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SIMULATION OF HITTING TIMES FOR BESSEL PROCESSES WITH NON
INTEGER DIMENSION ∗

By Madalina Deaconu† and Samuel Herrmann‡

Inria, Villers-lès-Nancy, F-54600, France;
Université de Lorraine, CNRS, Institut Elie Cartan de Lorraine - UMR 7502,

Vandoeuvre-lès-Nancy, F-54506, France; †

Institut de Mathématiques de Bourgogne (IMB) - UMR 5584, Université de Bourgogne, B.P. 47
870, 21078 Dijon Cedex, France ‡

In this paper we pursue and complete the study of the simulation
of the hitting time of some given boundaries for Bessel processes.
These problems are of great interest in many application fields as
finance and neurosciences. In a previous work [3], the authors intro-
duced a new method for the simulation of hitting times for Bessel
processes with integer dimension. The method was based mainly on
the explicit formula for the distribution of the hitting time and on
the connexion between the Bessel process and the Euclidean norm
of the Brownian motion. This method does not apply anymore for
a non integer dimension. In this paper we consider the simulation
of the hitting time of Bessel processes with non integer dimension
and provide a new algorithm by using the additivity property of the
laws of squared Bessel processes. We split each simulation step in
two parts: one is using the integer dimension case and the other one
considers hitting time of a Bessel process starting from zero.

1. Introduction.

The aim of this paper is to construct new methods for approaching the hitting time of a given level
for Bessel processes of one non-integer dimension. Diffusion hitting times are important quantities
in many fields of sciences and applications, such as mathematical science, finance, geophysics or
neurosciences. A typical example is the study of path dependent exotic options as barrier options
in finance.

On one hand, analytic expressions for hitting time densities are well known and studied only in
some very particular situations. On the other hand, the study of the approximation of the hitting
times for stochastic differential equations is an active area of research since very few results exist
already. For the Brownian motion, we can approach this quantity simply by using Gaussian random
variables. Four alternatives for dealing with the characterization of hitting times in the Brownian
case exist : Monte Carlo and Euler based methods, Volterra integral equation for Gaussian Markov
processes, series expansion as performed by Durbin [5] or partial differential equation approaches
which are based on the explicit form of the probability distribution function of the Brownian motion.
These methods do not apply in the general diffusion case as they rely on this explicit form. For the
general diffusion case, very few studies in this direction exist. The only methods that can be used
are the Monte Carlo method and time splitting method like the Euler scheme. Some works have
already been done in the context of smooth drift and diffusion coefficient by Gobet and Menozzi

∗The second author was supported by Conseil Regional de Bourgogne (contract no. 2012-9201AAO047S01283)
AMS 2000 subject classifications: 65C20, 60K35, 60K30
Keywords and phrases: Bessel processes with non integer dimension, hitting time, numerical algorithm

1



[6, 7]. A recent paper by Ichiba and Kardaras [9] also uses the representation of the passage density
as the mean of a three dimensional Brownian motion.

Our study focuses on the numerical approach for the hitting time of a Bessel process. The main
point of this work is the introduction of an iterative procedure for approaching the hitting time by
using the structure and the particular properties of the Bessel process. In particular, our approach
avoids splitting time methods. More precisely, we consider the simulation for the hitting time of
Bessel processes with non integer dimension and construct a new algorithm by using the additivity
property of the laws of squared Bessel processes. We split each simulation step in two parts : one
uses the integer dimension case and the other considers the hitting time of a Bessel process starting
from zero.

The paper is organized as follows. Sections 2, 3 and 4 introduce some generalities about Bessel
processes and the properties needed in the paper. Section 5 gives a description of the hitting time
of a particular boundary for a Bessel process starting from 0. In section 6, the algorithm is provided
and the convergence discussed. Finally, section 7 gives some numerical results.

2. Research topic - Bessel processes.

We consider the δ-dimensional Bessel process (δ > 1), starting from x0, which is the solution of
the following stochastic differential equation

(2.1)







Xδ,x0
t = Xδ,x0

0 +
δ − 1

2

∫ t

0
(Xδ,x0

s )−1ds+Bt,

Xδ,x0
0 = x0, x0 ≥ 0.

Let us recall that the Bessel process is characterized either by its dimension δ or, alternatively, by
its index ν given by ν = δ/2 − 1.
For a fixed L > 0 let us denote by

(2.2) τL = inf{t ≥ 0;Xδ,x0
t = L},

the first time that the process hits the level L. In the Bessel process case an explicit form of the
Laplace transform of τL exists :

Ex0

[

e−λτL
]

=
(x0)

−ν

L−ν
Iν(x0

√
2λ)

Iν(L
√
2λ)

, y > 0,

here Iν(x) denotes the modified Bessel function. Ciesielsky and Taylor [1] also proved that for δ ∈ N

the tail distribution is given by, when starting from 0

P(τL > t) =
1

2ν−1Γ(ν + 1)

∞
∑

k=1

jν−1
ν,k

Jν+1(jν,k)
e−

j2
ν,k

2L2 t.

where J· is the Bessel function of the first kind, and j·,k is the associated sequence of its positive
zeros. These formulas are restricted to the integer dimension case (see [8] for non integer dimensions)
and are obviously miss-adapted and not suited for numerical approaches.

Let us also recall some properties of Bessel processes with respect to their dimension as follows
from Revuz and Yor [13] or Jeanblanc, Yor and Chesney [10].
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1. For δ > 2 the process BESQδ is transient and, for δ ≤ 2, it is recurrent.
2. For δ ≥ 2 the point 0 is polar for BESQδ, and for δ ≤ 1 it is reached almost surely.
3. For δ = 0 the point 0 is absorbing.
4. For 0 < δ < 2 the point 0 is instantaneously reflecting.

First, we introduce some relations connecting Bessel processes of different dimensions. The first
relation is based on Girsanov’s transformation and the second one is a decomposition of the squared
Bessel process as a sum of two independent squared Bessel processes.

3. Absolute continuity.

On the canonical space Ω = C(R+,R+), let Z be the canonical map and Ft = σ{Zs, 0 ≤ s ≤ t}
be the canonical filtration. We denote by Pδ,y the law of the Bessel process of dimension δ starting
from y, y > 0.
Let us state the following result from Jeanblanc, Yor and Chesney [10] (Proposition 6.1.5.1, page
364).

Proposition 3.1. The following absolute continuity relation between a Bessel process of di-
mension δ and a Bessel process of dimension 2 holds

Pδ,y |Ft =

(

Zt
y

)δ/2−1

exp

{

−(δ/2 − 1)2

2

∫ t

0

ds

Z2
s

}

P2,y |Ft ,∀t ≥ 0.

It seems difficult to use such a relation in order to simulate Bessel hitting times for any dimension
δ even if it leads to study only the 2-dimensional case. The use of Radon-Nikodym’s derivative
happens to be unuseful for numerical purposes.

4. Additivity of Bessel processes.

An important property, due to Shiga and Watanabe [15], is the additivity property for the family
of squared Bessel processes usually denoted by BESQ. Let us denote by P1 ∗ P2 the convolution of
P1 and P2, where P1 and P2 are probability measures. In the following, we denote by Qδ,x0 the law
of the squared Bessel process of dimension δ starting from x0.

Proposition 4.1. For every x0, x
′
0 ≥ 0 and for every δ, δ′ ≥ 0 we have

(4.1) Qδ,x0 ∗Qδ′,x′0 = Qδ+δ′,x0+x′0 .

5. Notations and preliminary results.

We start by recalling results and notations introduced in [3] that will be needed in the follow-up.
Consider the first hitting time of a curved boundary for the Bessel process of dimension δ starting

from the origin. Let ψ(t) denote the boundary, and introduce the following hitting time:

(5.1) τψ = inf{t > 0; Xδ,0
t ≥ ψ(t)}.

For some suitable choice of the boundary, the distribution of τψ can be explicitly computed. The
result is based on the method of images (see for instance [2] for the origin of this method and [11]
for a complete presentation).
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Proposition 5.1. Set a > 0 and δ > 0. Let us consider the following curved boundary:

(5.2) ψa,δ(t) =

√

2t log
a

Γ( δ2)t
δ
22

δ
2
−1
, for t ∈ Supp(ψ) := [0, Ta,δ] ,

where Ta,δ is the largest definition time and is given by

(5.3) Ta,δ :=

(

a

Γ( δ2 )2
δ
2
−1

)
2
δ

.

We can express explicitly the distribution of τψ (simplified notation corresponding to τψa,δ
). It has

its support in Supp(ψ) and is given by

(5.4)
P0(τψ ∈ dt) =

1

2at

(

2t log
a

Γ( δ2)t
δ
2 2

δ
2
−1

)
δ
2 1Supp(ψ)(t)dt

=
1

2at
(ψa,δ)

δ(t)1Supp(ψ)(t)dt.
Let us note that the maximum of the function ψa,δ(t) is reached for tmax(a) =

Ta,δ
e and equals

(5.5) Wa,δ := sup
t∈Supp(ψ)

ψa,δ(t) =

√

√

√

√

√

δ

e

(

a

Γ( δ2 )2
δ
2
−1

)
2
δ

=

√

δ

e
Ta,δ .

Moreover the distribution ua,δ(t, x)dx := P(Xδ,0
t ∈ dx, τψ > t) has the form

(5.6) ua,δ(t, x) =

(

1

2
δ
2
−1Γ( δ2)t

δ
2

exp

(

−x
2

2t

)

− 1

a

)

xδ−1.

Scaling property Notice a scaling property which will be used in the sequel. Using relations (5.2)
and (5.3) we obtain :

ψ2
a,δ(t) = 2t log

(

Ta,δ
t

)
δ
2

= δTa,δ

(

t

Ta,δ
log

(

Ta,δ
t

))

= δTa,δ Φ
2

(

t

Ta,δ

)

,(5.7)

where

(5.8) Φ(t) =

√

t log

(

1

t

)1[0,1](t).
Proof for Proposition 5.1.

This result was already presented in the particular case where the dimension of the Bessel process
δ is strictly larger than 1. In that situation, the Bessel process satisfies a SDE:

(5.9) Xδ,x0
t = x0 +

δ − 1

2

∫ t

0
(Xδ,x0

s )−1ds+Bt.

The result is then linked to properties of the associated partial differential operator. Let us note
that the Bessel process is always non negative. But the Bessel processes associated with dimensions
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smaller than 1 are not semi-martingales and so, the dynamic of the processes are related to the
local time at 0 and do not satisfy (5.9). For this reason we will propose a proof based only on
stochastic tools (which is inspired by arguments developed for the Brownian motion by Lerche

[11]). We introduce first the squared Bessel process Yt = (Xδ,x0
t )2 which satisfies the SDE for all

δ > 0:

(5.10) Yt = x20 + δt+ 2

∫ t

0

√

YsdBs.

Let us denote the transition probabilities by py0(t,dx) := P((Xδ,x0
t )2 ∈ dx) = Py0(Yt ∈ dx) with

y0 = x20. The density is given by:

(5.11) py(t, x) =
1

2t

(

x

y

)ν/2

exp

(

−x+ y

2t

)

Iν

(

√
xy

t

)

, for t > 0, y > 0, x ≥ 0,

where ν = δ/2 − 1 and Iν(z) is the Bessel function whose expression is written:

Iν(z) =

∞
∑

n=0

(z

2

)ν+2n 1

n!Γ(ν + n+ 1)
.

Moreover, for y = 0, we get

p0(t, x) =
x

δ
2
−1

(2t)δ/2Γ(δ/2)
e−

x
2t , x ≥ 0.

Step 1.
Let us denote by P

t,y
x the distribution of the squared Bessel bridge starting at x and reaching y at

time t and Px stands for the distribution of the squared Bessel process starting at x, we denote
lastly (Ft)t≥0 the filtration associated to the Bessel process.
Let t0 > 0. Simple computations (using the transition probabilities and the Markov property of
the Bessel process) permit obtaining the following Radon-Nikodym derivative for t < t0 (see, for
instance, [14] page 433):

(5.12)
dPt0,yx

dPx

∣

∣

∣

∣

∣

Ft

=
pYt(t0 − t, y)

px(t0, y)
, y > 0, x ≥ 0.

Let us note that this formula cannot be extended to the case t = t0 since P
t0,y
x is not absolutely

continuous with respect to Px on Ft0 . For y = 0, the result can be obtained by continuity:

(5.13)
dPt0,0x

dPx

∣

∣

∣

∣

∣

Ft

= lim
y→0

pYt(t0 − t, y)

px(t0, y)
, x ≥ 0.

Let us compute explicitly the r.h.s of (5.13). By (5.11) and for x > 0, we get

dPt0,0x

dPx

∣

∣

∣

∣

∣

Ft

= lim
y→0

1
2(t0−t)

(

y
Yt

)ν/2
exp

(

− Yt+y
2(t0−t)

)

Iν

(√
Yty
t0−t

)

1
2t0

(

y
x

)ν/2
exp

(

− x+y
2t0

)

Iν

(√
xy
t0

)

=

(

t0
t0 − t

)ν+1

exp

(

− Yt
2(t0 − t)

+
x

2t0

)

.
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This result can be expressed with respect to both the transition probability and the invariant
measure µ satisfying µ(x)px(t, y) = µ(y)py(t, x) that is µ(x) = xν . Defining

(5.14) ξ(t, x) =
p0(t, x)

µ(x)
=

1

(2t)δ/2Γ(δ/2)
e−

x
2t , for x > 0, t > 0,

we obtain finally for any t < t0:

(5.15) Dt :=
dPt0,0x

dPx

∣

∣

∣

∣

∣

Ft

=
ξ(t0 − t, Yt)

ξ(t0, x)
.

Let us just note that this result can be extended continuously to the case x = 0 by defining
ξ(t, 0) = limx→0 ξ(t, x) = (2t)−δ/2Γ(δ/2)−1 and that (Ds)s≤t is a martingale with respect to Px for
t < t0.

Step 2.
We prove now that U(t0, x) defined by

U(t0, x)dx := P0(Yt0 ∈ dx, τψ2(Y ) > t0)

satisfies

U(t0, x) =

(

1

(2t0)δ/2Γ(δ/2)
e
− x

2t0 − 1

2a

)

xν ,

which directly implies (5.6).
By conditioning, we obtain

U(t0, x) = P0(τψ2(Y ) > t0|Yt0 = x)p0(t0, x).

Due to a time inversion transformation and by using the Radon-Nikodym derivative given in Step 1,
the following equation yields for x < ψ2(t0):

U(t0, x) = lim
t→t0, t<t0

Pt0,0x (τ̂ (Y ) > t)p0(t0, x)

= lim
t→t0, t<t0

Ex[1{τ̂>t}Dt]p0(t0, x)

= lim
t→t0, t<t0

Ex[Dt∧τ̂ ]p0(t0, x)− lim
t→t0, t<t0

Ex[1{τ̂≤t}Dτ̂ ]p0(t0, x),

where τ̂ = τψ2(t0−·). Since Dt is a continuous martingale, the optimal stopping theorem (in the
time inverse filtration) leads to Ex[Dt∧τ̂ ] = D0 = 1. Moreover the function ψ2(t) has the following
property: if 0 ≤ x < ψ2(t) then ξ(t, x) < 1

2a , if x > ψ2(t) then ξ(t, x) > 1
2a and ξ(t, ψ2(t)) = 1

2a . In
other words, the stopping time τ̂ can be defined as follows:

τ̂ = inf
{

t > 0 : ξ(t0 − t, Yt) ≥
1

2a

}

= inf
{

t > 0 : Dt ≥
1

2aξ(t0, x)

}

.

We deduce that

Ex[1{τ̂≤t}Dτ̂ ] =
1

2aξ(t0, x)
Px(τ̂ ≤ t).
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Therefore

U(t0, x) = p0(t0, x)
(

1− 1

2aξ(t0, x)
lim
t→t0

Px(τ̂ ≤ t)
)

= p0(t0, x)
(

1− Px(τ̂ ≤ t0)

2aξ(t0, x)

)

.

Since ψ is a continuous function with ψ(0) = 0, we deduce that Px(τ̂ ≤ t0) = 1. Thus, we obtain
the result

U(t0, x) = p0(t0, x)
(

1− 1

2aξ(t0, x)

)

.

Step 3.
As an immediate consequence, the expression of ua,δ(t, x) defined by (5.6) leads to

P0(τψ2(Y ) > t) = P0(τψ(X) > t) =

∫ ψ2
a,δ

(t)

0
U(t, x)dx =

∫ ψa,δ(t)

0
2wU(t, w2)dw

=

∫ ψa,δ(t)

0
ua,δ(t, w)dw.

The density of the hitting time can be easily obtained by derivation, see Proposition 2.2 in [3]. �

6. Algorithm for approaching the hitting time.

In a previous paper [3], the authors developed an algorithm in order to simulate, in just a few
steps, the Bessel hitting time. This was done for integer dimensions δ ≥ 1. The particular connexion
between the Bessel process and the δ-dimensional Brownian motion gives in this case a geometrical
interpretation in terms of the exit problem from a disk for a Brownian motion in dimension δ. This
geometrical approach doesn’t work any longer for non integer dimensions. In order to handle this
difficulty, we construct here a new algorithm which is based on the additivity property expressed
in Section 4.

Some notations: Let us start by making some notations. For a given dimension δ > 0 denote
δ′ := δ − ⌊δ⌋. Consider also γ ∈ [0, 1) (close to 1) and L > 0. We define, for x > 0

(6.1) I(δ, x) := 2⌊δ⌋/2−1Γ

(⌊δ⌋
2

)

( √
eγ(L2 − x2)

√

(⌊δ⌋ − δγ)x2 + δγL2 +
√

⌊δ⌋x2

)⌊δ⌋

and

(6.2) N(δ, x) := 2δ
′/2−1Γ

(

δ′

2

)

( √
eγ(L2 − x2)

√

(δ′ − δγ)x2 + δγL2 +
√
δ′x2

)δ′

.

Algorithm (NI) : Simulation of τL = inf{t ≥ 0 : Xδ,x0
t = L}

Initialization: Θ0 = 0, M(0) = 0, γ ∈ (0, 1) some parameter chosen close to 1.
Step n, (n ≥ 1): The Bessel process starts at time Θn−1 in M(n−1). While L2−M2(n−1) > ε
do:
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(n.1) Construct a Bessel process of dimension ⌊δ⌋ starting from M(n− 1) and stop this process at

time θ
(1)
n , the exit time of the ⌊δ⌋-dimensional Brownian motion Bt from the moving sphere

centered in M(n− 1) := (M(n − 1), 0, 0, . . . , 0) ∈ R⌊δ⌋ and with radius ψαn,⌊δ⌋(t), where

αn = I(δ,M(n − 1)),

following the definition given in (6.1).
(n.2) Construct also a second Bessel process, independent with respect to the previous one, of di-

mension δ′ := δ − ⌊δ⌋ starting from 0. Stop this process the first time θ
(2)
n it hits the curved

boundary ψβn,δ′(t), where
βn = N(δ,M(n − 1)),

following the definition given in (6.2).
(n.3) Define the stopping time (comparison of the two hitting times)

(6.3) θn = inf{θ(1)n , θ(2)n }.

First notice that the additivity property of the Bessel processes ensures that (X
δ,M(n−1)
t )2 has

the same distribution as the sum of two independent processes defined in steps (n.1) and
(n.2). We denote by

(Z
δ,M(n−1)
t )2 = ‖M(n− 1) +Bt‖2 + (Xδ′,0

t )2.

The values of αn and βn have been chosen in order to ensure the following bound:
(6.4)

sup
t≤θn

(Z
δ,M(n−1)
t )2 ≤ sup

t≤θ(1)n

‖M (n− 1)+Bt‖2 + sup
t≤θ(2)n

(Xδ′,0
t )2 ≤M2(n− 1)+ γ(L2 −M2(n− 1)).

In particular, since γ < 1, supt≤θn Z
δ,M(n−1)
t < L.

We lastly define M(n) = Z
δ,M(n−1)
θn

< L and Θn = Θn−1 + θn. This achieves the n-th step.

Outcome: N ε is then the number of steps entirely completed that is the first one in the algorithm
such that L2 − (M(n))2 ≤ ε, ΘNε the approximate hitting time and M(N ε) the approximate exit
position.

Figure 1 presents several paths of the random walk (M(n), n ≥ 0) defined by the algorithm (NI)
for δ = 2.7, γ = 0.9 and for the level L = 5.

Remark 6.1. 1. The upper-bound (6.4) will be discussed in the proof of Theorem 6.2 (see the
bound (6.13) in Step 2).
2. The first step of the algorithm could be simplified since the starting position is 0. The procedure
then consists in first choosing α1 such that ψα1,δ(t) < L for all t ≥ 0. Then we simulate the first
hitting time of this moving boundary which is linked to the Gamma distribution. We denote this
random variable by θ1 and we compute the value of the process at this time:

M(1) = ψα1,δ(θ1).

Finally we set Θ1 = Θ0+θ1. Even if this modified version of the algorithm (NI) seems simpler (just
the first step is different), in the following we will prove only the convergence results associated to
the algorithm (NI).
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Fig 1. Several paths of the random walk

Realization of the algorithm.

One particular important task in this procedure is the simulation of Z
δ,M(n−1)
θn

in the n-th step.
The method we use is the following:

• If θn = θ
(1)
n then

‖M (n− 1) +Bθn‖2 =M2(n− 1) + 2M(n − 1)π1(U)ψαn,⌊δ⌋(θn) + ψ2
αn,⌊δ⌋(θn),

where π1 is the projection on the first coordinate and U is a random variable in R⌊δ⌋ uniformly

distributed on the sphere of radius 1. It suffices now to simulate Xδ′,0
θn

. Since θ
(1)
n and θ

(2)
n are

independent, we get

E

[

f(Xδ′,0
θn

)
∣

∣

∣
θ(2)n > θ(1)n

]

=

∫

R+

f(x)w(θn, x) dx,

where

w(t, x)dx = P(Xδ′,0
t ∈ dx|τψ > t) =

P(Xδ′,0
t ∈ dx, τψ > t)

P(τψ > t)
=

u(t, x)
∫ ψ(t)
0 u(t, x) dx

and u(t, x) stands here for uβn,δ′(t, x) which was already defined in the previous paper [3] and
was restated in (5.6). More precisely

u(t, x) =

(

1

2δ′/2−1

1

tδ′/2
1

Γ(δ′/2)
exp

(

−x
2

2t

)

− 1

βn

)

xδ
′−1.

Here for notational simplicity the index ψ of τψ stands for ψβn,δ′ . Let us just note that the

support of w(θn, ·) is [0, ψβn,δ′(θn)]. In order to simulate Xδ′,0
θn

, given τψ > θn, we employ a
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rejection sampling method. Let S be a random variable defined on the interval [0, ψβn,δ′(θn)]
with the probability density function:

r(x) =
δ′xδ

′−1

(ψβn,δ′(θn))
δ′
, for 0 ≤ x ≤ ψβn,δ′(θn).

This variable can be easily sampled by using a standard uniform random variable V : S has
the same distribution as

ψβn,δ′(θn)V
1/δ′ .

Considering the following constant:

C =
(ψβn,δ′(θn))

δ′

δ′

(

1

2δ
′/2−1θ

δ′/2
n Γ(δ′/2)

− 1

βn

)

,

we observe that u(θn, x) ≤ Cr(x) for all x. Then the procedure is the following

1. Sample two independent r.v. U∗ and S on respectively [0, 1] and [0, ψβn,δ′(θn)]. The first
one is uniformly distributed and the p.d.f. of the second one is given by r(x).

2. If U∗ ≤
u(θn, S)

Cr(S)
define ξ′ = S otherwise return to the first step.

With this algorithm, the p.d.f. of ξ′ is equal to w(θn, x), it has the same distribution as Xδ′,0
θn

given θn = θ
(1)
n .

Finally we obtain

Z
δ,M(n−1)
θn

=
√

(ξ′)2 +M2(n− 1) + 2M(n − 1)π1(U)ψαn,⌊δ⌋(θn) + ψ2
αn,⌊δ⌋(θn).

• If θn = θ
(2)
n the result is quite similar. We obtain

Z
δ,M(n−1)
θn

=
√

ψ2
βn,δ′

(θn) +M2(n− 1) + 2M(n− 1)π1(U)ξ + ξ2

where ξ is obtained in a similar way as ξ′. We just replace δ′ by δ and βn by αn.

Theorem 6.2. Set δ ≥ 1. The number of steps N ε of the algorithm (NI) is almost surely finite.
Moreover, there exist constants Cδ > 0 and ε0(δ) > 0, such that

E[N ε] ≤ Cδ| log ε|, for all ε ≤ ε0(δ).

Furthermore ΘNε converges in distribution towards τL, the hitting time of the level L for the δ
dimensional Bessel process as ε→ 0.

The following histograms present the distribution of the hitting times ΘNǫ for δ = 1.5 and δ = 7.5.
Of course, the higher the dimension of the Bessel process is, the smaller the hitting time is.
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These simulations (1000 for each histogram) have been realized with the following choice of param-
eters: γ = 0.9, L = 5 and ε = 0.001, δ = 1.5 on the left and δ = 7.5 on the right.

Proof. Instead of considering the Markov chain (M(n), n ≥ 0), we focus our attention to the
squared process R(n) = (M(n))2 and we stop the algorithm as soon as R(n) becomes larger than
L2 − ε.

Step 1. Definition and decomposition of the operator P
We estimate first the number of steps. Since (R(n), n ≥ 0) is an homogeneous Markov chain, let
us start by computing the transition probabilities associated to R(n). We introduce the operator
Pf defined, for any non-negative measurable function f : R+ → R+:

(6.5) Pf(x) := E[f(R(n))|R(n− 1) = x] = E

[

f
(

‖
√
x+Bθn‖2 + (Xδ′,0

θn
)2
)]

,

where θn is defined in (6.3). Since R(n) is an homogeneous Markov chain, the transition Pf does
not depend on the time n. For notational simplicity we neglect some indexes: the step n; Xδ′,0 is

replaced by X; θ
(i)
n by θ(i), for i = 1, 2; αn is replaced by α and βn is replaced by β. We can express

(6.5) by splitting it into two parts Pif(x), i = 1, 2 with

Pif(x) = E

[

f
(

‖
√
x+Bθ(i)‖2 + (Xθ(i))

2
)1{θ=θ(i)}].

Thus

(6.6) Pf(x) = P1f(x) + P2f(x).

The class of functions that will be considered in the following satisfies the hypothesis :

(H) The function f is such that

f (p) ≤ 0, ∀p ∈ {1, 2, 3, 4},

this means that the first four derivatives of f are negative. An example of such a function will be
used later on.

Step 2. Distributions associated with θ(i).
Let us denote by Ui(t)dt the distribution of θ(i) and its support [0, si] . With the notation in (5.3)
we have

(6.7) s1 = Tα,⌊δ⌋ and s2 = Tβ,δ′ .

11



These distributions are those of stopping times corresponding to the function ψa,δ(t), see (5.2),
with a suitable parameter a and a suitable dimension. By applying the scaling property (5.7) we
get

(6.8) ψα,⌊δ⌋(t) =
√

⌊δ⌋ s1Φ
(

t

s1

)

.

From the same arguments, the scaling property associated to θ(2) is

ψβ,δ′(t) =
√

δ′ s2Φ

(

t

s2

)

, with δ′ = δ − ⌊δ⌋.

Since

U1(t)dt = P0(θ
(1) ∈ dt)

=
1

2Γ(⌊δ⌋/2)2⌊δ⌋/2−1s
⌊δ⌋/2
1 t

(

2t log
(s1
t

)⌊δ⌋/2
)⌊δ⌋/2 1[0,s1](t)dt

=
c⌊δ⌋
t

Φ⌊δ⌋
(

t

s1

)

dt,

with cd =
1

Γ(d/2) (
d
2)
d/2. We therefore obtain the scaling property:

(6.9) U1(s1t) =
c⌊δ⌋
s1t

Φ⌊δ⌋(t) and U2(s2t) =
cδ′

s2t
Φδ

′
(t).

With our choice of α and β, we have

(6.10)

s1 = Tα,⌊δ⌋ =

[

α

Γ( ⌊δ⌋2 )2
⌊δ⌋
2

−1

]
2

⌊δ⌋

=
eγ2(L2 − x)2

(
√

(⌊δ⌋ − δγ)x+ δγL2 +
√

⌊δ⌋x)2
= s2.

By using (5.5) we get

(6.11) Wα,⌊δ⌋ = sup
t∈[0,s1]

ψα,⌊δ⌋(t) =

√

⌊δ⌋
e
s1

and the same property holds for s2

(6.12) Wβ,δ′ = sup
t∈[0,s2]

ψβ,δ′(t) =

√

⌊δ′⌋
e
s2.

Since we stop the Markov chain R(n) in order to not hit L2, we have

(6.13)

(
√
x+Wα,⌊δ⌋)

2 +W 2
β,δ′ = x+

⌊δ⌋
e
s1 + 2

√
x

√

⌊δ⌋
e
s1 +

δ′

e
s2

= x+
δ

e
s1 + 2

√
x

√

⌊δ⌋
e
s1

= x+ γ(L2 − x),
12



by the choice of s1 = s2 and the value of s1 given in (6.10). We deduce that for x close to 0, s1 is
close to γeL2/δ and for x close to L2, s1 is of the same order as eγ2(L2 − x)2/(4⌊δ⌋L2).

Step 3. Computation of P1f(x).
Using the definition of P1f , we get
(6.14)

P1f(x) = E
[

f
(

‖√x+Bθ‖2 + (Xθ)
2
)1{θ=θ(1)}]

=

∫

S1

∫ s1

0
E
[

f
(

(
√
x+ π1(z)ψα,⌊δ⌋(t))

2 + ψ2
α,⌊δ⌋(t)(1 − π21(z)) +X2

t

)1{θ(2)>t}]U1(t)dtσ(dz)

=

∫

S1

∫ s1

0
E

[

f
(

x+ 2
√
xπ1(z)ψα,⌊δ⌋(t) + ψ2

α,⌊δ⌋(t) +X2
t

)1{θ(2)>t}]U1(t)dtσ(dz).

We denote here by S1 the unit sphere in R⌊δ⌋, σ(dz) the uniform surface measure on this sphere
and π1(z) the projection on the first coordinate and α is chosen so that (6.10) is satisfied. Let us
just note that the variable y = x+ 2

√
xπ1(z)ψα,⌊δ⌋(t) + ψ2

α,⌊δ⌋(t) +X2
t always stays in the interval

[0, L2] on the event θ(2) > t. Consider the Taylor expansion of f in a neighborhood of x. By using
(H) we have that f (4)(t) ≤ 0 on the whole interval [0, L2]. Hence

(6.15) P1f(x) ≤ f(x)G1 + f ′(x)G2 +
1

2
f ′′(x)G3 +

1

6
f (3)(x)G4.

It suffices to compute Gk for k = 1, 2, 3, 4 where Gk is defined by
(6.16)

Gk :=

∫

S1

∫ s1

0
E

[

(

ψ2
α,⌊δ⌋(t) + 2

√
xπ1(z)ψα,⌊δ⌋(t) +X2

t

)k−1 1{θ(2)>t}]U1(t)dtσ(dz), ,∀k = 1, 2, 3, 4.

In particular G1 = P[θ(2) > θ(1)]. Using symmetry arguments, the term associated to the projection
vanishes, and we can split G2 into two parts, G2 = G2,1 +G2,2:

G2,1 :=

∫ s1

0
ψ2
α,⌊δ⌋(t)P(θ

(2) > t)U1(t)dt and G2,2 :=

∫ s1

0
E

[

X2
t 1{θ(2)>t}]U1(t)dt.

By changing the variable s1u = t and the scaling properties developed in Step 2, we obtain:

G2,1 =

∫ 1

0
ψ2
α,⌊δ⌋(s1u)P(θ

(2) > s1u)U1(s1u)s1du

=

∫ 1

0
s1⌊δ⌋Φ2(u)

(
∫ 1

u
U2(s1w)dw

)

c⌊δ⌋
s1u

Φ⌊δ⌋(u)s1du.

Using s1 = s2 and a change of variable, we get

G2,1 = s1⌊δ⌋c⌊δ⌋
∫ 1

0

∫ 1

u

1

u
Φ⌊δ⌋+2(u)s1U2(s1v)dvdu = s1κ2,1(6.17)

where

(6.18) κ2,1 := ⌊δ⌋c⌊δ⌋cδ′
∫ 1

0

∫ 1

u

1

uv
Φ⌊δ⌋+2(u)Φδ

′
(v)dvdu > 0.
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Notice that κ2,1 is a constant which only depends on the dimension δ. We can also prove that there
exists a constant κ2,2 independent of x such that G2,2 = s1κ2,2. Indeed

G2,2 =

∫ s1

0
E

[

X2
t 1{θ(2)>t}]U1(t)dt = s1

∫ 1

0
E

[

X2
s1u1{θ(2)>s1u}]U1(s1u)du

=

∫ 1

0
E

[

X2
s1u1{∀r≤s1u: Xr≤ψβ,δ′(r)}

] c⌊δ⌋
u

Φ⌊δ⌋(u)du.

Using the scaling property of the Bessel process, we get

G2,2 =

∫ 1

0
E

[

s1X
2
u1{∀r≤u: Xr≤ψβ,δ′(s1r)/

√
s1}
] c⌊δ⌋
u

Φ⌊δ⌋(u)du = s1κ2,2

since s1 = s2 and thus ψβ,δ′(s1r)/
√
s1 =

√
δ′Φ(r) does not depend on x but only on δ. To sum up,

we have proved the existence of two constants κ2,i, i = 1, 2, independent of x satisfying

(6.19) G2 = κ2s1, where κ2 = κ2,1 + κ2,2.

Let us now focus our attention on G3 defined in (6.16).
While developing the square of ψ2

α,⌊δ⌋(t) + 2
√
xπ1(z)ψα,⌊δ⌋(t) +X2

t , we obtain 6 terms:

H1 = ψ4
α,⌊δ⌋(t), H2 = 4xπ21(z)ψ

2
α,⌊δ⌋(t), H3 = X4

t

H4 = 4ψ3
α,⌊δ⌋(t)

√
xπ1(z), H5 = 4

√
xπ1(z)ψα,⌊δ⌋(t)X

2
t , H6 = 2ψ2

α,⌊δ⌋(t)X
2
t .

Therefore G3 can be split into 6 terms: G3 =
∑6

j=1G3,j with

G3,j :=

∫

S1

∫ s1

0
E
[

Hj1{θ(2)>t}]U1(t)dt σ(dz).

Now, let us compute G3,j for j = 1, . . . , 6. First we note that, due to symmetry properties of the
variable z, G3,4 = G3,5 = 0. By similar arguments as those included in the computation of G2, we
get:

(6.20) G3,1 = s21κ3,1 with κ3,1 := ⌊δ⌋2c⌊δ⌋cδ′
∫ 1

0

∫ 1

u

1

uv
Φ⌊δ⌋+4(u)Φδ

′
(v)dvdu > 0.

(6.21) G3,2 = xs1κ3,2 with κ3,2 := 4κ2,1

∫

S1

π21(z)σ(dz) > 0.

(6.22) G3,3 = s21κ3,3 with κ3,3 :=

∫ 1

0
E

[

X4
u1{∀r≤u: Xr≤

√
δ′Φ(r)}

] c⌊δ⌋
u

Φ⌊δ⌋(u)du > 0.

(6.23) G3,6 = s21κ3,6 with κ3,6 := 2

∫ 1

0
E

[

X2
u1{∀r≤u: Xr≤

√
δ′Φ(r)}

] c⌊δ⌋
u

⌊δ⌋Φ⌊δ⌋+2(u)du > 0.

To sum up, there exist two positive constants κ3 and κ̃3 independent of x such that

(6.24) G3 = κ3xs1 + κ̃3s
2
1.
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Finally, we consider the expression G4 defined by (6.16). We are not going to compute it explicitly
as we have just done for the first terms (the proof would become quite boring...). Due to the
symmetry property of the variable z, the expansion of G4 coupled to the computation of (ψ2

α,⌊δ⌋(t)+

2
√
xπ1(z)ψα,⌊δ⌋(t) +X2

t )
3 leads to terms which are either positive or equal to 0. Hence

(6.25) G4 ≥ 0.

Step 4. Computation of P2f(x).
Using the definition of P2f , we obtain:

P2f(x) = E
[

f
(

‖
√
x+Bθ‖2 + (Xθ)

2
)1{θ=θ(2)}]

=

∫ s2

0
E

[

f
(

‖
√
x+Bt‖2 + ψ2

β,δ′(t)
)1{θ(1)>t}]U2(t)dt

=

∫ s2

0
E
[

f
(

x+ 2〈
√
x,Bt〉+ ‖Bt‖2 + ψ2

β,δ′(t)
)1{θ(1)>t}]U2(t)dt.

By hypothesis (H), f ′′ is non positive on the support of the Markov chain. Then, by using a Taylor
expansion, the following bound holds: for any x ∈ [0, L2 − ε]

P2f(x) ≤ f(x)P(θ(1) > θ(2)) + f ′(x)
∫ s2

0
E

[(

2〈
√
x,Bt〉+ ‖Bt‖2 + ψ2

β,δ′(t)
)1{θ(1)>t}]U2(t)dt.

The integral expression contains three distinct terms. The first one associated to the scalar product
is equal to zero since the distribution of Bt given {θ(1) > t} is rotationally invariant. The second and
third terms are positive. We therefore deduce that for any function f satisfying (H), the following
bound holds:

(6.26) P2f(x) ≤ f(x)P(θ(1) > θ(2)).

Step 5. Application to a particular function f .
Let us introduce the function fε : [0, L

2) 7→ R defined by

(6.27) fε(x) = log

(

L2 − x

(1− γ)ε

)

,

where γ < 1 is the constant close to 1 already introduced in (6.13). Let us assume that the Markov
chain M starts with the initial value x ∈ [0, L2 − ε] that is R(0) = x. We will prove that fε(R(1))
is a non-negative random variable. Indeed for any y in the support of R(1) we have:

0 ≤ y ≤ (
√
x+Wα,⌊δ⌋)

2 +W 2
β,δ′ ,

where Wα,⌊δ⌋ is defined by (6.11) and Wβ,δ′ by (6.12). Using the identity (6.13), we obtain

fε(y) ≥ log

(

(L2 − x)

ε

)

≥ 0

since L2 − x ≥ ε. We deduce therefore that fε is a non-negative function on the support of the
Markov chain stopped at the first exit time of the interval [0, L2 − ε].
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Let us now apply the operator P defined in (6.5) to the function fε. Since

f ′ε(x) = − 1

L2 − x
< 0, f (k)ε (x) = − (k − 1)!

(L2 − x)k
< 0, for k = 2, 3, 4

the condition (H) is satisfied and we obtain by (6.15) and the computation of G1, . . . , G4:

(6.28) P1fε(x) ≤ fε(x)P(θ
(2) > θ(1))− s1

(L2 − x)2

(

κ2(L
2 − x) + κ3x

)

,

by using (6.19) and (6.24).
Due to the explicit expression of s1 in (6.7), there exists a constant κ > 0 independent of x and

ε such that

(6.29) P1fε(x) ≤ fε(x)P(θ
(2) > θ(1))− κ, ∀x ∈ [0, L2 − ε).

Combined with (6.26), we get

Pfε(x)− fε(x) ≤ −κ, ∀x ∈ [0, L2 − ε].

Due to a comparison theorem of the classical potential theory, see Norris [12], we deduce that

(6.30) Ex[N
ε] ≤ fε(x)

κ
.

In particular, for x = 0, the announced result in the statement of the theorem is proved.

Step 6. The time ΘNε given by the algorithm is close to the first hitting time τL.
Let us denote by F (resp. F ε) the cumulative distribution function of the random variable τL (resp.
ΘNε). We construct these two random variables on the same paths ; the law of the Bessel process
of dimension δ is realized as a sum of two independent Bessel processes of dimension ⌊δ⌋ and δ′ on
random time intervals until the hitting time ΘNε and afterwards, the paths are generated just by
a Bessel process of dimension δ starting in M(N ε). Since τL ≥ ΘNε a.s. we immediately obtain the
first bound

F (t) ≤ F ε(t), t ≥ 0.

Moreover by similar arguments as those presented in Theorem 2.9 [3], for α > 0, we get

1− F (t) = P(τL > t) = P(τL > t, ΘNε ≤ t− α) + P(τL > t, ΘNε > t− α)

≤ F ε(t− α) sup
y∈[

√
L2−ε,L]

Py(τL > α) + 1− F ε(t− α).(6.31)

Applying Shiga and Watanabe’s result (4.1), the Bessel process of dimension δ > 1 is stochastically
larger than the Bessel process of dimension 1 which has the same law as |Bt|. Here B stands
for a 1-dimensional Brownian motion. Which is why the following upper bound holds, for any
y ∈ [

√
L2 − ε, L]:

Py(τL > α) ≤ PLε(τL > α) ≤ PLε( sup
0≤t≤α

|Bt| < L), with Lε =
√

L2 − ε

≤ PLε( sup
0≤t≤α

Bt < L) ≤ P0( sup
0≤t≤α

Bt < L− Lε)

≤ P0

(

sup
0≤t≤α

Bt <
ε

L

)

≤ ε

L
√
2απ

.(6.32)
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By combining (6.31) and (6.32), we have

(6.33) F ε(t− α)
(

1− ε

L
√
2απ

)

≤ F (t) ≤ F ε(t), t ≥ 0.

Consequently, ΘNε converges to τL in distribution as ε goes to 0. This ends the proof.

7. Numerical results.

In this section, we will discuss some numerical experiences based on the algorithm for approach-
ing the hitting time (developed in Section 6). A particularly important task in such an iterative
method is to estimate the number of steps or even the number of times the uniform random gener-
ator is used. The algorithm (NI) presented in Section 6 allows to simulate hitting times for Bessel
processes of non integer dimensions δ > 1. We will therefore only present experiences in that con-
text and refer to the previous work [3] for Bessel processes of integer dimensions.

7.1. Number of steps versus ε.
The number of steps of the algorithm is of prime interest. Classical time splitting method in order

to simulate particular paths of stochastic processes can be used for classical diffusion processes with
regular diffusion and drift coefficients if the study is restricted to some fixed time intervals. Here
the diffusion is singular, the classical methods could not be applied, nevertheless the approximation
procedure (NI) developed in Section 6 is of a different kind and holds at any given time. That’s
why we are not able to compare different methods but we will just describe the relevance of (NI) by
the estimation of the average number of steps. The algorithm used in order to simulate the hitting
time of the level L by the Bessel process, permits obtaining an approximated hitting time ΘNε and
the corresponding position M(N ε) which satisfies:

L2 − (M(N ε))2 ≤ ε.

The number of iterations will decrease with respect to the parameter ε. The average number of
steps E[N ε] is upper-bounded by the logarithm of ε up to a multiplicative constant (Theorem 6.2).
Let us therefore choose different values of ε and approximate through a law of large number this
average (we denote by ℵ the number of independent simulations; here ℵ = 1000).

εk = 0.5k, k = 1, . . . , 15.

The experiences concern two different dimensions for the Bessel process δ = 2.2 and δ = 4.7 and
we fix the parameter γ = 0.95 appearing in the algorithm (NI) (this parameter is fixed for the
whole numerical section). Note that each step of the (NI) algorithm is associated to a comparison

between particular hitting times θ
(1)
n and θ

(2)
n , the first one is associated with a Bessel process of

dimension ⌊δ⌋ and the second one is associated with a Bessel process of dimension δ − ⌊δ⌋. In the
following we are also interested in the average number of steps N ε

integer satisfying

N ε
integer := #{1 ≤ n ≤ N ε : θ(1)n < θ(2)n }.

The figures represent both the estimated average number of steps E[N ε] and its confidence interval
(three upper curves) and the estimated average number E[N ε

integer] and its 95%-confidence interval
(three lower curves).
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Average number of steps versus k for δ = 2.2 and δ = 4.7

7.2. Number of steps versus the dimension of the Bessel process.
In [3], the authors pointed out that the number of steps increases as the dimension of the integer

Bessel process becomes larger. Let us focus our attention on the non-integer case. We observe some
surprising effects in respect to the dimension: on one hand if ⌊δ⌋ is fixed and the dimension increases
then the average number of steps decreases, on the other hand if δ−⌊δ⌋ is fixed and the dimension
increases, as does the number of steps. For the simulation we set ℵ = 100, ε = 0.01 and the level
height L = 5.

Average number of step versus δ

Now observe the averaged proportion E[N ε
integer/N

ε] as the dimension of the Bessel process in-
creases. It is obvious that this proportion seems to depend mainly on the fractional part of the
dimension...
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Averaged proportion E[N ε
integer/N

ε] versus δ.

7.3. Number of steps versus the level height.
In the previous simulations the level height to reach was always equal to 5. Let us now present

the dependence of the number of steps with respect to this level. The numerical results are obtained
for ℵ = 1000, ε = 0.01 and two different Bessel processes (of dimension δ = 3.8 and 5.2). Let us
note that this dependence is sub-linear and quite weak, the dimension of the Bessel seems to play
a more important role. Observe also that ε is an upper-bound of L2 − (M(N ε))2. We deduce that

L−M(N ε) ≤ ε

2L
,

and therefore the error of the approximation becomes smaller as L becomes larger. This particular
remark is also emphasized by the dependence of L in the bounds (6.33). Which is why we present
a third figure for which ε/L is fixed and equal to 0.01.

Averaged number of step versus the level L (dimension δ = 3.8 and δ = 5.2)
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Averaged number of steps versus L for fixed ε/L and δ = 3.8

7.4. Number of generated random variables.
Finally let us study the number of random variables used in the simulation of the Bessel hitting

times. Each step of the algorithm (NI) requires a lot of uses of the uniform random generator
in order to simulate the first coordinate of the uniform variable on the sphere of dimension ⌊δ⌋,
the Gamma distributed variable which appears in the simulation of the hitting times of curved
boundaries (here we use Johnk’s algorithm, see for instance [4], page 418), and finally the rejection
method for the condition law described in the Realization of the algorithm. The following figures
concern simulations with the parameters L = 5 and ε = 0.01

Number of random variables required versus number of steps for δ = 2.5 and δ = 4.8

Let us end the numerical section by noting that the algorithm (NI) is quite difficult to use when
the fractional part of the dimension δ i.e. δ−⌊δ⌋ is small, the number of steps becomes huge. More-
over, the parameter γ appearing in the algorithm (NI) is needed for technical reason and influences
the number of steps, so we suggest choosing γ as close as possible to 1.
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Institut de Mathématiques de Bourgogne - UMR 5584

Université de Bourgogne, B.P. 47 870

21078 Dijon Cedex, France

E-mail: Samuel.Herrmann@u-bourgogne.fr

21


