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A Calculus for Generating Ground

Explanations⋆

Mnacho Echenim and Nicolas Peltier

University of Grenoble⋆⋆ (LIG, Grenoble INP/CNRS)

Abstract. We present a modification of the superposition calculus that
is meant to generate explanations why a set of clauses is satisfiable. This
process is related to abductive reasoning, and the explanations generated
are clauses constructed over so-called abductive constants. We prove the
correctness and completeness of the calculus in the presence of redun-
dancy elimination rules, and develop a sufficient condition guaranteeing
its termination; this sufficient condition is then used to prove that all
possible explanations can be generated in finite time for several classes
of clause sets, including many of interest to the SMT community. We
propose a procedure that generates a set of explanations that should be
useful to a human user and conclude by suggesting several extensions to
this novel approach.

1 Introduction

The verification of complex systems is generally based on proving the validity,
or, dually, the satisfiability of a logical formula. The standard practice consists in
translating the behavior of the system to be verified into a logical formula, and
proving that the negation of the formula is unsatisfiable. These formulas may
be domain-specific, so that it is only necessary to test the satisfiability of the
formula modulo some background theory, whence the name Satisfiability Modulo
Theories problems, or SMT problems. If the formula is actually satisfiable, this
means the system is not error-free, and any model can be viewed as a trace
that generates an error. The models of a satisfiable formula can therefore help
the designers of the system guess the origin of the errors and deduce how they
can be corrected. Yet, this still requires some work. Indeed, there are generally
many interpretations on different domains that satisfy the formula, and it is
necessary to further analyze these models to understand where the error(s) may
come from.

We present what is, to the best of our knowledge, a novel approach to this
debugging problem: we argue that rather than studying one model of a formula,
more valuable information can be extracted from the properties that hold in all
the models of the formula. For instance, consider the theory of arrays, which is
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Fig. 1. Insertion into array a of element b at position i and element c at position j.

axiomatized as follows (as introduced by [13]):

∀x, z, v. select(store(x, z, v), z) ≃ v, (1)

∀x, z, w, v. z ≃ w ∨ select(store(x, z, v), w) ≃ select(x,w). (2)

These axioms state that if element v is inserted into array x at position z,
then the resulting array contains v at position z, and the same elements as in x
elsewhere. Assume that to verify that the order in which elements are inserted
into a given array does not matter, the satisfiability of the following formula is
tested (see also Figure 1):

select(store(store(a, i, b), j, c), k) 6≃ select(store(store(a, j, c), i, b), k).

This formula asserts that there is a position k that holds different values in the
array obtained from a by first inserting element b at position i and then element
c at position j, and in the array obtained from a by first inserting element c
at position j and then element b at position i. It turns out that this formula is
actually satisfiable, which in this case means that some hypotheses are missing.
State of the art SMT solvers such as Yices [16] can help find out what hypotheses
are missing by outputting a model of the formula. In this case, Yices outputs (=
b 1) (= c 3) (= i 2) (= k 2) (= j 2), and for this simple example, such
a model may be sufficient to quickly understand where the error comes from.
However, a simpler and more natural way to determine what hypotheses are
missing would be to have a tool that, when fed the formula above, outputs
i ≃ j ∧ b 6≃ c, stating that the formula can only be true when elements b and c
are distinct, and are inserted at the same position in a. This information permits
to know immediately what additional hypotheses must be made for the formula
to be unsatisfiable. In this example, there are two possible hypotheses that can
be added: i 6≃ j or b ≃ c.

In this paper, we investigate what information should be provided to the user
and how it can be obtained, by distinguishing a set of constants on which addi-
tional hypotheses are allowed to be made. These constants are called abducible
constants or simply abducibles, and the problem boils down to determining what
ground clauses containing only abducibles are logically entailed by the formula
under consideration, since the negation of any of these clauses can be viewed as
a set of additional hypotheses that make the formula unsatisfiable.



Outline. This paper begins by summarizing all necessary background, and then
a calculus specially designed for abductive reasoning is defined. This calculus is
closely related to the superposition calculus SP, and we rely on completeness and
termination results for SP to prove similar results for the new calculus. We also
propose a method for generating clauses containing only abducible constants,
that can help a user quickly detect where an error comes from, and decide what
additional hypotheses should be added to fix the faulty formula.

Due to the space restrictions, several intermediate results and proofs are
omitted. A full version of this work containing all proofs is available in [8].

2 Preliminaries

The general framework of this paper is first-order logic with equality. Most of
the presentation in this section is standard, and we refer the reader to [14] for
details. Given a finite signature Σ and an integer i ≥ 0, Σi stands for the set of
function symbols in Σ of arity i. In particular, Σ0 denotes the set of constants in
Σ. We assume the standard definitions of terms, predicates, literals and clauses,
all of which are constructed over a set of variables X . Interpretations are defined
as usual, |= stands for logical entailment and ≡ stands for logical equivalence. We
also consider the standard definitions of positions in terms, predicates, literals
or clauses. A term, predicate, literal or clause containing no variable is ground.
As usual, clauses are assumed to be variable-disjoint. The symbol ≃ stands for
unordered equality, ⊲⊳ is either ≃ or 6≃. If L is a literal, then Lc denotes the

complementary literal of L, i.e., (t ≃ s)c
def

= (t 6≃ s) and (t 6≃ s)c
def

= (t ≃ s). A
literal is flat if it only contains constants or variables1, and a clause is flat if
it only contains flat literals. The letters l, r, s, u, v and t denote terms, w, x, y, z
variables, and all other lower-case letters denote constants or function symbols.

Definition 1. Given a ground clause C, we denote by ¬C the following set of

literals: ¬C
def

= {Lc | L ∈ C}.

A substitution is a function mapping variables to terms. Given a substitution
σ, the set of variables x such that xσ 6= x is called the domain of σ and denoted
by dom(σ). If σ is a substitution and V is a set of variables, then σ|V is the
substitution with domain dom(σ)∩V , that matches σ on this domain. As usual,
a substitution can be extended into a homomorphism on terms, atoms, literals
and clauses. The image of an expression E by a substitution σ will be denoted
by Eσ. If E is a set of expressions, then Eσ denotes the set {Eσ | E ∈ E}. The
composition of two substitutions σ and θ is denoted by σθ. A substitution σ
is more general than θ if there exists a substitution η such that θ = ση. The
substitution σ is a renaming if it is injective and ∀x ∈ dom(σ), xσ ∈ X ; and it
is a unifier of two terms t, s if tσ = sσ. Any unifiable pair of terms (t, s) has
a most general unifier, unique up to a renaming, and denoted by mgu(t, s). A
substitution σ is ground if xσ is ground, for every variable x in its domain.

1 Note that we depart from the terminology in [2, 1], where flat positive literals can
contain a term of depth 1.



Superposition
C ∨ l[u′] ≃ r D ∨ u ≃ t

(C ∨ D ∨ l[t] ≃ r)σ
(i), (ii), (iii), (iv)

Paramodulation
C ∨ l[u′] 6≃ r D ∨ u ≃ t

(C ∨ D ∨ l[t] 6≃ r)σ
(i), (ii), (iii), (iv)

Reflection
C ∨ u′ 6≃ u

Cσ
(v)

Equational Factoring
C ∨ u ≃ t ∨ u′ ≃ t′

(C ∨ t 6≃ t′ ∨ u ≃ t′)σ
(i), (vi)

where the notation l[u′] means that u′ appears as a subterm in l, σ is the most general
unifier (mgu) of u and u′, u′ is not a variable in Superposition and Paramodulation,
and the following abbreviations hold:

(i): uσ 6≺ tσ;
(ii): ∀L ∈ D : (u ≃ t)σ 6≺ Lσ;
(iii): l[u′]σ 6≺ rσ;
(iv): ∀L ∈ C : (l[u′] ⊲⊳ r)σ 6≺ Lσ;
(v): ∀L ∈ C : (u′ ≃ u)σ 6≺ Lσ;
(vi): ∀L ∈ {u′ ≃ t′} ∪ C : (u ≃ t)σ 6≺ Lσ.

Fig. 2. Inference rules of SP: the clause below the inference line is added to the clause
set containing the clauses above the inference line.

A simplification ordering ≺ is an ordering that is stable under substitutions,
monotonic, and contains the subterm ordering: if s ≺ t, then c[s]σ ≺ c[t]σ for
any context c and substitution σ, and if s is a strict subterm of t then s ≺ t.
A complete simplification ordering, or CSO, is a simplification ordering that is
total on ground terms. Similarly to [7], in the sequel, we shall assume that any
CSO under consideration is good :

Definition 2. A CSO ≺ is good if for all ground compound terms t and con-
stants c, we have c ≺ t.

The superposition calculus, or SP (see, e.g., [14]), is a refutationally complete
rewrite-based inference system for first-order logic with equality. It consists of
the inference rules summarized in Fig. 2: each rule contains premises which are
above the inference line, and generates a conclusion, which is below the inference
line. If a clause D is generated from premises C,C ′, then we write C,C ′ ⊢ D.
The superposition calculus is based on a CSO on terms, which is extended to
literals and clauses in a standard way (see, e.g., [3]), and we may write SP≺ and
⊢≺ to specify the ordering. A ground clause C is ≺-redundant in S, or simply
redundant, if there exists a set of ground clauses S′ such that S′ |= C, and for
every D ∈ S′, D is an instance of a clause in S and D ≺ C. A non-ground clause
C is ≺-redundant in S if all its instances are ≺-redundant in S. In particular,
every strictly subsumed clause and every tautological clause is redundant. A set
of clauses S is saturated if every clause C /∈ S generated from premises in S is



redundant in S. A saturated set of clauses that does not contain � is satisfiable
[14]. In practice, it is necessary to use a decidable approximation of this notion
of redundancy: for example, a clause is redundant if it can be reduced by some
demodulation steps to either a tautology or to a subsumed clause.

In the sequel, it will be necessary to forbid the occurrence of clauses contain-
ing maximal literals of the form x ≃ t, where x 6� t:

Definition 3. A clause is variable-eligible w.r.t. ≺ if it contains a maximal
literal of the form x ≃ t, where x 6� t. A set of clauses is variable-inactive (see
[1]) if no non-redundant clause generated from S is variable-eligible.

For technical reasons we have chosen to present a slightly relaxed version of
the superposition calculus, in which the standard strict maximality conditions
have been replaced by non-strict maximality conditions. For instance in Con-
dition (i), uσ 6� tσ is replaced by uσ 6≺ tσ: it is not forbidden for u and t to
be identical in Paramodulation and Superposition inferences. It is clear that the
clauses generated in the case where there is an equality actually turn out to be
redundant.

3 A calculus for handling abducible constants

As explained in the Introduction, the aim of this paper is to start with a formula
F and a set of axioms A, and generate a formula H which logically entails F
modulo A, i.e., such that H,A |= F (where H ∧ A is satisfiable). As usual in
abductive reasoning (see for instance [9]), we actually consider the contrapositive:
since H,A |= F is equivalent to ¬F,A |= ¬H, the original problem can be
solved by generating logical consequences of the formula ¬F ∧ A. For the sake
of simplicity, the formula ¬F is added to the axioms which are assumed to be
in clausal form, and we have the following definition:

Definition 4. A clause C is an implicate of a set of clauses S iff S |= C.

It is clear that after its generation, it is necessary to verify that H is satisfi-
able modulo A. For instance, if a is some constant, then an explanation such as
a ≃ 0∧a ≃ 1 or even 0 ≃ 1 does not provide any information since it contradicts
the axioms of Presburger arithmetic. Testing this satisfiability can be done using
standard decision procedures. There are many possible candidate sets of impli-
cates, which may be more or less informative. For instance, it is possible to take
C ∈ S, but this is obviously of no use. Thus it is necessary to provide additional
information in order to restrict the class of formulas that are searched for. In
(propositional) abductive reasoning, this is usually done by considering clauses
built on a given set of literals: the abducible literals. A more natural possibility
in the context of this paper is to consider clauses built on a given set of ground
terms. We may assume with no loss of generality that each of these terms is
replaced by a constant symbol, by applying the usual flattening operation, see,
e.g., [2, 7]. For example, the term select(store(a, i, b), j) may be replaced by a
new constant d, along with the axioms: d ≃ select(d′, j)∧ d′ ≃ store(a, i, b)). We
thus consider a distinguished set of constants A ⊆ Σ0, called the set of abducible



constants, and restrict ourselves to explanations that are conjunctions of literals
built upon abducible constants. This is formalized with the following definition
of an A-implicate:

Definition 5. Let S be a set of clauses. A clause C is an A-implicate of S iff
every term occurring in C is also in A and S |= C.

As in propositional abductive reasoning, the set A must be provided by the
user. Given a set of clauses S containing both the axioms A and the clauses
corresponding to the conjunctive normal form of ¬F , we investigate how to gen-
erate the set of flat ground clauses C built on A, that are logical consequences of
S. Since SP is only refutationally complete, this cannot be done directly using
this calculus (except in some very particular cases, see for instance [15]). For
example, it is clear that f(a) 6≃ f(b) |= a 6≃ b, but a 6≃ b cannot be generated
from the antecedent clause. In principle, it is possible to enumerate all possible
clauses C built on A and then use the superposition calculus to check whether
S∪¬C is unsatisfiable, however, this yields a very inefficient procedure. An alter-
nate method consists in replacing the superposition calculus by a less restrictive
calculus, such as the Resolution calculus [11] together with the equality axioms.
For instance in the previous case, the clause f(a) 6≃ f(b) and the substitutivity
axiom x 6≃ y ∨ f(x) ≃ f(y) permit to generate by the Resolution rule: a 6≃ b.
However, again, this calculus is not efficient, and in particular all the termina-
tion properties of the superposition calculus on many interesting subclasses of
first-order logic [4, 2, 1] are lost In this section, we provide a variant of the super-
position calculus which is able to directly generate, from a set of clauses S, a set
of logical consequences of S that are built on a given set of constant symbols A.
The calculus is thus parameterized both by the term ordering ≺ and by the set of
abducible constants A. We shall show that the calculus is complete, in the sense
that if S |= C and if C is an A-implicate of S, then C is a logical consequence
of other clauses built on A that are generated from S. We will also prove that
the calculus terminates on many classes of interest in the SMT community.

We will thus consider clauses of a particular form and a slight variation of
the superposition calculus in order to be able to reason on abducible constants.
The principle behind this calculus is similar to that of [5] for the combination
of hierarchic theories, with the difference that in this framework, abducible con-
stants can potentially interact with other terms, whereas in the framework of [5],
such an interaction is prevented by sortedness. In both settings however, a same
abstraction principle is used to delay the reasoning on the objects of interest (in
this case, the abducible constants).

From now on we assume that the set of variables X is of the form X = V⊎VA.
The elements in V are ordinary variables and the elements in VA are called
abducible variables, and they will serve as placeholders for abducible constants
in terms and clauses. In the sequel, when we mention standard terms, literals or
clauses, we assume that all the variables they contain are in V.

Definition 6. An A-literal is a literal of the form t ⊲⊳ s, where t, s ∈ VA ∪ A.
An A-clause is a disjunction of A-literals. Given a clause C, we denote by ∆(C)



the disjunction of A-literals in C and by ∆(C) the disjunction of non-A-literals

in C. We define VarA(C)
def

= Var(C) ∩ VA.

A first step towards reasoning on abducible constants will consist in extract-
ing them from the terms in which they occur, and replacing them by abducible
variables. Then, to ensure that such a property is preserved by inferences, every
substitution mapping an abducible variable to anything other than an abducible
variable will be discarded. More formally:

Definition 7. A term is abstracted if it contains no abducible constant. A lit-
eral t ⊲⊳ s is abstracted if t and s are both abstracted. A clause is abstracted if
all non-abstracted literals in C are A-literals.

If t is an abstracted term, then not every instance of t is also abstracted. We
define a condition on substitutions that guarantees such a stability result.

Definition 8. A substitution σ is A-compliant if for all x ∈ dom(σ), xσ is
abstracted, and for all x ∈ dom(σ) ∩ VA, xσ ∈ VA. Two abstracted terms are
A-unifiable if they are unifiable and admit an A-compliant mgu.

In the sequel, every time abstracted terms are A-unifiable, we will assume
the corresponding mgu is A-compliant.

Definition 9. Let <A be a total ordering on A and a0 denote the smallest
abducible in A. Given a term t, we denote by t↓A the term obtained by replacing
every abducible constant occurring in t by a0. The term t is A-reduced if t↓A = t.
The previous notation and this definition extend to literals, clauses and sets of
clauses.

Example 1. Let C = f(b, c) ≃ g(d) ∨ x 6≃ b ∨ f(a, b) 6≃ f(c, d), where A = {a, b, c} and
a ≺ b ≺ c. Then C↓A = f(a, a) ≃ g(d) ∨ x 6≃ a ∨ f(a, a) 6≃ f(a, d), and this clause is an
A-reduced clause.

It is clear that if all abducible constants are replaced by abducible variables
in a standard clause, then the resulting abstracted clause is not equivalent to
the former one. However, equivalence can be regained by adding so-called VA-
constraint literals to the resulting abstracted clause.

Definition 10. A VA-constraint literal is a literal of the form x 6≃ a, where
x ∈ VA and a ∈ A. For all clauses C, we denote by Γ (C) the disjunction of VA-
constraint literals in C. A VA-constraint clause is a disjunction of VA-constraint
literals. Given a VA-constraint clause A =

∨k

i=1 xi 6≃ ai, the substitution
associated to A is denoted by νA and defined as follows: dom(νA) = {x1, . . . , xk},
and for all x ∈ dom(νA), xνA = min<A

{ai | xi = x}.
For readability, if B is a clause then we will write νB instead of νΓ (B). If S

is a set of abstracted clauses, then Sν is the set Sν = {CνC | C ∈ S}.

Example 2. Assume A = {a, b, c}, where a <A b <A c, and let A = x 6≃ a∨x 6≃ c∨y 6≃
b ∨ z 6≃ a ∨ y 6≃ c. Then νA = {x 7→ a, y 7→ b, z 7→ a}.



Note that by definition, C ≡ CνC and S ≡ Sν . As mentioned earlier, ab-
ducible variables are meant to be placeholders for abducible constants. In gen-
eral, it will be necessary to keep some information permitting to know what
abducible constants an abducible variable could be replaced by. Such a require-
ment is satisfied by imposing that every abducible variable occurs in at least one
VA-constraint literal, which intuitively specifies its value.

Definition 11. A clause C is VA-stable if VarA(C) ⊆ VarA(Γ (C)). A set of
clauses is VA-stable if every clause it contains is VA-stable.

Given a set of standard clauses, it is easy to construct an equivalent set
of abstracted and VA-stable clauses. It suffices to replace every abducible a
occurring in a non-A-literal by a fresh variable x ∈ VA, and to add the literal
x 6≃ a to the clause. For instance, if A = {a, b} then the clause a ≃ b ∨ a ≃
c ∨ f(b, d, x) 6≃ g(b, y) is replaced by x1 6≃ a ∨ x2 6≃ b ∨ x3 6≃ b ∨ a ≃ b ∨ x1 ≃
c ∨ f(x2, d, x) 6≃ g(x3, y).

Definition of the calculus. We introduce a calculus for generating A-
implicates. It is a modified version of the superposition calculus, and consists of
inference rules that are meant to be applied to abstracted clauses. In particular,
it is based on orderings that are suitable for abstracted terms, literals and clauses:
the order between two terms t and s should not depend on the abducible con-
stants occurring in t and s, and maximal terms and literals in abstracted clauses
should be related to maximal terms and literals in standard clauses, in a sense
that will be made precise later. We thus define particular orderings for standard
clauses, from which we define suitable orderings for abstracted clauses.

Definition 12. We consider a good CSO ≺ such that2:

1. for all a, b ∈ A, a ≺ b if and only if a <A b;
2. for all a ∈ A and for all non-variable terms t 6∈ A, a ≺ t;
3. for all ground terms t, s not in A, if t ≺ s then t↓A � s↓A, and if t↓A ≺ s↓A

then t ≺ s.

We let γ0 denote the ground substitution of domain VA such that for all x ∈ VA,
xγ0 = a0. Given abstracted terms t, s, we define ≺A as follows: t ≺A s iff
tγ0 ≺ sγ0. This definition extends to literals and clauses in a standard way. A
term is A-maximal if it is maximal for ≺A; this definition also extends to literals
and clauses.

Definition 13. We denote by SPA the calculus such that for all clause sets
S, we have S ⊢A D if S ⊢≺A

D and the mgu involved in the SP-inference is
A-compliant.

By construction, SP and SPA coincide on ground A-clauses. We define a
particular notion of redundancy for abstracted clauses, that is related to redun-
dancy for standard clauses. The main difference with the standard definition is
that the redundancy test is performed modulo the substitution νC that replaces
the abstracted variables in C by the abducible constants they denote.

2 It is not difficult to see that there exist orderings fulfilling these properties (see [8]).



Definition 14. Consider a set of abstracted clauses S and an abstracted clause
C such that Var(C) ⊆ VA. The clause C is A-redundant in S if:

– C is an A-clause, νC 6= id and CνC either occurs or is A-redundant in S,
– or there exists a set of ground clauses S′ such that S′ |= C, every D ∈ S′ is

an instance of a clause in Sν and D ≺ CνC .

If C is an abstracted clause such that Var(C) 6⊆ VA, then C is A-redundant in
S if for all ground substitutions σ with a domain in V, Cσ is A-redundant in S.
The set S is A-saturated if every clause C /∈ S generated by an SPA-inference
with premises in S is A-redundant in S.

This notion of redundancy permits to add the standard contraction rules of
the superposition calculus to SPA (subsumption, simplification, elimination of
tautologies, etc). The following contraction inference rule is also added to SPA:

A-reduction :
C

CνC
if C is an A-clause and νC 6= id.

After any application of the A-reduction rule, the premise becomes A-redundant
and can be deleted.

Theorem 1. If S is a variable-inactive (w.r.t. ≺A) set of abstracted clauses
that are VA-stable, then every non-redundant clause generated from S by SPA is
abstracted and VA-stable. Also, if one of the premises of a binary SPA-inference
is an A-clause, then the other premise is also an A-clause.

The variable-inactive condition, which ensures that all generated clauses are
variable-eligible, prevents non-abstracted clauses from being generated from ab-
stracted ones. For example, if S contains the unit clauses {a ≃ b, x ≃ y} with
{a, b} ∈ A and {x, y} ∈ V , then S ⊢A y ≃ b, and the latter is not abstracted.
In what follows, we will prove completeness and termination results for SPA.
The completeness result guarantees that SPA generates the required information
about existing abducibles for any abstracted set of clauses, while the termination
result relies on termination results for SP, and will be used to verify without
any additional effort that our technique can be used as a decision procedure for
reasoning about abducibles in SMT problems with several theories of interest.

4 Completeness of the calculus

This section is devoted to showing that if S is an unsatisfiable set of abstracted
clauses that is A-saturated, then � ∈ S (due to space restrictions, we only
provide a sketch of the proof, see [8] for details). Note that this result does not
follow from the refutational completeness of the superposition calculus: indeed,
the ordering ≺A is not a simplification ordering (it is not stable by substitution),
and all inferences in which non-A-compliant unifiers are involved are ignored.
However, the proof is based on the refutational completeness of SP, and requires
determining relationships between SP-inferences and SPA-inferences.



Let S be a VA-stable and A-saturated set of clauses, with no variable-eligible
clause. We will show that S is satisfiable by constructing a set of standard clauses
whose satisfiability will entail that of S. The set we construct will be saturated
under SP≺-inferences, and it will not contain the empty clause; we will conclude
that it must be satisfiable, and hence that so must S.

Let T be the set of A-clauses in S. Since S is VA-stable and A-saturated by
hypothesis, T can only contain ground A-clauses, because if a non-ground clause
occurs in T then A-reduction applies. Since SP and SPA coincide on ground
A-clauses, T must also be saturated under SP≺-inferences and cannot contain
�; this set is therefore satisfiable. We consider a fixed interpretation I that is a
model of T .

Definition 15. We define the ground set UI =
{

a ≃ b | a, b ∈ A, aI = bI
}

∪
{

a 6≃ b | a, b ∈ A, aI 6= bI
}

. We inductively define the notion of an I-reduction:

– For all a ∈ A, a‖I = min≺
{

b ∈ A | bI = aI
}

.
– f(t1, . . . , tn)‖I = f(t1‖I , . . . , tn‖I).

This definition extends to standard literals and clauses.

The I-reduction procedure is used to define a set whose satisfiability entails
that of S, and that turns out to be saturated:

Definition 16. Let SI = UI ∪
{

∆(C‖I) | C ∈ Sν ∧ UI |= ¬∆(C)
}

.

Proposition 1. If SI is satisfiable then so is Sν , and therefore so is S.

Lemma 1. SI is saturated for SP≺.

Since SI is saturated for the standard superposition calculus SP≺ and con-
tains no occurrence of the empty clause, we deduce that it is satisfiable.

Theorem 2. Let S be a set of abstracted clauses that is VA-stable and contains
no variable-eligible clause. If S is A-saturated and does not contain the empty
clause, then S is satisfiable.

This theorem proves the refutational completeness of SPA together with con-
traction rules that eliminate A-redundant clauses, for those sets of abstracted
clauses S whose saturation is guaranteed to meet the requirements of the the-
orem. The first two requirements are not restrictive: the abstraction of a set of
standard clauses described right before Section 3 produces a set of abstracted
and VA-stable clauses, and the saturation of this set is guaranteed to only con-
tain abstracted and VA-stable clauses by Theorem 1. The fact that S contains
no variable-eligible clause cannot be imposed that easily, but such a condition is
guaranteed if S is variable-inactive, which is the case for many classes of clause
sets of interest [2, 1].

Note that this completeness result is not – by itself – sufficient for our pur-
pose, since our goal is not merely to test the satisfiability of clause sets but rather
to generate flat consequences they logically entail. The next section shows how
the calculus SPA can be employed to reach this goal.



5 A generation of explanations

We return to the problem of explaining why a set of clauses is satisfiable, and
show how SPA can be used to generate explanations relating abducibles to one
another. Given a satisfiable set of clauses S′, we denote by IA(S

′) the set of all

A-implicates of S′: IA(S
′)

def

= {C an A-clause | C is ground and S′ |= C} .
It is clear that all the information about abducible constants that is entailed

by S′ is contained in IA(
′S). However this set can be very large and it contains

a lot of non-pertinent information, for example all logical tautologies, or all
instances of the equality axioms. It therefore does not seem reasonable to return
this entire set to a user. Another solution could be to return a subset T ⊆
IA(S

′) such that T ⊢ IA(S
′), but again, such a set might be large and contain

unnecessary information. The solution we choose is to return a minimal subset
T ′ ⊆ IA(S

′) satisfying the following property: for all C ∈ IA(S
′) that is not a

tautology, there exists a clause C ′ ∈ T ′ such that C ′ |= C. The clauses in T ′ are
the prime implicates of S′. The notion of prime implicates plays a central rôle
in many applications of computer science and artificial intelligence, and several
approaches have been proposed for computing the prime implicates of a given
propositional formula (see, e.g., [10]). Some extensions to first-order logic have
also been considered, such as, e.g., [12]. In what follows, we define an algorithm
that computes prime implicates for sets of flat equational clauses.

It turns out that SPA cannot be used to determine the set T ′. For instance,
if S′ = {a ≃ b, c 6≃ d}, then the clause a 6≃ c ∨ b 6≃ d must be in IA(S

′). Since
it is subsumed by no clause in IA(S

′) but itself, it must also be in T ′, but no
SPA-inference rule (or SP-inference rule for that matter) can be applied to S′

to generate such a clause. In the sequel, we will show how, starting with a set of
A-clauses that logically entails IA(S

′), it is possible to generate a set T ′ using
the Resolution calculus, denoted by R (we refer the reader to [11] for details on
the Resolution calculus). From now on, S′ denotes a satisfiable set of standard
clauses, and S is a set of abstracted clauses such that Sν = S′. Thus, S and S′

are equivalent. The first step towards this construction is the definition of a set
of A-clauses that logically entails IA(S

′). The (finite) set of all A-clauses in the
saturated set generated from S using SPA will satisfy this requirement.

Definition 17. We denote by T∞ the set of A-clauses in the A-saturated set
generated from S by SPA.

The key result that makes the generation of A-implicates possible is that all
the A-clauses that are entailed by S are actually logical consequences of T∞:

Proposition 2. T∞ |= IA(S
′).

Let Eq be the set of axioms stating that ≃ is an equivalence relation3: Eq =
{x ≃ x, x 6≃ y ∨ y ≃ x, x 6≃ y ∨ y 6≃ z ∨ x ≃ z}, and let EqA be the set consist-
ing of all instantiations of the axioms in Eq by the elements in A. The result we

3 There will be no need to consider the congruence axiom, since all the clauses in T∞

only contain constants.



Explain(S′,A) =
S := Abstract(S′)
S := SPA-saturation(S)
T∞ := {C ∈ S | C is an A-clause}
return R-saturation(T∞ ∪ EqA)

Fig. 3. Generation of a set of explanations

show is that the R-closure of the set T∞∪EqA satisfies the requirements for the
set of A-clauses that is searched for.

Theorem 3. Let T = T∞ ∪EqA, and let C be a non-tautological ground clause
in IA(S). Then there is a derivation from T of a clause C ′ such that C ′ |= C.

To summarize, given a set of clauses S′ that is satisfiable and a set of ab-
ducible constants A, the simple algorithm in pseudo-code described in Figure 3
returns a set of clauses constructed over A that can be viewed as explanations
why S′ is satisfiable. Note that R-saturation can be performed on the fly: it is
clear that it is not necessary to wait until SPA-saturation(S) is computed to
start generating the clauses in R-saturation(T∞ ∪ EqA). Thus even in case of
non-termination, all the prime implicates can eventually be generated. After the
set R-saturation(T∞ ∪ EqA) is computed, it is possible to remove from this set
all the clauses that can be inferred from other prime implicates. This solution
yields a more compact representation. However, this is possible only in case of
termination, since the deleted clauses may be involved in the generation of other
prime implicates. A termination result for SPA will be presented in the follow-
ing section. By putting all the previous results together, we obtain the following
theorem, stating the soundness and completeness of the procedure Explain.

Theorem 4. Let S be a set of clauses. Every clause C ∈ Explain(S′,A) is an
A-implicate of S, and for every A-implicate C of S that is not a tautology, there
exists a clause C ′ ∈ Explain(S′,A) such that C ′ |= C.

Example 3. We return to the problem mentioned in the Introduction. After flattening,
we get the following set of clauses:

1 select(store(x, z, v), z) ≃ v 4 d2 ≃ store(d1, j, c)
2 z ≃ w ∨ select(store(x, z, v), w) ≃ select(x,w) 5 d3 ≃ store(a, j, c)
3 d1 ≃ store(a, i, b) 6 d4 ≃ store(d3, i, b)
7 select(d2, k) 6≃ select(d4, k)

Assume that A = {i, j, b, c}. Then Clauses 3, 4, 5, 6 are abstracted as follows:

3′ x′ 6≃ i ∨ y′ 6≃ b ∨ d1 ≃ store(a, x′, y′)
4′ x′′ 6≃ j ∨ y′′ 6≃ c ∨ d2 ≃ store(d1, x

′′, y′′)
5′ x′′ 6≃ j ∨ y′′ 6≃ c ∨ d3 ≃ store(a, x′′, y′′)
6′ x′ 6≃ i ∨ y′ 6≃ b ∨ d4 ≃ store(d3, x

′, y′)

SPA generates the following clauses4:

4 For readability we simply drop irrelevant disequations, i.e. x 6≃ a ∨C is replaced by
C if x does not occur in C and x 6≃ a∨x′ 6≃ a∨C is replaced by x 6≃ a∨C{x′ 7→ x}.



8 x′ 6≃ i ∨ w ≃ x′ ∨ select(d1, w) ≃ select(a,w) (3′,2)
9 x′′ 6≃ j ∨ w ≃ x′′ ∨ select(d2, w) ≃ select(d1, w) (4′,2)
10 x′′ 6≃ j ∨ w ≃ x′′ ∨ select(d3, w) ≃ select(a,w) (5′,2)
11 x′ 6≃ i ∨ w ≃ x′ ∨ select(d4, w) ≃ select(d3, w) (6′,2)
12 x′ 6≃ i ∨ y′ 6≃ b ∨ select(d1, x

′) ≃ y′ (3′,1)
13 x′′ 6≃ j ∨ y′′ 6≃ c ∨ select(d2, x

′′) ≃ y′′ (4′,1)
14 x′′ 6≃ j ∨ y′′ 6≃ c ∨ select(d3, x

′′) ≃ y′′ (5′,1)
16 x′ 6≃ i ∨ y′ 6≃ b ∨ select(d4, x

′) ≃ y′ (6′,1)
17 x′ 6≃ i ∨ k ≃ x′ ∨ select(d2, k) 6≃ select(d3, k) (11, 7)
18 x′ 6≃ i ∨ k ≃ x′ ∨ x′′ 6≃ j ∨ k ≃ x′′ ∨ select(d2, k) 6≃ select(a, k) (10, 17)
19 x′ 6≃ i ∨ k ≃ x′ ∨ x′′ 6≃ j ∨ k ≃ x′′ ∨ select(d1, k) 6≃ select(a, k) (9, 18)
20 x′ 6≃ i ∨ x′′ 6≃ j ∨ k ≃ x′ ∨ k ≃ x′′ (8,19)
21 x′ 6≃ i ∨ x′′ 6≃ j ∨ k ≃ x′ ∨ select(d2, k) 6≃ select(d4, x

′′) (20,7)
22 x′ 6≃ i ∨ x′′ 6≃ j ∨ k ≃ x′ ∨ x′′ ≃ x′ ∨ select(d2, k) 6≃ select(d3, x

′′) (11,21)
23 x′ 6≃ i ∨ x′′ 6≃ j ∨ y′′ 6≃ c ∨ k ≃ x′ ∨ x′′ ≃ x′ ∨ select(d2, k) 6≃ y′′ (14,22)
24 x′ 6≃ i ∨ x′′ 6≃ j ∨ y′′ 6≃ c ∨ k ≃ x′ ∨ x′′ ≃ x′ ∨ select(d2, x

′′) 6≃ y′′ (20,23)
25 x′ 6≃ i ∨ x′′ 6≃ j ∨ k ≃ x′ ∨ x′′ ≃ x′ (13,24)
26 x′ 6≃ i ∨ x′′ 6≃ j ∨ x′′ ≃ x′ ∨ select(d2, k) 6≃ select(d4, x

′) (25,7)
27 x′ 6≃ i ∨ x′′ 6≃ j ∨ y′ 6≃ b ∨ x′′ ≃ x′ ∨ select(d2, k) 6≃ y′ (16,26)
28 x′ 6≃ i ∨ x′′ 6≃ j ∨ y′ 6≃ b ∨ x′′ ≃ x′ ∨ select(d2, x

′) 6≃ y′ (25,27)
29 x′ 6≃ i ∨ x′′ 6≃ j ∨ y′ 6≃ b ∨ x′′ ≃ x′ ∨ select(d1, x

′) 6≃ y′ (9,28)
30 i ≃ j (12,29)
31 x′ 6≃ i ∨ x′′ 6≃ j ∨ x′ 6≃ x′′ ∨ k ≃ x′ (20)
33 x′ 6≃ i ∨ x′′ 6≃ j ∨ x′ 6≃ x′′ ∨ select(d2, k) 6≃ select(d4, x

′) (31,7)
34 x′ 6≃ i ∨ x′′ 6≃ j ∨ x′ 6≃ x′′ ∨ y′ 6≃ b ∨ select(d2, k) 6≃ y′ (16,34)
35 x′ 6≃ i ∨ x′′ 6≃ j ∨ x′ 6≃ x′′ ∨ y′ 6≃ b ∨ select(d2, x

′) 6≃ y′ (31,34)
36 i 6≃ j ∨ b 6≃ c (13,35)

By Resolution, from 30 and 36, we get c 6≃ b, which subsumes 36. We obtain the
A-implicates {i ≃ j, b 6≃ c}, yielding the explanation i 6≃ j ∨ b ≃ c.

6 A termination result for SPA

We now prove a result that relates the termination of SP on a set of standard
clauses S to the termination of SPA on an abstracted version of S. This shows
that many existing results about the termination of the superposition calculus
for subclasses of first-order logic carry over to SPA. We relate standard and
abstracted terms by defining a so-called relation of A-relaxation. This relation
will be used afterwards to relate the forms of the clauses generated by SP-
inferences and those generated by SPA-inferences in a more precise manner.

Definition 18. The relation of A-relaxation relates an abstracted term t to a
standard one t′ and is defined as follows: tEA t′ if and only if tγ0 = t′↓A.

Given an abstracted clause C and a standard clause C ′, we write C EA C ′ if
and only if ∆(Cγ0) = ∆(C ′

↓A). This relation is extended to sets of clauses in a
straightforward manner.

Example 4. Assume A = {a, b}, let C = x 6≃ a ∨ a ≃ b ∨ f(x, x, d) ≃ g(y) ∨ g(y) ≃ d

and C′ = a 6≃ b ∨ f(a, b, d) ≃ g(b) ∨ g(a) ≃ d. Then C EA C′.

We define a notion of redundancy that is meant to hold no matter what
abducible constants occur in the clause under consideration.



Definition 19. An A-reduced clause C ′ is p-redundant in an A-reduced set of
clauses S′ if for all sets of abstracted clauses S such that (Sν)↓A ≡ S′ and for
every abstracted clause D such that (DνD)↓A ≡ C ′, clause D is A-redundant in
S. An A-reduced set of clauses S′ is p-saturated if every clause generated with
premises in S′ either occurs in S′ or is p-redundant in S′.

This notion permits to eliminate clauses that are redundant in the usual sense
and do not contain any abducible constant. Notice, however, that p-redundant
clauses can possibly contain abducible constants. For example if A = {a, b} and
S′ = {f(c) 6≃ f(d)}, then C ′ = g(a, c) ≃ h(a) ∨ f(c) 6≃ f(d) is p-redundant in
S′.

Theorem 5. Let S′ be a set of A-reduced clauses, and let T be the p-saturated
set of clauses generated from S′. If T is finite and S is a set of abstracted clauses
that is VA-stable, variable-inactive and such that S EA S′, then the set of non-
redundant clauses generated from S is finite.

Theorem 5 guarantees that SPA (and thus Explain) terminates on several
classes of clause sets, in particular for clause sets related to SMT problems. The
authors of [2] and [1] prove that sets of the form T ∪ U , where T is a theory
and U a set of ground unit clauses, generate finite saturated sets. This result
is extended to clause sets of the form T ∪ U ′, where U ′ is an arbitrary set of
ground clauses, in [6]. An inspection of the finiteness results of [2, 1, 6] shows
that they hold not only for saturated sets but also for p-saturated sets, since
the redundant clauses that are deleted are actually p-redundant: they do not
contain any constant at all. Thus, SPA terminates for clause sets of the form
T ∪ U ′, where U ′ is the abstraction of a set of ground clauses, and T is the
axiomatization of any of the following theories: records, integer offsets, possibly
empty lists, arrays...

7 Discussion

We have presented a calculus that permits to reason on the relations involving
abducible constants, that are logical consequences of a satisfiable set of clauses.
These relations can be viewed as explanations of why the set is satisfiable, since
any of their negations, when added to the original clause set, renders the latter
unsatisfiable. We proved a completeness result for the calculus, along with a
sufficient condition guaranteeing its termination on classes of clause sets, among
which SMT problems in several theories of interest. To the best of our knowl-
edge, this approach is novel and there are many interesting directions to explore.
One first direction is to investigate what set of clauses can be considered as a
good set of explanations, and determine what a good trade-off might be between
a small set of explanations that may hide too many details, and a large set of
explanations that may carry too much unnecessary information. Another line of
work that is currently under investigation is the search for a more efficient way
to generate explanations. Indeed, the saturation with the Resolution calculus in
the presence of the equality axioms is not entirely satisfactory as far as efficiency
is concerned, and it would be interesting to see how the calculus SPA can be



enhanced to directly produce the required set of explanations. As far as other
extensions are concerned, we plan to investigate how to extend these results to
abducible terms and not only abducible constants, by allowing the occurrence of
function symbols in A. This would allow the derivation of non-ground explana-
tions. Another possibility is to consider mixed literals, containing both abducible
and non-abducible symbols. It would then be possible to generate explanations
of the form a ≃ 0 without having to declare 0 as an abducible constant. We also
plan on devising a calculus capable of efficiently generating explanations with
abducibles interpreted in a particular theory, such as, e.g., arithmetic.
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