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Abstract

In this paper we complete and improve the study of the simulation of the hitting times
of some given boundaries for Bessel processes. These problems are of great interest in many
application fields as finance and neurosciences. In a previous work [9], the authors introduced a
new method for the simulation of hitting times for Bessel processes with integer dimension. The
method, called walk on moving spheres algorithm (WoMS), was based mainly on the explicit
formula for the distribution of the hitting time and on the connection between the Bessel process
and the Euclidean norm of the Brownian motion. This method does not apply anymore for a
non integer dimension. In this paper we consider the simulation of the hitting time of Bessel
processes with non integer dimension § > 1 and provide a new algorithm by using the additivity
property of the laws of squared Bessel processes. We split each simulation step of the algorithm
in two parts: one is using the integer dimension case and the other one considers hitting time
of a Bessel process starting from zero.

AMS 2000 subject classifications: 65C20, 60K35, 60K30.
Keywords: Bessel processes with non integer dimension, hitting time, numerical algorithm.

1 Introduction

This paper aims at constructing new and efficient methods for approximating hitting times of a
given threshold for Bessel processes with non-integer dimension 6 > 1. Diffusion hitting times are
important quantities in many fields such as mathematical science, finance, geophysics or neuro-
sciences.

In neurosciences for example the interspike interval is identified with the first-passage time of an
Ornstein-Uhlenbeck process through some threshold and the spike train forms a renewal process.

*The second author was supported by Conseil Regional de Bourgogne (contract no. 2012-9201AA0047S01283)



The choice of the Ornstein-Uhlenbeck process is developed in Tuckell [38] and in Burkitt’s survey
[4], see also the book [15] or the survey [33]. In Feller’s model, generalized Bessel processes appear as
a more realistic alternative to the Ornstein-Uhlenbeck process, see for instance [33] for a description
of this new model and [26] for a comparison of these models. That’s why, Feller’s model plays an
important role in neuroscience even if it is hard to compute the first passage problem to general
boundaries. A modification of the Ornstein-Uhlenbeck model and the Feller model also permits to
deal with refractoriness [2].

Another typical example is the study of path dependent exotic options as barrier options in
finance. The study of a large class of options pricing in finance is based on the numerical ap-
proximation of relevant hitting times or passage times for specific stochastic processes, for instance
the Cox-Ingersoll-Ross process which can be expressed as a Bessel process after a change of time
transformation [21]. In particular many studies consider the pricing of barrier options within this
scope. In Gobet [17, 18] a numerical Monte Carlo based scheme is proposed for the approximation
of the price of barrier options. The method is based on the law of a real diffusion killed as it goes
out of a domain (interval of R), when the diffusion is approximated by its continuous Euler scheme.

On one hand, analytic expressions for hitting time densities are well known and studied only in
some very particular situations. On the other hand, the study of the approximation of the hitting
times for stochastic differential equations is an active area of research since very few results exist
up to now. For the Brownian motion, we can approach this quantity simply by using Gaussian
random variables [23].

Several alternatives for dealing with the characterization of hitting times for the Brownian
motion and general Gaussian Markov processes exist. These methods aim to approximate the
probability distribution function or the hitting probabilities by using:

e Volterra integral equations, more precisely to obtain the approximate solutions for Brownian
motion or Gaussian Markov processes crossing continuously differentiable boundaries, the
tangent approximation and other image methods have been used by Strassen [37]; Daniels
[8]; Ferebee [13]; Lerche [27]. This method does not work in the general diffusion framework
as it relies on the explicit form of the transition probabilities;

e series expansions, as performed by Durbin [11, 12]; Ferebee [14]; Ricciardi et al. [32]; Giorno
et al. [16]. The numerical approach proposed in [3] seems to be particularly efficient. This
method can be adapted to more general diffusion processes as in Sacerdote and Tomassetti
[34];

e partial differential equation approaches, which are based on the explicit form of the probability
distribution function of the Brownian motion. This method can be generalized for a large
class of diffusions as in Patie and Winter [29];

e or Monte Carlo methods as in the paper by Ichiba and Kardaras [24] that handles the repre-
sentation of the passage density as the mean of a three dimensional Brownian motion or in
the works of Pétzelberger and Wang, [30, 39] for the Brownian motion and some particular
transformations of the Brownian motion.

These methods are useful for approximating the distribution of the hitting time. If we have to
approximate directly the hitting time one needs to develop other methods.

For the general diffusion case, very few studies in this direction exist. The only methods that
can be used are the Monte Carlo methods and time splitting method like the Euler schemes. An



approximation of the hitting time can be obtained by using the hitting time of the boundary for
the Euler scheme. This will give an upper bound for the diffusion hitting time. In order to improve
this approximation we can use penalisation methods, that means construct boundaries e-close to
the real boundary, with £ a small parameter. Some works have already been done in the context
of smooth drift and diffusion coefficient by Gobet and Menozzi [19, 20].

Our study focuses on the numerical approach of the hitting time of a Bessel process. Bessel
processes and their hitting times are important issues either for theoretical research or for many
practical applications. Some issues on these subjects are: L. Alili and P. Patie [1] investigate the
Bessel processes via some boundary crossing identities for diffusions having the time inversion prop-
erty; P. Salminen and M. Yor consider the hitting time of affine boundaries for the 3-dimensional
Bessel process [35]; Y. Hamana and H. Matsumoto [22] give explicit expressions for the distribu-
tion functions and the densities of the first hitting time of a given level for the Bessel process;
T. Byczkowski, J. Malecki and M. Ryznar [5] obtain uniform estimates of the hitting time density
function by using an integral formula for the density of the first hitting time of a given level for the
Bessel process.

In all these papers the formulas are explicit functions, often given as a series expansion, and
are thus hard to use for a numerical purpose as they include in their formulation Bessel functions.
The main idea of our present work, which completes and improves the results of our previous work
in M. Deaconu and S. Herrmann [9], is to get rid of this difficulty by using the properties of Bessel
processes.

The main result of this study is the construction of an iterative procedure for approximating
the hitting time by using the structure and the particular properties of the Bessel process. In
particular, our approach avoids splitting time methods. More precisely, we consider the simulation
of the hitting time of Bessel processes with non integer dimension and construct a new algorithm
by using the additivity property of the laws of squared Bessel processes. Each simulation step is
splitted in two parts: the first one uses the already known algorithm for the integer dimension case
and the second one constructs the hitting time of a Bessel process starting from zero.

More precisely, we aim to approximate 77, the first passage time through the threshold L for the
Bessel process starting under the level L. Let us note that our study does not concern hitting times
for Bessel processes starting above the threshold: in such a case, the finiteness of the hitting time
is no longer ensured. We introduce a particular algorithm called (NI) based on a random process
(M(n), Op)n>0 which satisfies the following properties:

1. The first coordinate (M (n)),>o is a [0, L]-valued random walk.
2. The second coordinate represents an increasing sequence of stopping times.

3. If N¢ is defined by
N =inf{n >0: M?(n) > L* — ¢},

then the random variable © e gives a e-precise approximation for the hitting time 7.

Due to the stopping criterion of (NI) and since (©,,),>0 is an increasing sequence, smaller is the
parameter € higher is the number of iterations of the algorithm.

In this study, the convergence and the efficiency of this new algorithm is emphasized namely by
the main result.



Theorem 1.1. Let us consider a Bessel process of dimension § > 1. If the starting position of
the Bessel process is smaller than L, then the number of steps N¢ of the algorithm (NI) is almost
surely finite. Moreover, there exist constants C' > 0 and €9 > 0, such that

E[N?] < C|loge|, for all e < ey.

Furthermore ©n= converges in distribution towards Tr,, the hitting time of the level L for the §
dimensional Bessel process, as € — 0.

The paper is organized as follows. Section 2 introduces some important properties on Bessel
processes needed in the paper. Section 3 gives the construction of the algorithm. In section 4 we
introduce some preliminary results in order to obtain the convergence of the algorithm in section
5. Finally, section 6 presents and discusses some numerical results.

2 Bessel processes: definitions and main properties

Let 6 > 0. We define the square of a §-dimensional Bessel process started at yg, as the unique
strong solution of the following stochastic differential equation

t
yom = yiwo 49 / Y2WAB, + dt,
0 (2.1)

1)
YO 0 = Yo, Yo Z 07

where (By)i>0 stands for the standard one-dimensional Brownian motion. The usual notation for
the distribution of the process (Yt&y())tzo is BESQ?. This unique solution satisfies Yté’yo > 0 for any
t > 0. It is therefore possible to consider its square root, the so-called Bessel process of dimension
0 starting at xg > 0, defined by:
X5m0 Y
;0= ;0 forall t>0. (2.2)

Let us recall that the Bessel process is characterized either by its dimension § or, alternatively,
by its index v given by v = §/2 — 1.
For a fixed L > 0 let us denote by

7L = inf{t > 0; X)™ = L}, (2.3)

the first time that the process hits the threshold L. For the Bessel process case an explicit form of
the Laplace transform of 77, exists :

E,, {e*”ﬂ _ (w0) ™ L(z0V2))
L7 L(LV2))

here I,,(x) denotes the modified Bessel function. Ciesielsky and Taylor [6] proved that for § € N
the tail distribution is given by, when starting from 0

, ¥y >0,

1 0 szl ik
P(rp > t) = M e,
( ) 2V*1F(V + 1) ; ju+1(]V7k)



where J. denotes the Bessel function of the first kind, and j. is the associated sequence of its
positive zeros. These formulas are restricted to the integer dimension case (see [22] for non integer
dimensions) and are obviously miss-adapted and not suited for numerical approaches. The Laplace
transform of the first hitting time is also available for various generalizations of the Bessel process
with integer dimension, namely for radial and squared radial Ornstein-Uhlenbeck processes and for
Bessel squared processes with negative dimensions [21].

Let us also recall some properties of Bessel processes (resp. squared Bessel processes) with
respect to their dimension as follows from Revuz and Yor [31] or Jeanblanc, Yor and Chesney [25]:

e for § > 2 the process BESQ? is transient and, for § < 2, it is recurrent,
e for § > 2 the point 0 is polar and for § <1 it is reached almost surely,
e for § = 0 the point 0 is absorbing,

e for 0 < § < 2 the point 0 is instantaneously reflecting.

Let us first introduce some relations connecting Bessel processes of different dimensions. The
first relation is based on Girsanov’s transformation and the second one gives a decomposition of
the squared Bessel process as a sum of two independent squared Bessel processes.

On the canonical space Q = C(R;,Ry), let Z be the canonical map and F; = 0{Z,,0 < s < t}
be the canonical filtration. We denote by P%%0 the law of the Bessel process of dimension § starting
from xq, g > 0.

Let us state the following result from Jeanblanc, Yor and Chesney [25] (Proposition 6.1.5.1, page
364).

Proposition 2.1. The following absolute continuity relation, between a Bessel process of dimension
0 > 2 and a Bessel process of dimension 2, holds

AN §/2-1)% [td
Pho0 |5, = (%) eXp{‘%/ z—}“” 7 V> 0, (24)
0 s

For 9 < 2 a similar absolute continuity relation holds before the first hitting time of 0.

It seems difficult to use the expression (2.4) in order to simulate Bessel hitting times for an
arbitrarily dimension ¢ even if it reduces to study only the 2-dimensional case. Thus, the use of
Radon-Nikodym’s derivative happens to be unuseful for numerical purposes.

An important property, due to Shiga and Watanabe [36], is the additivity property for the
family of squared Bessel processes. Let us denote by P; % Py the convolution of P; and Py, where
P; and Py are probability measures. In the following, we denote by Q%% the law of the squared
Bessel process of dimension ¢ starting from .

Proposition 2.2. For every yo, y, > 0 and for every ¢, &' > 0 we have

Qoo % @5/,3/6 _ Q5+5’7yo+316_ (2.5)



3 Algorithm for approaching the hitting time

In a previous paper [9], the authors developed an algorithm in order to simulate, in just a few steps,
the Bessel hitting time. This was done for integer dimensions § > 1. The particular connection
between the Bessel process and the d-dimensional Brownian motion gives in this case a geometrical
interpretation in terms of the exit problem from a disk for a d-dimensional Brownian motion. This
geometrical approach doesn’t work any longer for non integer dimensions. In order to overcome
this difficulty, we construct a new algorithm which essentially uses that we are able to simulate, in
just one step, each of the following stopping times:

e the first exit time of the multidimensional Brownian motion from a sphere with a particular
time-dependent radius (moving sphere) [9],

e the first passage time of a Bessel process starting from the origin through a particular curved
boundary (Section 4).

The main task is the choice of both the time-dependent radius and the curved boundary in such a
way that the simulation of the stopping times remains extremely simple.

Then the additivity property expressed in Section 2 permits to point out a procedure of simulation
for a general Bessel process whatever the starting point or the dimension § > 1. Each step of the
algorithm is based on a couple of Bessel processes: one of dimension ¢’ := § — |§] starting in 0
and hitting a curved boundary and the other one of dimension |§| starting away from the origin
and hitting a moving sphere. An intelligent combination of these two boundaries permits to deal
with the hitting problem of the general Bessel process. Before presenting the Algorithm (NI), let
us start by making some notations.

Some notations: Set a > 0 and § > 0. Let us consider the following nonlinear boundary:

Va,s(t) = \/Qt log S s for ¢ € Supp(¥) := [0, Tys], (3.1)
[(§)t222

where T, 5 is given by

Tos = <W> . (3.2)

For a given dimension § > 0 denote §' := ¢ — [§|. Consider also v € [0,1) (close to 1) and L > 0.
We define, for z > 0

18]
o) . olel/2—1p (18] Vey(L? —z?)
1(5,2) := 2101/ 1F< 5 > (\/(USJ —om)a? + oy L% + \/[0]2? (3.3)

and

5
z) = 98/2-1 J Vey(L? — a?)
N a) =27 (2 > <\/(5/ — o)z + oy L2 +Vo'z% ) (34)

Description of the algorithm for § > 1. Let us now introduce the algorithm.



Algorithm (NI) : Simulation of 77, = inf{t > 0: Xf’m =L}

Initialization: ©g =0, M(0) = zo, v € (0,1) a chosen parameter, close to 1.

Step n, (n > 1): The Bessel process starts at time ©,_1 in M(n —1).

While L? — M?(n — 1) > ¢ do:

(n.1)

(n.2)

(n.3)

Construct a Bessel process of dimension |8| starting from M(n — 1) and stop this process at

time 6?,(11), the exit time of the |d]-dimensional Brownian motion By from the moving sphere
centered in M(n —1) := (M(n — 1),0,0,...,0) € RY and with radius Vay,5](t), where

=1(6,M(n —1)),

following the definition given in (3.3). The exit time and the exit position are obtained by the
moving sphere algorithm (WoMS) [9].

Construct also a second Bessel process, independent with respect to the previous one, of di-

mension ' := & — | 8] starting from 0. Stop this process the first time 07(12) it hits the curved
boundary g, & (t), where
5” - N((S,M(?’L - 1))7

following the definition given in (3.4). This hitting time is constructed in Section 4.

Define the stopping time (comparison of the two hitting times)

— inf{6{), 0. (3.5)
First notice that the additivity property of the Bessel processes ensures that (X XM= 1)) has
the same distribution as the sum of the two independent processes defined in steps (n.1) and
(n.2). We denote by

(ZPM N2 = || M(n — 1) + By|? + (X)),

The values of o, and B, have been chosen in order to ensure the following bound:

sup(Z5M(n 1)) < sup ||M(n—1)+ By||* + sup (X(S O)
t<0, tSG(l) tsgg)
< M?*(n—1) +y(L* — M?*(n —1)). (3.6)
In particular, since v < 1,
sup Zf’M(n V<l
t<0p

We lastly define M(n) = Z(S M=) I and O, = 0,_1+0,. This achicves the n-th step.



Outcome: N°¢ is then the number of steps entirely completed, that is the first time n in the algo-
rithm such that L? — (M (n))? < e, ©One the approximate hitting time and M (N¢) the approzimate
exit position.

The realization of this algorithm and its convergence are developped in Section 5. The upper-bound
(3.6) will be discussed in the proof of Theorem 5.1 (see the bound (5.10) in Step 2).

4 Preliminary results

We start by recalling results and notations introduced in [9] that will be needed in the sequel.
Consider the first hitting time of a curved boundary for the Bessel process of dimension 9,
starting from the origin. Let 1(¢) denote the boundary, and introduce the following hitting time:

7 = inf{t > 0; XP0 > (1)}, (4.1)

For some suitable choice of the boundary, the distribution of 7, can be explicitly computed. The
result is based on the method of images (see for instance [7], for the origin of this method, and [27]
for a complete presentation).

Proposition 4.1. Set a > 0 and 6 > 0. Let us consider the nonlinear boundary 1, s given by
(3.1). We can express explicitly the distribution of Ty (simplified notation corresponding to Ty, ;).
It has its support in Supp(v) and is given by

Q

5
 2at ) 231) Lgupp (v (£)dt
1
(wa,zS)(s (t) LSupp () (t)dt.

~ 2at
Remark 4.2. (Scaling property) Let us stress a scaling property which will be used in the sequel.
By using relations (3.1) and (3.2) we obtain :

[
T, 2 t T, t
2 _ a,0 _ a,8 _ 2
- (%) o (e () comer (), o
/ 1

[N

1
Po(ry € dt) = — | 2tlog ———F——
o(Ty ) ( g].“% (4.2)

where

Remark 4.3. Let us note that the mazimum of the function 1, 5(t) is reached for tmax(a) = T‘;"s
and equals
3
0 a 0
Wys = sup wa#;(t) =\ == =1/ =Tus. (4.5)
t€Supp(1)) e \I'(5)22" €

Moreover the distribution u,s(t,z)dx = P(Xf’o € dx, 7y > t) has the form

1 2 1Y 54
‘) — R B 4.6
tas(t,) <2glr(g)t3 P < 2t> a) v (4.6)

8



PROOF OF PROPOSITION 4.1.
The proof was already presented in [9] for integer dimensions § € N*. Using completely different
arguments based on stochastic tools (which are inspired by arguments developed for the Brownian
motion by Lerche [27]) we extend the statement to any dimension § > 0.

We define first the squared Bessel process Y; = (X?’xo)2 by (2.2). Let us denote the transition
probabilities by py, (t,dz) = P((Xf’$°)2 € dz) = Py, (V; € dz) with yp = 23. The density is given
(see, for instance, Corollary 1.4 p. 441 in [31]) by:

1 v/2 —
py(t, ) (m) exp <_m—|—y> Iy(ﬂ), for t>0, y>0, x>0, (4.7)

“ o \y 2 t

where v = /2 — 1 and I,(z) is the Bessel function:

L& =3 () ey

Moreover, for y = 0, we get
)
,17571 _ =

—————e 2t > 0.
@rre) ¢ "

Po (t’ x) = =
Step 1.

Let us denote by PLY the distribution of the squared Bessel bridge starting at x and hitting y at
time ¢. Denote also by P, the distribution of the squared Bessel process starting from z and by
(Fi)e=0 the filtration associated to the Bessel process.

Let tg > 0. Simple computations (using the transition probabilities and the Markov property of
the Bessel process) allow to obtain the following Radon-Nikodym derivative for ¢t < ¢y (see, for
instance, Exercice 3.11 from [31], page 468):

d]P);O Y
dP,

. y>0,2>0. 4.8
Pa(to,y) (4.8)

Observe that this formula cannot be extended to t = #( since P2 is not absolutely continuous
with respect to P, on F3,. For y = 0, the result can be obtained by continuity:

dpio-°
dP,

y—0 px(t07 y)

x> 0. (4.9)

Let us compute explicitly the r.h.s of (4.9). By (4.7) and for > 0, we get

oy () e (- i) (45)

111
y—0 v/2
” i (1) ew (=50 ()

to vt Yt T
= exp|————+ — .
to—t 2(tg —t)  2to

dpto-0
dP,




This result can be expressed both with respect to the transition probability and to the invariant
measure p satisfying p(x)pz(t,y) = p(y)py(t, ) that is p(x) = 2. Defining

pO(tw%') 1 _z
t,x) = = 26, >0,t>0, 4.10
=" = @errep ¢ (4.10)
we obtain finally for any t < t:

dpe? to —t,Y;
Dyi= — 2| = g(oi’t)_ (4.11)

dP$ x §(t07.%')

t

Moreover, this result can be extended continuously to the case z = 0 by defining £(¢,0) =

lim, o &(t,z) = (2¢)7%/2T'(5/2)~!. We can also notice that (D,).<; is a martingale with respect to
P, for t < tg.

Step 2.
We prove now that U(tg,x) defined by

Ulto, z)dw := Po(Ys, € dz, T2 (Y) > to)

satisfies

1 =z 1 »
U(to,x) = <W6 to —%>$ s

which directly implies (4.6).
By conditioning with respect to Y;,, we obtain

U(to,:ﬂ) = PO(Tu;?(Y) > t0|Y;50 = x)po(to,x).

We employ now a time inversion transformation by using the Radon-Nikodym derivative given in
Step 1 in order to express the following equation, for x < ¢?(tg):

_ ; 20,0~
Ulto,z) = i Py (7(Y) > t)po(to, )

- Htl(i)f?qo Eq [1{f>t}Dt]Po(t0, )

= Htl(i)I,Itl«o E;[Dinzlpo(to, ) — Htl(ifltl< o Ex (113 <4 D#]po(to, ),

where
7A' = Tw2(t0_.)- (412)

Since D, is a continuous martingale, the optimal stopping theorem (in the time inverse filtration)
leads to E;[Dinz] = Do = 1.
Moreover the function 1?(¢) has the following property:

1
o if 0 < 2 < 9?(t) then &(t,2) < 20’
a

o if x> 9?(t) then &(t, 2) > i and £(t,9%(t)) = i

2a

10



In other words, the stopping time 7 can be defined as follows:

1 1
. : B L : > 4

We deduce that 1

Ex[l(z <y D#] = 2a(te. 7) Po(7 <)
Therefore
P.(7 <t
U(to,x) = p(](to,x) <1 — m }LI% Pm(% < t)) = pO(tO,x) <1 - ﬁ)

Since 9 is a continuous function and v (0) = 0, we deduce that P,(7 < ¢9) = 1. Thus, we obtain
the result

Ulto,r) = po(to,ﬂf)<1 - M)-

Step 3.
As an immediate consequence, the expression of u, s(t,z) defined by (4.6) leads to

Po(1y2(Y) > t) = Po(7y(X) > t)
= / el U(t,z)dx
0

wa,é(t)
= / 2wU (t, w?)dw
0

wa,é(t)
= / Uq,5(t, w)dw.
0

The density of the hitting time can be easily obtained by derivation, see Proposition 2.2 in [9]. [

5 Convergence of Algorithm (INI)

Let us now describe the realization and the proof of the convergence of the Algorithm (NI) presented
in Section 3.

Realization of the algorithm

One particular important task in this procedure is the simulation of Zg’M(n_l) in the n-th step.

The method we use is the following: !
o 1f 6, = 65" then
IM(n — 1) + By, |I> = M?(n — 1) + 2M(n — 1)m1(U)da, 15y (0n) +¥2, 15 (0n)

= (M= 1) 4 (U 00)) + (L= RO, 151 (6). (5.1)

11



where 71 is the projection on the first coordinate and U is a random variable in RL%) uniformly

distributed on the sphere of radius 1. It suffices now to simulate Xg;’o. Since 9,(11) and 9,(12)
are independent, we get

E[£(x5002 > 6] = | f@)w(On,w)da,
+
where
, P(X?P ed >t t
(g > t) o u(t,z) da

and u(t, z) stands here for ug, & (t,2) which was already defined in the previous paper [9] and
was restated in (4.6). More precisely

RS U S WS S P
u(t,x) = 25//271t5//2p(5//2)eXp 2t ) By v

Here for notational simplicity the index ¢ of 7, stands for 1g, 5. Let us just notice that the

support of w(fy,-) is [0,vg, & (6n)]. In order to simulate Xg;’o, given 7, > 0,, we employ a
rejection sampling method. Let S be a random variable defined on the interval [0,v3, 5 (0y)]
with probability density function:
5/x6’—1
r(x) = ———%, for 0<zx <, 5(0p).
() W (G0 B0 (On)

This variable can be easily sampled by using a standard uniform random variable V: S has
the same distribution as

1#5”,5/(911)‘/1/5/,
Considering the following constant:

o — s (0n)” 1 1
o 25’/27192'/2F(5//2) Bn ]’

we observe that u(6,,x) < Cr(z) for all x. Then the procedure is the following

1. Sample two independent r.v. U, and S on respectively [0,1] and [0,43, & (65)]. The first
one is uniformly distributed and the p.d.f. of the second one is given by r(z).

(0, S)

Cr(S)

2. U, < define &’ = S otherwise return to the first step.

With this algorithm, the p.d.f. of ¢ is equal to w(,,x), it has the same distribution as Xgl’o

)

given 60, = 9,(11 .
Finally we obtain

n

2yt = (€ 4+ M2 (0 = 1) 4+ 2M (0 — )1 (Ui, 15) (0n) + 62,5, (Br)-
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o If 0, = 9&2) the result is quite similar. We obtain

220D = Ju2(00) + ME(n— 1) + 2M (0 — Dy (D) + €2
where ¢ is obtained in a similar way as £’. We just have to replace §’ by |0] and 3, by ay,.

Figure 1 presents several paths of the random walk (M (n), n > 0) defined by the algorithm (NT)
for 6 = 2.7, v = 0.9 and for the level L = 5.

5.0 /« ‘
4.5 L/ / ’
7 |
/
4.0 |
/ |
3.5 7 /
4 /
3.0 N s /
// N /L
25 / \\ ) . ;
1/ AN /
2.0 / // N ,
\
1.5 / / \ /
/ Y, N /
1/ / \/
vl /),
/ /
05|/ /
Iy
0.0 T T T T T T T T T T T
0 2 4 6 8 10 12

Figure 1: A sample of 4 paths of the random walk (M (n), n > 0) for 6 = 2.6,y =09 and L =5

Theorem 5.1. Set § > 1. Let us assume that the starting point of the Bessel process is such that
xg < L. The number of steps N¢ of the algorithm (NI) is almost surely finite. Moreover, there
exist constants Cs > 0 and £¢(5) > 0, such that

E[N?] < Cs|logel, for all € < ep(9).

Furthermore O e converges in distribution towards Tr,, the hitting time of the threshold L for the
0 dimensional Bessel process, as € — 0.

The following histograms (Figure 2) give the distribution of the hitting times ©y- for § = 1.5
and § = 7.5. Higher is the dimension of the Bessel process, smaller is the hitting time.

Proof. Instead of considering the Markov chain (M (n), n > 0), we focus our attention on the
squared process R(n) = (M(n))? and we stop the algorithm as soon as R(n) becomes larger than
L? —¢.

Step 1. Definition and decomposition of the operator P

We estimate first the number of steps. Let us remark that by definition (R(n), n > 0) is an ho-
mogeneous Markov chain, as at each step n we use the same construction which depends only on
M(n —1).

13
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Figure 2: Distribution of the hitting time ©y-. Histograms based on 1000 simulations and per-
formed with the following choice of parameters: v = 0.9, L = 5 and € = 0.001, § = 1.5 on the left
and § = 7.5 on the right.

Let us start by computing the transition probabilities associated to R(n). We introduce the
operator Pf defined, for any non-negative measurable function f: Ry — Ry:

Pf(x) == E[f(R()|R(n — 1) = 2] = E[f (IIVZ + Bo, > + (X),)%)] (5.2)

where 6, is defined in (3.5). Since R(n) is an homogeneous Markov chain, the transition Pf does
not depend on the time n. For notational simplicity we neglect some indexes: the step n; X0
is replaced by X; Hﬁf ) by 0@, for i = 1,2; ay, is replaced by o and S, is replaced by 8. We will
express (5.2) by splitting it into two parts P; f(z), i = 1,2 with

Pif(x) =E [f(llﬁ + By |I* + (Xe<i>)2> 1{0=0<i>}] :

Thus
Pf(z) = Pif(z) + P f(z). (5.3)

The class of functions that will be considered in the following satisfies the hypothesis :

(H) The function f is such that
f® <0, vpefl,2,34},

this means that the first four derivatives of f are negative. An example of such a function will be
used later on.

Step 2. Distributions associated with #(®).
Let us denote by Us(t)dt the distribution of §®) and its support [0, s;]. With the notation in (3.2)

we have
S1 = Ta,\_é] and S9 = T@(y. (54)

These distributions are those of stopping times corresponding to the function 1, 5(t), see (3.1),
with a suitable parameter a and a suitable dimension . By applying the scaling property (4.3) we

get
t

Va,15)(t) =/ [0] 519 (E) . (5.5)

14



By using the same arguments, the scaling property associated to 0 is

Ibﬁ’g/ (t) = o qu) <i> 5 with 5/ =0 I_(SJ
52
Since

UL (t)dt = Po(8) e dt)

L 151/2\ 181/2
~ar(la) /)22 s (2102 (1)) v

CL5J¢L6J ( >dt
t S1

(4)4/2, we obtain the scaling property:

1

with Cq — W

65/

<1>5/( t). (5.6)

Ul(slt):q—éiqﬂ“(t) and  Us(sat) =

S1
With our choice of a and [, we have

2

o Ls]

s1 =Tos) = | =7
! [Nm)?@_1 5.7
ey?(L? — x)? (5.7)

T (VD] =z + 0L+ /[0]2)?

= S9.

19
Wa,ls) = sup s (t) =1/ %81 (5.8)
t€[0,s1]

and the same property holds for s

5/
Wss = sup ¢Ppu(t) =1/ —s2 (5.9)
tel0,s2] €

Since we stop the Markov chain R(n) in order not to hit L2, we have

By using (4.5) we get

(VT +Wa ) + W55 = 8 +2\/_\/ 81+—82
5 (5.10)
—:c+—51—|—2\/_ ?51
— r (L - ),

by using the choice of s; = sy and the value of s; given in (5.7). We deduce that for z close to 0,
51 is close to yeL?/§ and for x close to L?, sy is of the same order as ey?(L? — x)?/(4[6] L?).

Step 3. Computation of P; f(x).

15



Using the definition of P; f, the identity (5.1) and the distribution of #() denoted by U, (t)dt we
get

Pif(@) =E[f (IV/Z + Bol> + (X0)?) 1gg-g1}]

/1 / \/—+ T1(2)0a,15) (8))? + 02 15 (O(1 = 77(2)) + Xt2> 1{9(2)>t}]
s (5.11)
x U (t)dto(dz)

- /S 1 /081 E [f (x + 2V (2)Ya,16) (1) + 03 15 (1) + Xf) 1 {G%t}} U, (t)dto(dz).

We denote here by S! the unit sphere in R, 5(dz) the uniform surface measure on this sphere
and 7 (z) the projection on the first coordinate and « is chosen so that (5.7) is satisfied. Let us
notice that the variable 2 + 2y/zmi (2)1, 5 (£) + ¥2 16] (t) + X? always stays in the interval [0, L?]

on the event ) > t. Consider the Taylor expansion of f in a neighborhood of z. By using (H)
we have that f*)(¢) <0 on the whole interval [0, L?]. Hence

PL () < f@)G1+ (2)Ga + 5 £"(2)Gs + 5 SO )G (5.12)

It suffices now to compute Gy, for k = 1,2, 3,4 where G}, is defined by
k—1
Gy = /S 1 / [ 0215y (0) + 2V (W) (1) + X)L >t}} Ur(tdto(dz).  (5.13)

In particular Gy = P[H(z) > 9(1)]. Using symmetry arguments, the term associated to the projection
vanishes, and we can split G into two parts, Go = Ga,1 + G2 2:

51
Go1 —/ V2 10) (@ 2 > U (t)dt  and G2 ::/0 E[Xfl{9(2)>t}] Ui (t)dt.

By changing the variable sju = t and the scaling properties developed in Step 2, we obtain:
1
G2, 2/ T,Z)i’m (s10)P(0P) > s1u)U; (s1u)s1du
0

_ /1 511692 (u) (/ul UQ(slw)dw> AL 191 ()51

0 11U

Using now the equality s; = so and a suitable change of variable, we get

Ga,1 = s1/6]cys) / / ®LIF2(4) 51Uy (s10)dvdu = S1K2,1 (5.14)

where

Ko o= ch&/ / —<I>L5J+2 )@ (v)dvdu > 0. (5.15)
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Notice that kg1 is a constant which depends only on the dimension §. We can also prove that there
exists a constant kg2 independent of x such that G2 = s1k22. Indeed, we have

1

S1
G2’2 = / E |:Xt2]‘{9(2)>t}} Ul(t)dt = 81/0 E |:Xs21u1{6(2)>51u}:| Ul(slu)du
0

1 s
= /0 E [X§1u1{wgm X< %76,@}] ) 18 () du.

u

Using the scaling property of the Bessel process, we get

1 e1s
G2,2 = A E |:51X31{Vr§u: Xrgwﬁyy(slr)/\/g}] % (I)L(SJ (u)du = S1K2,2

since s1 = sy and thus ¥ 5 (s17)//51 = V' ®(r) does not depend on x but only on 4. To sum up,
we have proved the existence of two constants kg, 7 = 1,2, independent of x satisfying

Go = Kas1, where ko = Ko 1 + Ko 2. (5.16)

Let us now focus our attention on G5 defined in (5.13).
While developing the square of ¢ 16] (t) + 2y/xm1(2)0 5/ (t) + X7, we obtain 6 terms:

Hy =14y 5/(t), Hy=dani(2)02 5/(t), Hz=X;
Hy =493 5/ (OVam(2),  Hs = 4/wmi(2)ta, 15 () X7, He = 207 5 (1) X7

Therefore GG3 can be splitted into 6 terms: Gg = 2?:1 G3,; with

51
G37j = / / E[Hjl{e(z) >t}} Ul(t)dtO'(dZ).
st Jo

Now, let us compute G3; for j = 1,...,6. First we note that, due to symmetry properties of the
variable z, G34 = G35 = 0. By similar arguments as those included in the computation of G», we
get:

1 1
1 /
Gs1 = stksy  with k3= [0)%c5)cp / / — 3L+ ()@ (v)dvdu > 0. (5.17)
0 Ju UV
G372 = XS1K3,2 with K3,2 1= 4/’4}271/ W%(Z)O’(dz) > 0. (5.18)
S1
1 cls
Gs3 = sirsg with kg3 = / E |:X31{V7"<u: XT<\/67<1>(7»)}} % oL (u)du > 0. (5.19)
0 < <

1 c
. 6
Gag = shsg with kg =2 / E [X31{W<u: e M,(r)}] —;J 16] L2 (uwydu > 0. (5.20)
0 < <V
To sum up, there exist two positive constants k3 and k3 independent of x such that

G3 = Kk3xsy + %38%. (5.21)
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Finally, we consider the expression G4 defined by (5.13). We are not going to compute it explicitly
as we have just performed it already for the first terms. Due to the symmetry property of the
variable z, the expansion of G4 coupled to the computation of (12 5J( ) +2y/xm1(2)a, 5 (1) +X72)3
leads to terms which are either positive or equal to 0. Hence, we can conclude that

Gy > 0. (5.22)

Step 4. Computation of P, f(z).
Using the definition of P f, we obtain:

Pyf(z) =E [f(‘|\/_5+ Bol? + (X9)2>1{9:9(2)}]
= [TR[(IE+ B + 3 0) 100050 tat0at
= [T B[ (e 20z B+ NBIP 030 0) 100 (0

By hypothesis (H), f” is non positive on the support of the Markov chain. Then, by using a Taylor
expansion, the following bound holds: for any z € [0, L? — €]

Pof (@) < f2)PO > 02)
+ f'(@) /0 B[ (20 B + IBIP + 030 (0)) Loy | el

The integral expression contains three distinct terms. The first one associated to the scalar product
is equal to zero since the distribution of B; given {#(1) > t} is rotationally invariant. The second
and third terms are positive. We therefore deduce that for any function f satisfying (H), the
following bound holds:

Pof (@) < f(@)P(EY > o), (5:23)

Step 5. Application to a particular function f.
Let us introduce the function f. : [0, L?) — R defined by

fe(x) =log (%) : (5.24)

where v < 1 is the constant close to 1 already introduced in (5.10). Let us assume that the Markov
chain M starts with the initial value z € [0, L? — €] that is R(0) = 2. We will prove that f-(R(1))
is a non-negative random variable. Indeed for any y in the support of R(1) we have:

0<y<(Vo+Wy5)’+ Wi,

where W, |5 is defined by (5.8) and Wjg s by (5.9). Using the identity (5.10), we obtain

i) 2 1o (=) 20

since L? — x > e. We deduce that f. is a non-negative function on the support of the Markov chain
stopped at the first exit time of the interval [0, L? — g].

18



Let us now apply the operator P defined by (5.2) to the function f.. Since

kE—1)!
<0, fe(k)(a:) = —ﬁ <0, for k=2,3,4

filz) =

12 g

the condition (H) is satisfied and we obtain by (5.12) and the computation of G, ..., Gy:

Pifo(@) < fo@)POP > 00) = " (ka(L — @) + gz ), (5.25)

(L2 )

by using (5.16) and (5.21).
Due to the explicit expression of s; in (5.4), there exists a constant £ > 0 independent of z and
e such that
Pifo(z) < fo(x)P(0P > 01)) -k, Vze[0,L? —¢). (5.26)

Combining this with (5.23), we get
Pf.(z) — fo(z) < —k, Vz €0,L%>—¢].

By using a comparison theorem of the classical potential theory, see Norris [28] (Theorem 4.2.3, p.
139), we deduce that
fe(z)

E,[N°] < : (5.27)

K

In particular, for x = 0, the desired result in the statement of the theorem is proved.

Step 6. The time © - given by the algorithm is close to the first hitting time 7.

Let us denote by F' (resp. F*¢) the cumulative distribution function of the random variable 77, (resp.
O©ne). We construct these two random variables on the same paths ; the law of the squared Bessel
process of dimension ¢ is obtained as a succession of sums of two independent squared Bessel
processes of dimension |§| denoted by Y9k and § denoted by Y% on random time intervals
[Ok_1,0) until the hitting time © - and afterwards, the paths are generated just by a squared
Bessel process of dimension 0 starting in M (N¢) and independent from the past. Since 77, > O -
a.s. we immediately obtain the first bound

F(t) < F5(t), t>0.
Furthermore, for any small o > 0,

1—F(t)=P(TL>t)=P(TL>t, @NE St—a)+P(TL>t, @Ns>t—04)

<P(rp >t, One <t—a)+POy: >t —a)
<P(rp, >t, One <t—a)+1—F(t—a). (5.28)
At time ©Opn: the sum of the two squared Bessel processes is in the small neighborhood of the
threshold L2, namely L? — ||Y®Li£5’NE % — ||Y£;\’,]EVEH2 < ¢. Using the strong Markov property, we
obtain
P(rp >t, One <t—a) < FS(t—a) sup Py(rp > a). (5.29)
yeVL?—¢ L)

Applying Shiga and Watanabe’s result (2.5), the Bessel process of dimension 6 > 1 is stochasti-
cally larger than the Bessel process of dimension 1 which has the same law as |B;|. Here B stands
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for a 1-dimensional Brownian motion. By these observations, the following upper bound holds, for

any y € [VL? —¢, L]

Py(rr, > o) <Pre(rp, > a) <Pre( sup |Bi| <L), with L°=+/L?—¢
0<t<a
<Pre(sup By <L) <Py(sup By <L —L%)
0<t<a 0<t<a
<IP’<su B<5>< ° (5.30)
=0 Ogtga "“ L)~ LVar ’

By combining (5.28), (5.29) and (5.30), we have

FE(t — a) (1 - ) < F(t) < FE(t), t>0. (5.31)

2am
Furthermore, by construction, © y< is an increasing sequence of positive random variables as € goes
to 0. We deduce that, for any fixed ¢t > 0, F°(t) decreases as € goes to 0. Moreover the right hand
side of (5.30) ensures a lower bound for the sequence which leads to the convergence of F*(t). The
limit is denoted by F°(t) and (5.30) implies that F°(t) = F(t) for any ¢t > 0. Consequently, © ye
converges to 77, in distribution as € goes to 0. This ends the proof. U

Remark 5.2. The first step of the algorithm could be simplified when the starting position xg is
equal to 0. The procedure then consists in first choosing oy such that g, s(t) < L for all t > 0.
Then we simulate the first hitting time of this moving boundary which is given by a transformation
of the Gamma distribution. We denote this random variable by 61 and we compute the value of the
process at this time:

M (1) = thay 5(61).

Finally we set ©1 = ©g+01. Even if this modified version of the algorithm (NI) seems simpler (just
the first step is different), in the following we prefer to illustrate the convergence results associated
to the algorithm (NI).

6 Numerical results

In this section, we will discuss some numerical results based on the algorithm for approaching the
hitting time (developed in Section 5). A particularly important task in such an iterative method is
to estimate the number of steps or even the number of times the uniform random generator is used.
The algorithm (NI) presented in Section 5 allows to simulate hitting times for Bessel processes of
non integer dimensions § > 1. We will therefore only present results in that context and refer to
the previous work [9] for Bessel processes of integer dimensions.

6.1 Number of steps versus ¢

The number of steps of the algorithm is of prime interest. Classical time splitting method, in order
to simulate particular paths of stochastic processes, can be used for classical diffusion processes with
regular diffusion and drift coefficients if the study is restricted to some fixed time intervals. Here
the diffusion is singular, the classical methods could not be applied, nevertheless the approximation
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procedure (NI) developed in Section 5 is different from classical splitting methods and holds for
any given time. In particular, we are not able to compare our algorithm with other methods and
we will just describe the relevance of (NI) by the estimation of the average number of steps. The
algorithm used in order to simulate the hitting time of the level L by the Bessel process, gives an
approximated hitting time © < and the corresponding position M (N¢) which satisfies:

L? — (M(N®)* <e.

The number of iterations will decrease with respect to the parameter e. The average number of
steps E[N¢] is bounded from above by the logarithm of £ up to a multiplicative constant (Theorem
5.1). Let us therefore choose different values of ¢ and approximate through a law of large number
this average (we denote by N the number of independent simulations; here ® = 1000).

ep =055 k=1,...,15.

The results concern two different dimensions of the Bessel process § = 2.2 and § = 4.7 and we
fix the parameter v = 0.95 in the algorithm (NI) (this parameter is fixed for the whole numerical
section). Note that each step of the (NI) algorithm is associated to a comparison between particular
hitting times 9,(11) and 9&2), the first one is associated with a Bessel process of dimension |§| and
the second one is associated with a Bessel process of dimension § — |0]. In the following we are

also interested in the average number of steps Nﬁlteger satisfying
Steger = {1 <n < N o) < 0P}

The figures 3 represent both the estimated average number of steps E[/N¢] and its confidence interval
(three upper curves) and the estimated average number E[N{...,] and its 95%-confidence interval
(three lower curves).

150

Figure 3: The average number of steps N¢ for different precisions e, = 0.5% together with its 95%-
confidence interval (dashed lines) based on X = 1000 simulations of the hitting time, for dimension
d = 2.2 (left) and § = 4.7 (right)

6.2 Number of steps versus the dimension of the Bessel process

In [9], the authors pointed out that the number of steps of the WoMS algorithm increases as the

dimension of the integer Bessel process becomes larger. This means in particular that each step
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of the Algorithm (NI) will take more time as the dimension of the Bessel process becomes large.
This feature can be illustrated by a simple experiment: let us sample a sequence of independent
random variables (U,,),>1 uniformly distributed on the sphere in RO, with & € N, centered in
(0.5,0,0,...,0) and with radius 0.5. We stop the trials as soon as one random variable U,, belongs
to the e-neighborhood of the unit sphere. We observe that the averaged number of trials increases
with the dimension since the proportion of the small sphere surface which is close to the unit sphere
decreases with the dimension. Figure 4 represents the logarithm of the average number of trials
when the dimension increases.

Figure 4: Logarithm of the average number of trials before hitting a e-neighborhood (¢ = 0.1) of
the unit sphere in dimension § (6 = 1,...,20) based on 10000 simulations.

This simple experiment heuristically explains why in the integer dimension case, the walk on
moving spheres needs more steps as soon as the dimension increases. We can illustrate this feature
by the cpu time needed by the algorithm (NT).

Let us focus our attention on the non-integer case. We observe unexpected effects with respect
to the dimension: on one hand if |§]| is fixed and the dimension increases then the average number
of steps decreases, on the other hand if 6 — [§] is fixed and the dimension increases, so does the
number of steps. For the simulation we set N = 1000, ¢ = 0.01 and the level height L = 5.

Let us explain what happens in a simplified way. Each step of the Algorithm (NI) is based on
the simulation of two independent random variables: A the value of the squared Bessel process of
integer dimension |§], B the value of the squared Bessel process of dimension ¢, both stopped as
soon as one of them is sufficiently large (let us say: larger than A4 and Ag). Then the algorithm
stops if the sum A + B is sufficiently large, say larger than A4 + Ag. What should be observed in
such a context?

e If B/\p is stochastically much larger than A/Ay4, then it is particularly difficult for the sum
A+ B to reach the level Ay +Ap. Therefore the algorithm needs a lot of steps for the condition
to be satisfied. This situation appears in fact when ¢’ is small: the proportion anteger /NE is
much smaller than 50% (see Figure 6).

e If B/Ap is stochastically of the same order as A/A4 then the sum A + B is more likely to
overcome the threshold A4 + Ap; therefore the algorithm needs less steps. This situation
appears when ¢’ is close to 1: the proportion N /NE€ is close to 50% (see Figure 6).

integer
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Figure 5: The average number of steps N¢ for varying §. We set N = 1000, € = 0.01 and the level
height L = 5. On the right |d] is fixed and on the left § — 4] is fixed.

We observe the averaged proportion E[Nﬁlteger /N¢] as the dimension of the Bessel process increases,

see Figure 6. This proportion seems to depend mainly on the fractional part of the dimension. One
way to increase the efficiency of Algorithm (NI) would be to choose other values for A4 and Ap
in such a way that the proportion always stays close to 50%. The thresholds A4 and Ag in this
informal discussion corresponds in fact in the Algorithm (NI) to the coefficients I(d, z) and N (4, x)
defined by (3.3) and (3.4). The only condition required for the convergence of the Algorithm is:

ey A A (COF ) I A LI (O IR AT
(L —x)—2ﬁﬁ<r(%)2w2_l) + <—r(%J)2L6J/2—1)

e
5_’( N(0,x) )2/5/
\r§@ )

where ¢ = § — |§]. We observe that there is one degree of freedom in the choice of the couple
(I(3,2), N(4,)).
Let us finally note that, for small §’, several steps concern extremely small stopping times. We

recommend in this situation to remove these small stopping times (for instance smaller than 1073%),
it is just a slight modification of the algorithm.

6.3 Number of steps versus the level height

In the previous simulations the threshold to reach was fixed at 5. Let us now study the dependence
of the number of steps with respect to the threshold. The numerical results are obtained for
N = 1000, ¢ = 0.01 and two different Bessel processes (of dimension ¢ = 3.8 and 5.2). Let us note
that this dependence is sublinear and rather weak, the dimension of the Bessel process seems to
play a more important role as illustrated in Figure 7. Observe also that e is an upper-bound of
L? — (M(N?))%2. We deduce that .
€
L— M(N?) < o

and therefore the error of the approximation diminishes as L increases. This particular remark is
also emphasized by the dependence of L in the bounds (5.31). We present an illustration of this
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Figure 6: Averaged proportion E[Nﬁlteger /N¢] versus ¢ with X = 1000 (left) and average cpu time
(seconds) for Algorithm (NI) on a 2.3 GHz Intel Core i5 processor with the Scilab software versus
0 with X =100 on a (right). For both figures, we set ¢ = 0.01 and the level height L = 5.

phenomenon in Figure 8 for which ¢/L is fixed and equal to 0.01.
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Figure 7: Averaged number of step versus the level L. Numerical results obtained for X = 1000,
e = 0.01 with dimension 6 = 3.8 (on the left) and 6 = 5.2 (on the right).

6.4 Number of generated random variables

Finally let us study the number of random variables used in the simulation of the Bessel hitting
times. Each step of the algorithm (NI) requires many calls of the uniform random generator in order
to simulate the first coordinate of the uniform variable on the sphere of dimension [¢ |, the Gamma
distributed variable which appears in the simulation of the hitting times of curved boundaries (here
we use Johnk’s algorithm, see for instance [10], page 418), and finally the rejection method for the
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Figure 8: Averaged number of steps versus L for ® = 1000, /L = 0.01 and 6 = 3.8.

conditional law described in the Realization of the algorithm. The figures 9 represent simulations
for the parameters L =5 and € = 0.01
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Figure 9: Number of random variables required versus number of steps for L =5, ¢ = 0.01 § = 2.5
(on the left) and 6 = 4.8 (on the right)

We observe also that the algorithm (NI) is rather difficult to use when the fractional part of
the dimension ¢ i.e. 0 — |0] is small, the number of steps becomes huge. Furthermore, intu-
itively the parameter v should be equal to 1. However, for technical reasons in the proof of the
main result we have to consider v < 1. Thus, for numerical purposes we suggest to take the pa-
rameter v as close as possible to 1 as it has a weak impact on the convergence rate of the algorithm.
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