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, the authors introduced a new method for the simulation of hitting times for Bessel processes with integer dimension. The method, called walk on moving spheres algorithm (WoMS), was based mainly on the explicit formula for the distribution of the hitting time and on the connection between the Bessel process and the Euclidean norm of the Brownian motion. This method does not apply anymore for a non integer dimension. In this paper we consider the simulation of the hitting time of Bessel processes with non integer dimension δ ≥ 1 and provide a new algorithm by using the additivity property of the laws of squared Bessel processes. We split each simulation step of the algorithm in two parts: one is using the integer dimension case and the other one considers hitting time of a Bessel process starting from zero.

Introduction

This paper aims at constructing new and efficient methods for approximating hitting times of a given threshold for Bessel processes with non-integer dimension δ ≥ 1. Diffusion hitting times are important quantities in many fields such as mathematical science, finance, geophysics or neurosciences.

In neurosciences for example the interspike interval is identified with the first-passage time of an Ornstein-Uhlenbeck process through some threshold and the spike train forms a renewal process.

The choice of the Ornstein-Uhlenbeck process is developed in Tuckell [START_REF] Tuckwell | Stochastic processes in the neurosciences[END_REF] and in Burkitt's survey [START_REF] Burkitt | A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input[END_REF], see also the book [START_REF] Gerstner | Spiking neuron models: Single neurons, populations, plasticity[END_REF] or the survey [START_REF] Sacerdote | Stochastic integrate and fire models: a review on mathematical methods and their applications[END_REF]. In Feller's model, generalized Bessel processes appear as a more realistic alternative to the Ornstein-Uhlenbeck process, see for instance [START_REF] Sacerdote | Stochastic integrate and fire models: a review on mathematical methods and their applications[END_REF] for a description of this new model and [START_REF] Lánskỳ | On the comparison of Feller and Ornstein-Uhlenbeck models for neural activity[END_REF] for a comparison of these models. That's why, Feller's model plays an important role in neuroscience even if it is hard to compute the first passage problem to general boundaries. A modification of the Ornstein-Uhlenbeck model and the Feller model also permits to deal with refractoriness [START_REF] Buonocore | A neuronal modeling paradigm in the presence of refractoriness[END_REF].

Another typical example is the study of path dependent exotic options as barrier options in finance. The study of a large class of options pricing in finance is based on the numerical approximation of relevant hitting times or passage times for specific stochastic processes, for instance the Cox-Ingersoll-Ross process which can be expressed as a Bessel process after a change of time transformation [START_REF] Göing-Jaeschke | A survey and some generalizations of Bessel processes[END_REF]. In particular many studies consider the pricing of barrier options within this scope. In Gobet [START_REF] Gobet | Schéma d'Euler continu pour des diffusions tuées et options barrière[END_REF][START_REF] Gobet | Weak approximation of killed diffusion using Euler schemes[END_REF] a numerical Monte Carlo based scheme is proposed for the approximation of the price of barrier options. The method is based on the law of a real diffusion killed as it goes out of a domain (interval of R), when the diffusion is approximated by its continuous Euler scheme.

On one hand, analytic expressions for hitting time densities are well known and studied only in some very particular situations. On the other hand, the study of the approximation of the hitting times for stochastic differential equations is an active area of research since very few results exist up to now. For the Brownian motion, we can approach this quantity simply by using Gaussian random variables [START_REF] Herrmann | The first-passage time of the Brownian motion to a curved boundary: an algorithmic approach[END_REF].

Several alternatives for dealing with the characterization of hitting times for the Brownian motion and general Gaussian Markov processes exist. These methods aim to approximate the probability distribution function or the hitting probabilities by using:

• Volterra integral equations, more precisely to obtain the approximate solutions for Brownian motion or Gaussian Markov processes crossing continuously differentiable boundaries, the tangent approximation and other image methods have been used by Strassen [START_REF] Strassen | Almost sure behavior of sums of independent random variables and martingales[END_REF]; Daniels [START_REF] Daniels | Approximating the first crossing-time density for a curved boundary[END_REF]; Ferebee [START_REF] Ferebee | The tangent approximation to one-sided Brownian exit densities[END_REF]; Lerche [START_REF] Lerche | Boundary crossing of Brownian motion[END_REF]. This method does not work in the general diffusion framework as it relies on the explicit form of the transition probabilities;

• series expansions, as performed by Durbin [START_REF] Durbin | The first-passage density of a continuous Gaussian process to a general boundary[END_REF][START_REF] Durbin | The first-passage density of the Brownian motion process to a curved boundary[END_REF]; Ferebee [START_REF] Ferebee | An asymptotic expansion for one-sided Brownian exit densities[END_REF]; Ricciardi et al. [START_REF] Ricciardi | On an integral equation for first-passage-time probability densities[END_REF]; Giorno et al. [START_REF] Giorno | On the evaluation of first-passage-time probability densities via nonsingular integral equations[END_REF]. The numerical approach proposed in [START_REF] Buonocore | A new integral equation for the evaluation of first-passage-time probability densities[END_REF] seems to be particularly efficient. This method can be adapted to more general diffusion processes as in Sacerdote and Tomassetti [START_REF] Sacerdote | On evaluations and asymptotic approximations of firstpassage-time probabilities[END_REF];

• partial differential equation approaches, which are based on the explicit form of the probability distribution function of the Brownian motion. This method can be generalized for a large class of diffusions as in Patie and Winter [START_REF] Patie | First exit time probability for multidimensional diffusions: a PDEbased approach[END_REF];

• or Monte Carlo methods as in the paper by Ichiba and Kardaras [START_REF] Ichiba | Efficient estimation of one-dimensional diffusion first passage time densities via Monte Carlo simulation[END_REF] that handles the representation of the passage density as the mean of a three dimensional Brownian motion or in the works of Pötzelberger and Wang, [START_REF] Pötzelberger | Boundary crossing probability for Brownian motion[END_REF][START_REF] Wang | Crossing probabilities for diffusion processes with piecewise continuous boundaries[END_REF] for the Brownian motion and some particular transformations of the Brownian motion.

These methods are useful for approximating the distribution of the hitting time. If we have to approximate directly the hitting time one needs to develop other methods.

For the general diffusion case, very few studies in this direction exist. The only methods that can be used are the Monte Carlo methods and time splitting method like the Euler schemes. An approximation of the hitting time can be obtained by using the hitting time of the boundary for the Euler scheme. This will give an upper bound for the diffusion hitting time. In order to improve this approximation we can use penalisation methods, that means construct boundaries ε-close to the real boundary, with ε a small parameter. Some works have already been done in the context of smooth drift and diffusion coefficient by Gobet and Menozzi [19,[START_REF] Gobet | Stopped diffusion processes: boundary corrections and overshoot[END_REF].

Our study focuses on the numerical approach of the hitting time of a Bessel process. Bessel processes and their hitting times are important issues either for theoretical research or for many practical applications. Some issues on these subjects are: L. Alili and P. Patie [START_REF] Alili | Boundary-crossing identities for diffusions having the time-inversion property[END_REF] investigate the Bessel processes via some boundary crossing identities for diffusions having the time inversion property; P. Salminen and M. Yor consider the hitting time of affine boundaries for the 3-dimensional Bessel process [START_REF] Salminen | On hitting times of affine boundaries by reflecting Brownian motion and Bessel processes[END_REF]; Y. Hamana and H. Matsumoto [START_REF] Hamana | The probability distributions of the first hitting times of Bessel processes[END_REF] give explicit expressions for the distribution functions and the densities of the first hitting time of a given level for the Bessel process; T. Byczkowski, J. Malecki and M. Ryznar [START_REF] Byczkowski | Hitting times of Bessel processes[END_REF] obtain uniform estimates of the hitting time density function by using an integral formula for the density of the first hitting time of a given level for the Bessel process.

In all these papers the formulas are explicit functions, often given as a series expansion, and are thus hard to use for a numerical purpose as they include in their formulation Bessel functions. The main idea of our present work, which completes and improves the results of our previous work in M. Deaconu and S. Herrmann [START_REF] Deaconu | Hitting time for Bessel processes -Walk on Moving Spheres Algorithm (WoMS)[END_REF], is to get rid of this difficulty by using the properties of Bessel processes.

The main result of this study is the construction of an iterative procedure for approximating the hitting time by using the structure and the particular properties of the Bessel process. In particular, our approach avoids splitting time methods. More precisely, we consider the simulation of the hitting time of Bessel processes with non integer dimension and construct a new algorithm by using the additivity property of the laws of squared Bessel processes. Each simulation step is splitted in two parts: the first one uses the already known algorithm for the integer dimension case and the second one constructs the hitting time of a Bessel process starting from zero.

More precisely, we aim to approximate τ L the first passage time through the threshold L for the Bessel process starting under the level L. Let us note that our study does not concern hitting times for Bessel processes starting above the threshold: in such a case, the finiteness of the hitting time is no longer ensured. We introduce a particular algorithm called (NI) based on a random process (M (n), Θ n ) n≥0 which satisfies the following properties:

1. The first coordinate (M (n)) n≥0 is a [0, L]-valued random walk.

2. The second coordinate represents an increasing sequence of stopping times.

If

N ε is defined by N ε = inf{n ≥ 0 : M 2 (n) ≥ L 2 -ε},
then the random variable Θ N ε gives a ε-precise approximation for the hitting time τ L .

Due to the stopping criterion of (NI) and since (Θ n ) n≥0 is an increasing sequence, smaller is the parameter ε higher is the number of iterations of the algorithm. In this study, the convergence and the efficiency of this new algorithm is emphasized namely by the main result.

Theorem 1.1. Let us consider a Bessel process of dimension δ ≥ 1. If the starting position of the Bessel process is smaller than L, then the number of steps N ε of the algorithm (NI) is almost surely finite. Moreover, there exist constants C > 0 and ε 0 > 0, such that

E[N ε ] ≤ C| log ε|, for all ε ≤ ε 0 .
Furthermore Θ N ε converges in distribution towards τ L , the hitting time of the level L for the δ dimensional Bessel process, as ε → 0.

The paper is organized as follows. Section 2 introduces some important properties on Bessel processes needed in the paper. Section 3 gives the construction of the algorithm. In section 4 we introduce some preliminary results in order to obtain the convergence of the algorithm in section 5. Finally, section 6 presents and discusses some numerical results.

Bessel processes: definitions and main properties

Let δ ≥ 0. We define the square of a δ-dimensional Bessel process started at y 0 , as the unique strong solution of the following stochastic differential equation

   Y δ,y 0 t = Y δ,y 0 0 + 2 t 0 Y δ,y 0 s dB s + δt, Y δ,y 0 0 = y 0 , y 0 ≥ 0, (2.1) 
where (B t ) t≥0 stands for the standard one-dimensional Brownian motion. The usual notation for the distribution of the process (Y δ,y 0 t ) t≥0 is BESQ δ . This unique solution satisfies Y δ,y 0 t ≥ 0 for any t ≥ 0. It is therefore possible to consider its square root, the so-called Bessel process of dimension δ starting at x 0 ≥ 0, defined by:

X δ,x 0 t = Y δ,x 2 0 t
, for all t ≥ 0.

(2.2)

Let us recall that the Bessel process is characterized either by its dimension δ or, alternatively, by its index ν given by ν = δ/2 -1. For a fixed L > 0 let us denote by

τ L = inf{t ≥ 0; X δ,x 0 t = L}, (2.3) 
the first time that the process hits the threshold L. For the Bessel process case an explicit form of the Laplace transform of τ L exists :

E x 0 e -λτ L = (x 0 ) -ν L -ν I ν (x 0 √ 2λ) I ν (L √ 2λ)
, y > 0, here I ν (x) denotes the modified Bessel function. Ciesielsky and Taylor [START_REF] Ciesielski | First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path[END_REF] proved that for δ ∈ N the tail distribution is given by, when starting from 0

P(τ L > t) = 1 2 ν-1 Γ(ν + 1) ∞ k=1 j ν-1 ν,k J ν+1 (j ν,k ) e - j 2 ν,k 2L 2 t ,
where J • denotes the Bessel function of the first kind, and j •,k is the associated sequence of its positive zeros. These formulas are restricted to the integer dimension case (see [START_REF] Hamana | The probability distributions of the first hitting times of Bessel processes[END_REF] for non integer dimensions) and are obviously miss-adapted and not suited for numerical approaches. The Laplace transform of the first hitting time is also available for various generalizations of the Bessel process with integer dimension, namely for radial and squared radial Ornstein-Uhlenbeck processes and for Bessel squared processes with negative dimensions [START_REF] Göing-Jaeschke | A survey and some generalizations of Bessel processes[END_REF].

Let us also recall some properties of Bessel processes (resp. squared Bessel processes) with respect to their dimension as follows from Revuz and Yor [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF] or Jeanblanc, Yor and Chesney [START_REF] Jeanblanc | Mathematical methods for financial markets[END_REF]:

• for δ > 2 the process BESQ δ is transient and, for δ ≤ 2, it is recurrent,

• for δ ≥ 2 the point 0 is polar and for δ ≤ 1 it is reached almost surely,

• for δ = 0 the point 0 is absorbing,

• for 0 < δ < 2 the point 0 is instantaneously reflecting.

Let us first introduce some relations connecting Bessel processes of different dimensions. The first relation is based on Girsanov's transformation and the second one gives a decomposition of the squared Bessel process as a sum of two independent squared Bessel processes.

On the canonical space Ω = C(R + , R + ), let Z be the canonical map and F t = σ{Z s , 0 ≤ s ≤ t} be the canonical filtration. We denote by P δ,x 0 the law of the Bessel process of dimension δ starting from x 0 , x 0 > 0. Let us state the following result from Jeanblanc, Yor and Chesney [START_REF] Jeanblanc | Mathematical methods for financial markets[END_REF] (Proposition 6.1.5.1, page 364).

Proposition 2.1. The following absolute continuity relation, between a Bessel process of dimension δ ≥ 2 and a Bessel process of dimension 2, holds

P δ,x 0 | Ft = Z t x 0 δ/2-1 exp - (δ/2 -1) 2 2 t 0 ds Z 2 s P 2,x 0 | Ft , ∀t ≥ 0. (2.4)
For δ < 2 a similar absolute continuity relation holds before the first hitting time of 0. It seems difficult to use the expression (2.4) in order to simulate Bessel hitting times for an arbitrarily dimension δ even if it reduces to study only the 2-dimensional case. Thus, the use of Radon-Nikodym's derivative happens to be unuseful for numerical purposes.

An important property, due to Shiga and Watanabe [START_REF] Shiga | Bessel diffusions as a one-parameter family of diffusion processes[END_REF], is the additivity property for the family of squared Bessel processes. Let us denote by P 1 * P 2 the convolution of P 1 and P 2 , where P 1 and P 2 are probability measures. In the following, we denote by Q δ,y 0 the law of the squared Bessel process of dimension δ starting from y 0 . Proposition 2.2. For every y 0 , y ′ 0 ≥ 0 and for every δ, δ ′ ≥ 0 we have

Q δ,y 0 * Q δ ′ ,y ′ 0 = Q δ+δ ′ ,y 0 +y ′ 0 .
(2.5)

3 Algorithm for approaching the hitting time

In a previous paper [START_REF] Deaconu | Hitting time for Bessel processes -Walk on Moving Spheres Algorithm (WoMS)[END_REF], the authors developed an algorithm in order to simulate, in just a few steps, the Bessel hitting time. This was done for integer dimensions δ ≥ 1. The particular connection between the Bessel process and the δ-dimensional Brownian motion gives in this case a geometrical interpretation in terms of the exit problem from a disk for a δ-dimensional Brownian motion. This geometrical approach doesn't work any longer for non integer dimensions. In order to overcome this difficulty, we construct a new algorithm which essentially uses that we are able to simulate, in just one step, each of the following stopping times:

• the first exit time of the multidimensional Brownian motion from a sphere with a particular time-dependent radius (moving sphere) [START_REF] Deaconu | Hitting time for Bessel processes -Walk on Moving Spheres Algorithm (WoMS)[END_REF],

• the first passage time of a Bessel process starting from the origin through a particular curved boundary (Section 4).

The main task is the choice of both the time-dependent radius and the curved boundary in such a way that the simulation of the stopping times remains extremely simple.

Then the additivity property expressed in Section 2 permits to point out a procedure of simulation for a general Bessel process whatever the starting point or the dimension δ ≥ 1. Each step of the algorithm is based on a couple of Bessel processes: one of dimension δ ′ := δ -⌊δ⌋ starting in 0 and hitting a curved boundary and the other one of dimension ⌊δ⌋ starting away from the origin and hitting a moving sphere. An intelligent combination of these two boundaries permits to deal with the hitting problem of the general Bessel process. Before presenting the Algorithm (NI), let us start by making some notations.

Some notations: Set a > 0 and δ > 0. Let us consider the following nonlinear boundary:

ψ a,δ (t) = 2t log a Γ( δ 2 )t δ 2 2 δ 2 -1 , for t ∈ Supp(ψ) := [0, T a,δ ] , (3.1) 
where T a,δ is given by

T a,δ := a Γ( δ 2 )2 δ 2 -1 2 δ . (3.2) 
For a given dimension δ > 0 denote δ ′ := δ -⌊δ⌋. Consider also γ ∈ [0, 1) (close to 1) and L > 0. We define, for x > 0

I(δ, x) := 2 ⌊δ⌋/2-1 Γ ⌊δ⌋ 2 √ eγ(L 2 -x 2 ) (⌊δ⌋ -δγ)x 2 + δγL 2 + ⌊δ⌋x 2 ⌊δ⌋ (3.3)
and

N (δ, x) := 2 δ ′ /2-1 Γ δ ′ 2 √ eγ(L 2 -x 2 ) (δ ′ -δγ)x 2 + δγL 2 + √ δ ′ x 2 δ ′ . (3.4)
Description of the algorithm for δ ≥ 1. Let us now introduce the algorithm.

Algorithm (NI) :

Simulation of τ L = inf{t ≥ 0 : X δ,x 0 t = L} Initialization: Θ 0 = 0, M (0) = x 0 , γ ∈ (0, 1) a chosen parameter, close to 1.
Step n, (n ≥ 1): The Bessel process starts at time Θ n-1 in M (n -1).

While L 2 -M 2 (n -1) > ε do:

(n.1) Construct a Bessel process of dimension ⌊δ⌋ starting from M (n -1) and stop this process at time θ

n , the exit time of the ⌊δ⌋-dimensional Brownian motion B t from the moving sphere centered in M (n -1) := (M (n -1), 0, 0, . . . , 0) ∈ R ⌊δ⌋ and with radius ψ αn,⌊δ⌋ (t), where

α n = I(δ, M (n -1)),
following the definition given in (3.3). The exit time and the exit position are obtained by the moving sphere algorithm (WoMS) [START_REF] Deaconu | Hitting time for Bessel processes -Walk on Moving Spheres Algorithm (WoMS)[END_REF].

(n.2) Construct also a second Bessel process, independent with respect to the previous one, of dimension δ ′ := δ -⌊δ⌋ starting from 0. Stop this process the first time θ

(2)

n it hits the curved boundary ψ βn,δ ′ (t), where

β n = N (δ, M (n -1)),
following the definition given in (3.4). This hitting time is constructed in Section 4.

(n.3) Define the stopping time (comparison of the two hitting times)

θ n = inf{θ (1) n , θ (2) n }. (3.5)
First notice that the additivity property of the Bessel processes ensures that (X δ,M (n-1) t

) 2 has the same distribution as the sum of the two independent processes defined in steps (n.1) and (n.2). We denote by

(Z δ,M (n-1) t ) 2 = M (n -1) + B t 2 + (X δ ′ ,0 t ) 2 .
The values of α n and β n have been chosen in order to ensure the following bound:

sup t≤θn (Z δ,M (n-1) t ) 2 ≤ sup t≤θ (1) n M (n -1) + B t 2 + sup t≤θ (2) n (X δ ′ ,0 t ) 2 ≤ M 2 (n -1) + γ(L 2 -M 2 (n -1)). (3.6)
In particular, since γ < 1, sup

t≤θn Z δ,M (n-1) t < L.
We lastly define

M (n) = Z δ,M (n-1) θn < L and Θ n = Θ n-1 + θ n .
This achieves the n-th step.

Outcome: N ε is then the number of steps entirely completed, that is the first time n in the algorithm such that L 2 -(M (n)) 2 ≤ ε, Θ N ε the approximate hitting time and M (N ε ) the approximate exit position.

The realization of this algorithm and its convergence are developped in Section 5. The upper-bound (3.6) will be discussed in the proof of Theorem 5.1 (see the bound (5.10) in Step 2).

Preliminary results

We start by recalling results and notations introduced in [9] that will be needed in the sequel. Consider the first hitting time of a curved boundary for the Bessel process of dimension δ, starting from the origin. Let ψ(t) denote the boundary, and introduce the following hitting time:

τ ψ = inf{t > 0; X δ,0 t ≥ ψ(t)}. (4.1)
For some suitable choice of the boundary, the distribution of τ ψ can be explicitly computed. The result is based on the method of images (see for instance [START_REF] Daniels | The minimum of a stationary Markov process superimposed on a U -shaped trend[END_REF], for the origin of this method, and [START_REF] Lerche | Boundary crossing of Brownian motion[END_REF] for a complete presentation).

Proposition 4.1. Set a > 0 and δ > 0. Let us consider the nonlinear boundary ψ a,δ given by (3.1). We can express explicitly the distribution of τ ψ (simplified notation corresponding to τ ψ a,δ ). It has its support in Supp(ψ) and is given by

P 0 (τ ψ ∈ dt) = 1 2at 2t log a Γ( δ 2 )t δ 2 2 δ 2 -1 δ 2 ½ Supp(ψ) (t)dt = 1 2at (ψ a,δ ) δ (t)½ Supp(ψ) (t)dt. (4.2) 
Remark 4.2. (Scaling property) Let us stress a scaling property which will be used in the sequel. By using relations (3.1) and (3.2) we obtain :

ψ 2 a,δ (t) = 2t log T a,δ t δ 2 = δT a,δ t T a,δ log T a,δ t = δT a,δ Φ 2 t T a,δ , (4.3) 
where 

Φ(t) = t log 1 t ½ [0,1] (t). ( 4 
ψ a,δ (t) = δ e a Γ( δ 2 )2 δ 2 -1 2 δ = δ e T a,δ . (4.5)
Moreover the distribution u a,δ (t, x)dx := P(X δ,0 t ∈ dx, τ ψ > t) has the form

u a,δ (t, x) = 1 2 δ 2 -1 Γ( δ 2 )t δ 2 exp - x 2 2t - 1 a x δ-1 . (4.6)
Proof of Proposition 4.1. The proof was already presented in [START_REF] Deaconu | Hitting time for Bessel processes -Walk on Moving Spheres Algorithm (WoMS)[END_REF] for integer dimensions δ ∈ N * . Using completely different arguments based on stochastic tools (which are inspired by arguments developed for the Brownian motion by Lerche [START_REF] Lerche | Boundary crossing of Brownian motion[END_REF]) we extend the statement to any dimension δ > 0.

We define first the squared Bessel process Y t = (X δ,x 0 t ) 2 by (2.2). Let us denote the transition probabilities by p y 0 (t, dx) := P((X δ,x 0 t ) 2 ∈ dx) = P y 0 (Y t ∈ dx) with y 0 = x 2 0 . The density is given (see, for instance, Corollary 1.4 p. 441 in [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF]) by:

p y (t, x) = 1 2t x y ν/2 exp - x + y 2t I ν √ xy t , for t > 0, y > 0, x ≥ 0, (4.7) 
where ν = δ/2 -1 and I ν (z) is the Bessel function:

I ν (z) = ∞ n=0 z 2 ν+2n 1 n!Γ(ν + n + 1)
.

Moreover, for y = 0, we get

p 0 (t, x) = x δ 2 -1 (2t) δ/2 Γ(δ/2) e -x 2t , x ≥ 0.
Step 1.

Let us denote by P t,y x the distribution of the squared Bessel bridge starting at x and hitting y at time t. Denote also by P x the distribution of the squared Bessel process starting from x and by (F t ) t≥0 the filtration associated to the Bessel process. Let t 0 > 0. Simple computations (using the transition probabilities and the Markov property of the Bessel process) allow to obtain the following Radon-Nikodym derivative for t < t 0 (see, for instance, Exercice 3.11 from [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF], page 468):

dP t 0 ,y x dP x Ft = p Yt (t 0 -t, y) p x (t 0 , y) , y > 0, x ≥ 0. (4.8)
Observe that this formula cannot be extended to t = t 0 since P t 0 ,y x is not absolutely continuous with respect to P x on F t 0 . For y = 0, the result can be obtained by continuity:

dP t 0 ,0 x dP x Ft = lim y→0 p Yt (t 0 -t, y) p x (t 0 , y) , x ≥ 0. (4.9)
Let us compute explicitly the r.h.s of (4.9). By (4.7) and for x > 0, we get

dP t 0 ,0 x dP x Ft = lim y→0 1 2(t 0 -t) y Yt ν/2 exp -Yt+y 2(t 0 -t) I ν √ Yty t 0 -t 1 2t 0 y x ν/2 exp -x+y 2t 0 I ν √ xy t 0 = t 0 t 0 -t ν+1 exp - Y t 2(t 0 -t) + x 2t 0 .
This result can be expressed both with respect to the transition probability and to the invariant measure µ satisfying µ(x)p x (t, y) = µ(y)p y (t, x) that is µ(x) = x ν . Defining

ξ(t, x) = p 0 (t, x) µ(x) = 1 (2t) δ/2 Γ(δ/2) e -x 2t , for x > 0, t > 0, (4.10) 
we obtain finally for any t < t 0 :

D t := dP t 0 ,0 x dP x Ft = ξ(t 0 -t, Y t ) ξ(t 0 , x) . (4.11)
Moreover, this result can be extended continuously to the case x = 0 by defining ξ(t, 0) = lim x→0 ξ(t, x) = (2t) -δ/2 Γ(δ/2) -1 . We can also notice that (D s ) s≤t is a martingale with respect to P x for t < t 0 .

Step 2.

We prove now that U (t 0 , x) defined by

U (t 0 , x)dx := P 0 (Y t 0 ∈ dx, τ ψ 2 (Y ) > t 0 ) satisfies U (t 0 , x) = 1 (2t 0 ) δ/2 Γ(δ/2) e -x 2t 0 - 1 2a x ν ,
which directly implies (4.6). By conditioning with respect to Y t 0 , we obtain

U (t 0 , x) = P 0 (τ ψ 2 (Y ) > t 0 |Y t 0 = x)p 0 (t 0 , x).
We employ now a time inversion transformation by using the Radon-Nikodym derivative given in

Step 1 in order to express the following equation, for x < ψ 2 (t 0 ):

U (t 0 , x) = lim t→t 0 , t<t 0 P t 0 ,0 x (τ (Y ) > t)p 0 (t 0 , x) = lim t→t 0 , t<t 0 E x [½ {τ >t} D t ]p 0 (t 0 , x) = lim t→t 0 , t<t 0 E x [D t∧τ ]p 0 (t 0 , x) -lim t→t 0 , t<t 0 E x [½ {τ ≤t} D τ ]p 0 (t 0 , x), where τ = τ ψ 2 (t 0 -•) . (4.12)
Since D t is a continuous martingale, the optimal stopping theorem (in the time inverse filtration)

leads to E x [D t∧τ ] = D 0 = 1.
Moreover the function ψ 2 (t) has the following property:

• if 0 ≤ x < ψ 2 (t) then ξ(t, x) < 1 2a , • if x > ψ 2 (t) then ξ(t, x) > 1 2a and ξ(t, ψ 2 (t)) = 1 2a .
In other words, the stopping time τ can be defined as follows:

τ = inf t > 0 : ξ(t 0 -t, Y t ) ≥ 1 2a = inf t > 0 : D t ≥ 1 2aξ(t 0 , x) .
We deduce that

E x [½ {τ ≤t} D τ ] = 1 2aξ(t 0 , x) P x (τ ≤ t).
Therefore

U (t 0 , x) = p 0 (t 0 , x) 1 - 1 2aξ(t 0 , x) lim t→t 0 P x (τ ≤ t) = p 0 (t 0 , x) 1 - P x (τ ≤ t 0 ) 2aξ(t 0 , x) .
Since ψ is a continuous function and ψ(0) = 0, we deduce that P x (τ ≤ t 0 ) = 1. Thus, we obtain the result

U (t 0 , x) = p 0 (t 0 , x) 1 - 1 2aξ(t 0 , x) .
Step 3.

As an immediate consequence, the expression of u a,δ (t, x) defined by (4.6) leads to

P 0 (τ ψ 2 (Y ) > t) = P 0 (τ ψ (X) > t) = ψ 2 a,δ (t) 0 U (t, x)dx = ψ a,δ (t) 0 2wU (t, w 2 )dw = ψ a,δ (t) 0 u a,δ (t, w)dw.
The density of the hitting time can be easily obtained by derivation, see Proposition 2.2 in [START_REF] Deaconu | Hitting time for Bessel processes -Walk on Moving Spheres Algorithm (WoMS)[END_REF].

Convergence of Algorithm (NI)

Let us now describe the realization and the proof of the convergence of the Algorithm (NI) presented in Section 3.

Realization of the algorithm

One particular important task in this procedure is the simulation of Z δ,M (n-1) θn in the n-th step. The method we use is the following:

• If θ n = θ (1) n then M (n -1) + B θn 2 = M 2 (n -1) + 2M (n -1)π 1 (U )ψ αn,⌊δ⌋ (θ n ) + ψ 2 αn,⌊δ⌋ (θ n ) = M (n -1) + π 1 (U )ψ αn,⌊δ⌋ (θ n ) 2 + (1 -π 2 1 (U ))ψ 2 αn,⌊δ⌋ (θ n ), (5.1)
where π 1 is the projection on the first coordinate and U is a random variable in R ⌊δ⌋ uniformly distributed on the sphere of radius 1. It suffices now to simulate X δ ′ ,0 θn . Since θ

n and θ

(2) n are independent, we get

E f (X δ ′ ,0 θn ) θ (2) n > θ (1) n = R + f (x)w(θ n , x) dx,
where

w(t, x)dx = P(X δ ′ ,0 t ∈ dx|τ ψ > t) = P(X δ ′ ,0 t ∈ dx, τ ψ > t) P(τ ψ > t) = u(t, x) ψ(t) 0 u(t, x) dx
and u(t, x) stands here for u βn,δ ′ (t, x) which was already defined in the previous paper [START_REF] Deaconu | Hitting time for Bessel processes -Walk on Moving Spheres Algorithm (WoMS)[END_REF] and was restated in (4.6). More precisely

u(t, x) = 1 2 δ ′ /2-1 1 t δ ′ /2 1 Γ(δ ′ /2) exp - x 2 2t - 1 β n x δ ′ -1 .
Here for notational simplicity the index ψ of τ ψ stands for ψ βn,δ ′ . Let us just notice that the support of

w(θ n , •) is [0, ψ βn,δ ′ (θ n )].
In order to simulate X δ ′ ,0 θn , given τ ψ > θ n , we employ a rejection sampling method. Let S be a random variable defined on the interval [0, ψ βn,δ ′ (θ n )] with probability density function:

r(x) = δ ′ x δ ′ -1 (ψ βn,δ ′ (θ n )) δ ′ , for 0 ≤ x ≤ ψ βn,δ ′ (θ n ).
This variable can be easily sampled by using a standard uniform random variable V : S has the same distribution as

ψ βn,δ ′ (θ n )V 1/δ ′ .
Considering the following constant:

C = (ψ βn,δ ′ (θ n )) δ ′ δ ′ 1 2 δ ′ /2-1 θ δ ′ /2 n Γ(δ ′ /2) - 1 β n ,
we observe that u(θ n , x) ≤ C r(x) for all x. Then the procedure is the following 1. Sample two independent r.v. U * and S on respectively [0, 1] and [0, ψ βn,δ ′ (θ n )]. The first one is uniformly distributed and the p.d.f. of the second one is given by r(x).

2. If U * ≤ u(θ n , S) Cr(S) define ξ ′ = S otherwise return to the first step.

With this algorithm, the p.d.f. of ξ ′ is equal to w(θ n , x), it has the same distribution as X δ ′ ,0 θn

given θ n = θ (1) 
n . Finally we obtain

Z δ,M (n-1) θn = (ξ ′ ) 2 + M 2 (n -1) + 2M (n -1)π 1 (U )ψ αn,⌊δ⌋ (θ n ) + ψ 2 αn,⌊δ⌋ (θ n ). • If θ n = θ (2)
n the result is quite similar. We obtain

Z δ,M (n-1) θn = ψ 2 βn,δ ′ (θ n ) + M 2 (n -1) + 2M (n -1)π 1 (U )ξ + ξ 2
where ξ is obtained in a similar way as ξ ′ . We just have to replace δ ′ by ⌊δ⌋ and β n by α n .

Figure 1 presents several paths of the random walk (M (n), n ≥ 0) defined by the algorithm (NI) for δ = 2.7, γ = 0.9 and for the level L = 5. 

E[N ε ] ≤ C δ | log ε|, for all ε ≤ ε 0 (δ).
Furthermore Θ N ε converges in distribution towards τ L , the hitting time of the threshold L for the δ dimensional Bessel process, as ε → 0.

The following histograms (Figure 2) give the distribution of the hitting times Θ N ε for δ = 1.5 and δ = 7.5. Higher is the dimension of the Bessel process, smaller is the hitting time.

Proof. Instead of considering the Markov chain (M (n), n ≥ 0), we focus our attention on the squared process R(n) = (M (n)) 2 and we stop the algorithm as soon as R(n) becomes larger than L 2 -ε.

Step 1. Definition and decomposition of the operator P We estimate first the number of steps. Let us remark that by definition (R(n), n ≥ 0) is an homogeneous Markov chain, as at each step n we use the same construction which depends only on M (n -1). Let us start by computing the transition probabilities associated to R(n). We introduce the operator P f defined, for any non-negative measurable function f : R + → R + :

P f (x) := E[f (R(n))|R(n -1) = x] = E f √ x + B θn 2 + (X δ ′ ,0 θn ) 2 , (5.2) 
where θ n is defined in (3.5). Since R(n) is an homogeneous Markov chain, the transition P f does not depend on the time n. For notational simplicity we neglect some indexes: the step n; X δ ′ ,0 is replaced by X; θ

n by θ (i) , for i = 1, 2; α n is replaced by α and β n is replaced by β. We will express (5.2) by splitting it into two parts P i f (x), i = 1, 2 with

P i f (x) = E f √ x + B θ (i) 2 + (X θ (i) ) 2 ½ {θ=θ (i) } .
Thus P f (x) = P 1 f (x) + P 2 f (x).

(5.

3)

The class of functions that will be considered in the following satisfies the hypothesis :

(H) The function f is such that

f (p) ≤ 0, ∀p ∈ {1, 2, 3, 4},
this means that the first four derivatives of f are negative. An example of such a function will be used later on.

Step 2. Distributions associated with θ (i) . Let us denote by U i (t)dt the distribution of θ (i) and its support [0, s i ]. With the notation in (3.2) we have s 1 = T α,⌊δ⌋ and s 2 = T β,δ ′ .

(5.4)

These distributions are those of stopping times corresponding to the function ψ a,δ (t), see (3.1), with a suitable parameter a and a suitable dimension δ. By applying the scaling property (4.3) we get

ψ α,⌊δ⌋ (t) = ⌊δ⌋ s 1 Φ t s 1 .
(5.5)

By using the same arguments, the scaling property associated to θ (2) is

ψ β,δ ′ (t) = δ ′ s 2 Φ t s 2 , with δ ′ = δ -⌊δ⌋. Since U 1 (t)dt = P 0 (θ (1) ∈ dt) = 1 2Γ(⌊δ⌋/2)2 ⌊δ⌋/2-1 s ⌊δ⌋/2 1 t 2t log s 1 t ⌊δ⌋/2 ⌊δ⌋/2 ½ [0,s 1 ] (t)dt = c ⌊δ⌋ t Φ ⌊δ⌋ t s 1 dt, with c d = 1 Γ(d/2) ( d 2 ) d/2
, we obtain the scaling property:

U 1 (s 1 t) = c ⌊δ⌋ s 1 t Φ ⌊δ⌋ (t) and U 2 (s 2 t) = c δ ′ s 2 t Φ δ ′ (t). (5.6)
With our choice of α and β, we have

s 1 = T α,⌊δ⌋ = α Γ( ⌊δ⌋ 2 )2 ⌊δ⌋ 2 -1 2 ⌊δ⌋ = eγ 2 (L 2 -x) 2 ( (⌊δ⌋ -δγ)x + δγL 2 + ⌊δ⌋x) 2 = s 2 .
(5.7) By using (4.5) we get

W α,⌊δ⌋ = sup t∈[0,s 1 ] ψ α,⌊δ⌋ (t) = ⌊δ⌋ e s 1 (5.8)
and the same property holds for s 2

W β,δ ′ = sup t∈[0,s 2 ] ψ β,δ ′ (t) = δ ′ e s 2 .
(5.9)

Since we stop the Markov chain R(n) in order not to hit L 2 , we have

( √ x + W α,⌊δ⌋ ) 2 + W 2 β,δ ′ = x + ⌊δ⌋ e s 1 + 2 √ x ⌊δ⌋ e s 1 + δ ′ e s 2 = x + δ e s 1 + 2 √ x ⌊δ⌋ e s 1 = x + γ(L 2 -x),
(5.10) by using the choice of s 1 = s 2 and the value of s 1 given in (5.7). We deduce that for x close to 0, s 1 is close to γeL 2 /δ and for x close to L 2 , s 1 is of the same order as eγ 2 (L 2 -x) 2 /(4⌊δ⌋L 2 ).

Step 3. Computation of P 1 f (x).

Using the definition of P 1 f , the identity (5.1) and the distribution of θ (1) denoted by U 1 (t)dt we get

P 1 f (x) = E f √ x + B θ 2 + (X θ ) 2 ½ {θ=θ (1) } = S 1 s 1 0 E f ( √ x + π 1 (z)ψ α,⌊δ⌋ (t)) 2 + ψ 2 α,⌊δ⌋ (t)(1 -π 2 1 (z)) + X 2 t ½ {θ (2) >t} ×U 1 (t)dtσ(dz) = S 1 s 1 0 E f x + 2 √ xπ 1 (z)ψ α,⌊δ⌋ (t) + ψ 2 α,⌊δ⌋ (t) + X 2 t ½ {θ (2) >t} U 1 (t)dtσ(dz).
(5.11)

We denote here by S 1 the unit sphere in R ⌊δ⌋ , σ(dz) the uniform surface measure on this sphere and π 1 (z) the projection on the first coordinate and α is chosen so that (5.7) is satisfied. Let us notice that the variable x + 2 √ xπ 1 (z)ψ α,⌊δ⌋ (t) + ψ 2 α,⌊δ⌋ (t) + X 2 t always stays in the interval [0, L 2 ] on the event θ (2) > t. Consider the Taylor expansion of f in a neighborhood of x. By using (H) we have that f (4) (t) ≤ 0 on the whole interval [0, L 2 ]. Hence

P 1 f (x) ≤ f (x)G 1 + f ′ (x)G 2 + 1 2 f ′′ (x)G 3 + 1 6 f (3) (x)G 4 .
(5.12)

It suffices now to compute G k for k = 1, 2, 3, 4 where G k is defined by

G k := S 1 s 1 0 E ψ 2 α,⌊δ⌋ (t) + 2 √ xπ 1 (z)ψ α,⌊δ⌋ (t) + X 2 t k-1
½ {θ (2) >t} U 1 (t)dtσ(dz).

(5.13)

In particular G 1 = P[θ (2) > θ (1) ]. Using symmetry arguments, the term associated to the projection vanishes, and we can split G 2 into two parts,

G 2 = G 2,1 + G 2,2 : G 2,1 := s 1 0 ψ 2 α,⌊δ⌋ (t)P(θ (2) > t)U 1 (t)dt and G 2,2 := s 1 0 E X 2 t ½ {θ (2) >t} U 1 (t)dt.
By changing the variable s 1 u = t and the scaling properties developed in Step 2, we obtain:

G 2,1 = 1 0 ψ 2 α,⌊δ⌋ (s 1 u)P(θ (2) > s 1 u)U 1 (s 1 u)s 1 du = 1 0 s 1 ⌊δ⌋Φ 2 (u) 1 u U 2 (s 1 w)dw c ⌊δ⌋ s 1 u Φ ⌊δ⌋ (u)s 1 du.
Using now the equality s 1 = s 2 and a suitable change of variable, we get

G 2,1 = s 1 ⌊δ⌋c ⌊δ⌋ 1 0 1 u 1 u Φ ⌊δ⌋+2 (u)s 1 U 2 (s 1 v)dvdu = s 1 κ 2,1 (5.14) 
where

κ 2,1 := ⌊δ⌋c ⌊δ⌋ c δ ′ 1 0 1 u 1 uv Φ ⌊δ⌋+2 (u)Φ δ ′ (v)dvdu > 0. (5.15)
Notice that κ 2,1 is a constant which depends only on the dimension δ. We can also prove that there exists a constant κ 2,2 independent of x such that G 2,2 = s 1 κ 2,2 . Indeed, we have

G 2,2 = s 1 0 E X 2 t ½ {θ (2) >t} U 1 (t)dt = s 1 1 0 E X 2 s 1 u ½ {θ (2) >s 1 u} U 1 (s 1 u)du = 1 0 E X 2 s 1 u ½ {∀r≤s 1 u: Xr≤ψ β,δ ′ (r)} c ⌊δ⌋ u Φ ⌊δ⌋ (u)du.
Using the scaling property of the Bessel process, we get

G 2,2 = 1 0 E s 1 X 2 u ½ {∀r≤u: Xr≤ψ β,δ ′ (s 1 r)/ √ s 1 } c ⌊δ⌋ u Φ ⌊δ⌋ (u)du = s 1 κ 2,2
since s 1 = s 2 and thus ψ β,δ ′ (s 1 r)/ √ s 1 = √ δ ′ Φ(r) does not depend on x but only on δ. To sum up, we have proved the existence of two constants κ 2,i , i = 1, 2, independent of x satisfying

G 2 = κ 2 s 1 , where κ 2 = κ 2,1 + κ 2,2 .
(5.16)

Let us now focus our attention on G 3 defined in (5.13).

While developing the square of ψ 2 α,⌊δ⌋ (t) + 2 √ xπ 1 (z)ψ α,⌊δ⌋ (t) + X 2 t , we obtain 6 terms:

H 1 = ψ 4 α,⌊δ⌋ (t), H 2 = 4xπ 2 1 (z)ψ 2 α,⌊δ⌋ (t), H 3 = X 4 t H 4 = 4ψ 3 α,⌊δ⌋ (t) √ xπ 1 (z), H 5 = 4 √ xπ 1 (z)ψ α,⌊δ⌋ (t)X 2 t , H 6 = 2ψ 2 α,⌊δ⌋ (t)X 2 t .
Therefore G 3 can be splitted into 6 terms:

G 3 = 6 j=1 G 3,j with G 3,j := S 1 s 1 0 E H j ½ {θ (2) >t} U 1 (t)dt σ(dz).
Now, let us compute G 3,j for j = 1, . . . , 6. First we note that, due to symmetry properties of the variable z, G 3,4 = G 3,5 = 0. By similar arguments as those included in the computation of G 2 , we get:

G 3,1 = s 2 1 κ 3,1 with κ 3,1 := ⌊δ⌋ 2 c ⌊δ⌋ c δ ′ 1 0 1 u 1 uv Φ ⌊δ⌋+4 (u)Φ δ ′ (v)dvdu > 0.
(5.17)

G 3,2 = xs 1 κ 3,2 with κ 3,2 := 4κ 2,1 S 1 π 2 1 (z)σ(dz) > 0.
(5.18)

G 3,3 = s 2 1 κ 3,3 with κ 3,3 := 1 0 E X 4 u ½ {∀r≤u: Xr≤ √ δ ′ Φ(r)} c ⌊δ⌋ u Φ ⌊δ⌋ (u)du > 0. (5.19) G 3,6 = s 2 1 κ 3,6 with κ 3,6 := 2 1 0 E X 2 u ½ {∀r≤u: Xr≤ √ δ ′ Φ(r)} c ⌊δ⌋ u ⌊δ⌋ Φ ⌊δ⌋+2 (u)du > 0. (5.20)
To sum up, there exist two positive constants κ 3 and κ3 independent of x such that

G 3 = κ 3 xs 1 + κ3 s 2 1 . (5.21) 
Finally, we consider the expression G 4 defined by (5.13). We are not going to compute it explicitly as we have just performed it already for the first terms. Due to the symmetry property of the variable z, the expansion of G 4 coupled to the computation of (ψ 2 α,⌊δ⌋ (t) + 2 √ xπ 1 (z)ψ α,⌊δ⌋ (t) + X 2 t ) 3 leads to terms which are either positive or equal to 0. Hence, we can conclude that G 4 ≥ 0.

(5.22)

Step 4. Computation of P 2 f (x).

Using the definition of P 2 f , we obtain:

P 2 f (x) = E f √ x + B θ 2 + (X θ ) 2 ½ {θ=θ (2) } = s 2 0 E f √ x + B t 2 + ψ 2 β,δ ′ (t) ½ {θ (1) >t} U 2 (t)dt = s 2 0 E f x + 2 √ x, B t + B t 2 + ψ 2 β,δ ′ (t) ½ {θ (1) >t} U 2 (t)dt.
By hypothesis (H), f ′′ is non positive on the support of the Markov chain. Then, by using a Taylor expansion, the following bound holds: for any x ∈ [0, L 2 -ε]

P 2 f (x) ≤ f (x)P(θ (1) > θ (2) ) + f ′ (x) s 2 0 E 2 √ x, B t + B t 2 + ψ 2 β,δ ′ (t) ½ {θ (1) >t} U 2 (t)dt.
The integral expression contains three distinct terms. The first one associated to the scalar product is equal to zero since the distribution of B t given {θ (1) > t} is rotationally invariant. The second and third terms are positive. We therefore deduce that for any function f satisfying (H), the following bound holds: P 2 f (x) ≤ f (x)P(θ (1) > θ (2) ).

(5.23)

Step 5. Application to a particular function f . Let us introduce the function f ε : [0, L 2 ) → R defined by

f ε (x) = log L 2 -x (1 -γ)ε , (5.24) 
where γ < 1 is the constant close to 1 already introduced in (5.10). Let us assume that the Markov chain M starts with the initial value x ∈ [0, L 2 -ε] that is R(0) = x. We will prove that f ε (R(1)) is a non-negative random variable. Indeed for any y in the support of R(1) we have:

0 ≤ y ≤ ( √ x + W α,⌊δ⌋ ) 2 + W 2 β,δ ′ ,
where W α,⌊δ⌋ is defined by (5.8) and W β,δ ′ by (5.9). Using the identity (5.10), we obtain

f ε (y) ≥ log (L 2 -x) ε ≥ 0 since L 2 -x ≥ ε.
We deduce that f ε is a non-negative function on the support of the Markov chain stopped at the first exit time of the interval [0, L 2 -ε].

Let us now apply the operator P defined by (5.2) to the function f ε . Since

f ′ ε (x) = - 1 L 2 -x < 0, f (k) ε (x) = - (k -1)! (L 2 -x) k < 0, for k = 2, 3, 4
the condition (H) is satisfied and we obtain by (5.12) and the computation of G 1 , . . . , G 4 :

P 1 f ε (x) ≤ f ε (x)P(θ (2) > θ (1) ) - s 1 (L 2 -x) 2 κ 2 (L 2 -x) + κ 3 x , (5.25) 
by using (5.16) and (5.21). Due to the explicit expression of s 1 in (5.4), there exists a constant κ > 0 independent of x and ε such that

P 1 f ε (x) ≤ f ε (x)P(θ (2) > θ (1) ) -κ, ∀x ∈ [0, L 2 -ε). (5.26) 
Combining this with (5.23), we get

P f ε (x) -f ε (x) ≤ -κ, ∀x ∈ [0, L 2 -ε].
By using a comparison theorem of the classical potential theory, see Norris [START_REF] Norris | Markov chains, volume 2 of Cambridge Series in Statistical and Probabilistic Mathematics[END_REF] (Theorem 4.2.3, p. 139), we deduce that

E x [N ε ] ≤ f ε (x) κ . (5.27) 
In particular, for x = 0, the desired result in the statement of the theorem is proved.

Step 6. The time Θ N ε given by the algorithm is close to the first hitting time τ L . Let us denote by F (resp. F ε ) the cumulative distribution function of the random variable τ L (resp. Θ N ε ). We construct these two random variables on the same paths ; the law of the squared Bessel process of dimension δ is obtained as a succession of sums of two independent squared Bessel processes of dimension ⌊δ⌋ denoted by Y ⌊δ⌋,k and δ ′ denoted by Ŷ δ ′ ,k on random time intervals [Θ k-1 , Θ k ) until the hitting time Θ N ε and afterwards, the paths are generated just by a squared Bessel process of dimension δ starting in M (N ε ) and independent from the past. Since τ L ≥ Θ N ε a.s. we immediately obtain the first bound

F (t) ≤ F ε (t), t ≥ 0.
Furthermore, for any small α > 0,

1 -F (t) = P(τ L > t) = P(τ L > t, Θ N ε ≤ t -α) + P(τ L > t, Θ N ε > t -α) ≤ P(τ L > t, Θ N ε ≤ t -α) + P(Θ N ε > t -α) ≤ P(τ L > t, Θ N ε ≤ t -α) + 1 -F ε (t -α).
(5.28)

At time Θ N ε the sum of the two squared Bessel processes is in the small neighborhood of the threshold

L 2 , namely L 2 -Y ⌊δ⌋,N ε Θ N ε 2 -Ŷ δ ′ ,N ε Θ N ε 2 ≤ ε.
Using the strong Markov property, we obtain

P(τ L > t, Θ N ε ≤ t -α) ≤ F ε (t -α) sup y∈[ √ L 2 -ε,L] P y (τ L > α).
(5.29)

Applying Shiga and Watanabe's result (2.5), the Bessel process of dimension δ > 1 is stochastically larger than the Bessel process of dimension 1 which has the same law as |B t |. Here B stands for a 1-dimensional Brownian motion. By these observations, the following upper bound holds, for any y ∈ [ √ L 2 -ε, L]:

P y (τ L > α) ≤ P L ε (τ L > α) ≤ P L ε ( sup 0≤t≤α |B t | < L), with L ε = L 2 -ε ≤ P L ε ( sup 0≤t≤α B t < L) ≤ P 0 ( sup 0≤t≤α B t < L -L ε ) ≤ P 0 sup 0≤t≤α B t < ε L ≤ ε L √ 2απ .
(5.30)

By combining (5.28), (5.29) and (5.30), we have

F ε (t -α) 1 - ε L √ 2απ ≤ F (t) ≤ F ε (t), t ≥ 0. (5.31)
Furthermore, by construction, Θ N ε is an increasing sequence of positive random variables as ε goes to 0. We deduce that, for any fixed t ≥ 0, F ε (t) decreases as ε goes to 0. Moreover the right hand side of (5.30) ensures a lower bound for the sequence which leads to the convergence of F ε (t). The limit is denoted by F 0 (t) and (5.30) implies that F 0 (t) = F (t) for any t ≥ 0. Consequently, Θ N ε converges to τ L in distribution as ε goes to 0. This ends the proof.

Remark 5.2. The first step of the algorithm could be simplified when the starting position x 0 is equal to 0. The procedure then consists in first choosing α 1 such that ψ α 1 ,δ (t) < L for all t ≥ 0.

Then we simulate the first hitting time of this moving boundary which is given by a transformation of the Gamma distribution. We denote this random variable by θ 1 and we compute the value of the process at this time:

M (1) = ψ α 1 ,δ (θ 1 ).
Finally we set Θ 1 = Θ 0 + θ 1 . Even if this modified version of the algorithm (NI) seems simpler (just the first step is different), in the following we prefer to illustrate the convergence results associated to the algorithm (NI).

Numerical results

In this section, we will discuss some numerical results based on the algorithm for approaching the hitting time (developed in Section 5). A particularly important task in such an iterative method is to estimate the number of steps or even the number of times the uniform random generator is used. The algorithm (NI) presented in Section 5 allows to simulate hitting times for Bessel processes of non integer dimensions δ > 1. We will therefore only present results in that context and refer to the previous work [START_REF] Deaconu | Hitting time for Bessel processes -Walk on Moving Spheres Algorithm (WoMS)[END_REF] for Bessel processes of integer dimensions.

Number of steps versus ε

The number of steps of the algorithm is of prime interest. Classical time splitting method, in order to simulate particular paths of stochastic processes, can be used for classical diffusion processes with regular diffusion and drift coefficients if the study is restricted to some fixed time intervals. Here the diffusion is singular, the classical methods could not be applied, nevertheless the approximation procedure (NI) developed in Section 5 is different from classical splitting methods and holds for any given time. In particular, we are not able to compare our algorithm with other methods and we will just describe the relevance of (NI) by the estimation of the average number of steps. The algorithm used in order to simulate the hitting time of the level L by the Bessel process, gives an approximated hitting time Θ N ε and the corresponding position M (N ε ) which satisfies:

L 2 -(M (N ε )) 2 ≤ ε.
The number of iterations will decrease with respect to the parameter ε. The average number of steps E[N ε ] is bounded from above by the logarithm of ε up to a multiplicative constant (Theorem 5.1). Let us therefore choose different values of ε and approximate through a law of large number this average (we denote by ℵ the number of independent simulations; here ℵ = 1000).

ε k = 0.5 k , k = 1, . . . , 15.
The results concern two different dimensions of the Bessel process δ = 2.2 and δ = 4.7 and we fix the parameter γ = 0.95 in the algorithm (NI) (this parameter is fixed for the whole numerical section). Note that each step of the (NI) algorithm is associated to a comparison between particular hitting times θ

n and θ

n , the first one is associated with a Bessel process of dimension ⌊δ⌋ and the second one is associated with a Bessel process of dimension δ -⌊δ⌋. In the following we are also interested in the average number of steps N ε integer satisfying

N ε integer := #{1 ≤ n ≤ N ε : θ (1) n < θ (2) n }.
The figures 3 represent both the estimated average number of steps E[N ε ] and its confidence interval (three upper curves) and the estimated average number E[N ε integer ] and its 95%-confidence interval (three lower curves).

Figure 3: The average number of steps N ε for different precisions ε k = 0.5 k together with its 95%confidence interval (dashed lines) based on ℵ = 1000 simulations of the hitting time, for dimension δ = 2.2 (left) and δ = 4.7 (right)

Number of steps versus the dimension of the Bessel process

In [START_REF] Deaconu | Hitting time for Bessel processes -Walk on Moving Spheres Algorithm (WoMS)[END_REF], the authors pointed out that the number of steps of the WoMS algorithm increases as the dimension of the integer Bessel process becomes larger. This means in particular that each step of the Algorithm (NI) will take more time as the dimension of the Bessel process becomes large. This feature can be illustrated by a simple experiment: let us sample a sequence of independent random variables (U n ) n≥1 uniformly distributed on the sphere in R δ , with δ ∈ N, centered in (0.5, 0, 0, . . . , 0) and with radius 0.5. We stop the trials as soon as one random variable U n belongs to the ε-neighborhood of the unit sphere. We observe that the averaged number of trials increases with the dimension since the proportion of the small sphere surface which is close to the unit sphere decreases with the dimension. Figure 4 represents the logarithm of the average number of trials when the dimension increases. This simple experiment heuristically explains why in the integer dimension case, the walk on moving spheres needs more steps as soon as the dimension increases. We can illustrate this feature by the cpu time needed by the algorithm (NI).

Let us focus our attention on the non-integer case. We observe unexpected effects with respect to the dimension: on one hand if ⌊δ⌋ is fixed and the dimension increases then the average number of steps decreases, on the other hand if δ -⌊δ⌋ is fixed and the dimension increases, so does the number of steps. For the simulation we set ℵ = 1 000, ε = 0.01 and the level height L = 5.

Let us explain what happens in a simplified way. Each step of the Algorithm (NI) is based on the simulation of two independent random variables: A the value of the squared Bessel process of integer dimension ⌊δ⌋, B the value of the squared Bessel process of dimension δ ′ , both stopped as soon as one of them is sufficiently large (let us say: larger than λ A and λ B ). Then the algorithm stops if the sum A + B is sufficiently large, say larger than λ A + λ B . What should be observed in such a context?

• If B/λ B is stochastically much larger than A/λ A , then it is particularly difficult for the sum A+B to reach the level λ A +λ B . Therefore the algorithm needs a lot of steps for the condition to be satisfied. This situation appears in fact when δ ′ is small: the proportion N ε integer /N ε is much smaller than 50% (see Figure 6).

• If B/λ B is stochastically of the same order as A/λ A then the sum A + B is more likely to overcome the threshold λ A + λ B ; therefore the algorithm needs less steps. This situation appears when δ ′ is close to 1: the proportion N ε integer /N ε is close to 50% (see Figure 6).

Figure 5: The average number of steps N ε for varying δ. We set ℵ = 1000, ε = 0.01 and the level height L = 5. On the right ⌊δ⌋ is fixed and on the left δ -⌊δ⌋ is fixed.

We observe the averaged proportion E[N ε integer /N ε ] as the dimension of the Bessel process increases, see Figure 6. This proportion seems to depend mainly on the fractional part of the dimension. One way to increase the efficiency of Algorithm (NI) would be to choose other values for λ A and λ B in such a way that the proportion always stays close to 50%. The thresholds λ A and λ B in this informal discussion corresponds in fact in the Algorithm (NI) to the coefficients I(δ, x) and N (δ, x) defined by (3.3) and (3.4). The only condition required for the convergence of the Algorithm is: , where δ ′ = δ -⌊δ⌋. We observe that there is one degree of freedom in the choice of the couple (I(δ, x), N (δ, x)).

Let us finally note that, for small δ ′ , several steps concern extremely small stopping times. We recommend in this situation to remove these small stopping times (for instance smaller than 10 -30 ), it is just a slight modification of the algorithm.

Number of steps versus the level height

In the previous simulations the threshold to reach was fixed at 5. Let us now study the dependence of the number of steps with respect to the threshold. The numerical results are obtained for ℵ = 1000, ε = 0.01 and two different Bessel processes (of dimension δ = 3.8 and 5.2). Let us note that this dependence is sublinear and rather weak, the dimension of the Bessel process seems to play a more important role as illustrated in Figure 7. Observe also that ε is an upper-bound of L 2 -(M (N ε )) 2 . We deduce that L -M (N ε ) ≤ ε 2L , and therefore the error of the approximation diminishes as L increases. This particular remark is also emphasized by the dependence of L in the bounds (5.31). We present an illustration of this 

Number of generated random variables

Finally let us study the number of random variables used in the simulation of the Bessel hitting times. Each step of the algorithm (NI) requires many calls of the uniform random generator in order to simulate the first coordinate of the uniform variable on the sphere of dimension ⌊δ⌋, the Gamma distributed variable which appears in the simulation of the hitting times of curved boundaries (here we use Johnk's algorithm, see for instance [START_REF] Devroye | Non-Uniform Random Variate Generation[END_REF], page 418), and finally the rejection method for the We observe also that the algorithm (NI) is rather difficult to use when the fractional part of the dimension δ i.e. δ -⌊δ⌋ is small, the number of steps becomes huge. Furthermore, intuitively the parameter γ should be equal to 1. However, for technical reasons in the proof of the main result we have to consider γ < 1. Thus, for numerical purposes we suggest to take the parameter γ as close as possible to 1 as it has a weak impact on the convergence rate of the algorithm.
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 1551 Figure 1: A sample of 4 paths of the random walk (M (n), n ≥ 0) for δ = 2.6, γ = 0.9 and L = 5 Theorem 5.1. Set δ ≥ 1. Let us assume that the starting point of the Bessel process is such that x 0 < L. The number of steps N ε of the algorithm (NI) is almost surely finite. Moreover, there exist constants C δ > 0 and ε 0 (δ) > 0, such that

Figure 2 :

 2 Figure 2: Distribution of the hitting time Θ N ε . Histograms based on 1000 simulations and performed with the following choice of parameters: γ = 0.9, L = 5 and ε = 0.001, δ = 1.5 on the left and δ = 7.5 on the right.

Figure 4 :

 4 Figure 4: Logarithm of the average number of trials before hitting a ε-neighborhood (ε = 0.1) of the unit sphere in dimension δ (δ = 1, . . . , 20) based on 10 000 simulations.

Figure 6 :

 6 Figure 6: Averaged proportion E[N ε integer /N ε ] versus δ with ℵ = 1 000 (left) and average cpu time (seconds) for Algorithm (NI) on a 2.3 GHz Intel Core i5 processor with the Scilab software versus δ with ℵ = 100 on a (right). For both figures, we set ε = 0.01 and the level height L = 5. phenomenon in Figure 8 for which ε/L is fixed and equal to 0.01.

Figure 7 :

 7 Figure 7: Averaged number of step versus the level L. Numerical results obtained for ℵ = 1 000, ε = 0.01 with dimension δ = 3.8 (on the left) and δ = 5.2 (on the right).

Figure 8 :

 8 Figure 8: Averaged number of steps versus L for ℵ = 1000, ε/L = 0.01 and δ = 3.8.

Figure 9 :

 9 Figure 9: Number of random variables required versus number of steps for L = 5, ε = 0.01 δ = 2.5 (on the left) and δ = 4.8 (on the right)
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