7 revised Click here to download high resolution image Figure 8 new Click here to download high resolution image ## Table 1 revised 1 **Table 1**. Magnetization\* and density contrasts of the best models for the source of the BMA. | Layer** | k (10 <sup>-3</sup> SI) | NRM<br>(A/m) | d<br>(g.cm <sup>-3</sup> ) | Rock type*** | |---------|-------------------------|--------------|----------------------------|-----------------------| | 1 | 10 | 4.0 | 2.870 | Magnetic source layer | | 2 | 1 | - | 3.000 | Metabasalt | | 3 | 1 | - | 2.900 | Granulite/Orthogneiss | | 4 | 1 | - | 2.850 | Amphibolite | | 5 | 1 | - | 2.665 | Quartzite | | 6 | 1 | - | 2.630 | Schist | | 7 | 1 | - | 2.640 | Panafrican nappe | | 8 | - | - | 3.300 | Mantle rocks | $<sup>\</sup>overline{2}$ \*all layers have their magnetization oriented in the 1960 (I= -14.5°, D=-5°) and 2011 (I= -16.76°, D=0.3°) <sup>3</sup> magnetic field directions in Bangui for the modelling of the ground and satellite magnetic data, respectively. <sup>4 \*\*</sup>see correspondance in Figure 3. <sup>5 \*\*\*</sup>these rock types are expected with regards as their densities, their magnetization properties and the surface <sup>6</sup> geology. 1 **Table 2**. Magnetic properties of rock samples from the Bangui area. | Lithology | ID | X (10 <sup>-9</sup> m <sup>3</sup> .kg <sup>-1</sup> ) | NRM (A.m <sup>2</sup> .kg <sup>-1</sup> ) | Mt (A/m) | Q | NRM/SIRM (%) | Laboratory modelled Mt (A/m) | Sampling site | |----------------|------|--------------------------------------------------------|-------------------------------------------|----------|--------|--------------|------------------------------|---------------| | Itabirite | 8603 | 798 | 23856.2 | 76.4 | 1117.8 | 43.6 | 88.1 | Bogoin | | | 243 | 629 | 237.5 | 0.8 | 14.1 | 5.1 | 7.5 | Bogoin | | Migmatite | 8576 | 12201 | 2041.1 | 6.4 | 6.3 | 7.6 | 2.3 | Mabo | | | 8575 | 8496 | 66.0 | 0.8 | 0.3 | 0.7 | 1.1 | Mabo | | Orthogneiss | 240 | 85 | 833.8 | 2.3 | 365.5 | 53.1 | 2.1 | Mabo | | | 234 | 229 | 342.8 | 0.9 | 55.9 | 36.1 | 1.5 | Sibut | | | 235 | 5165 | 102.7 | 0.7 | 0.7 | 3.4 | 0.5 | Sibut | | | 216 | 23 | 0.9 | 0.0 | 1.4 | - | - | Galabadjia | | Granodiorite | 8632 | 7587 | 382.9 | 1.6 | 1.9 | 1.6 | 1.8 | La Mbi | | Metaperidotite | 8840 | 5223 | 76.7 | 0.6 | 0.5 | 0.8 | 0.9 | La Mbi | | | 8838 | 1235 | 105.6 | 0.4 | 3.2 | - | - | La Mbi | | | 8836 | 164 | 3.0 | 0.0 | 0.7 | - | - | Sibut | | Quartzite | 203 | 1902 | 82.7 | 0.4 | 1.6 | - | - | Boali | | | 8564 | 5 | 1.4 | 0.0 | 11.0 | - | - | Bossembélé | | | 213 | 7 | 0.8 | 0.0 | 3.8 | - | - | Mbalki | | | 452 | 20 | 0.4 | 0.0 | 0.7 | - | - | Ouango | | Granulite | 230 | 304 | 38.8 | 0.1 | 4.8 | - | - | Sibut | | Metabasalt | 8602 | 292 | 0.2 | 0.0 | 0.0 | - | - | Bogoin | | Micaschist | 249 | 171 | 2.2 | 0.0 | 0.5 | - | - | Boali | | Metasilexite | 217 | 52 | 1.3 | 0.0 | 0.9 | - | - | Kamaro | | Cipolin | 8631 | -1 | 0.4 | 0.0 | -11.9 | - | - | Fatima | |---------|------|----|-----|-----|-------|---|---|---------| | | 8610 | -1 | 0.4 | 0.0 | -13.0 | - | - | Ndjimba | Supplementary Material (new) Click here to download Supplementary Material: Supplementary Material.pdf