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Abstract—In real world applications, data are often uncer-
tain or imperfect. In most classification approaches, they are
transformed into precise data. However, this uncertainty is an
information in itself which should be part of the learning process.
Data uncertainty can take several forms: probabilities, (fuzzy)
sets of possible values, expert assessments, etc. We therefore
need a flexible and generic enough model to represent and treat
this uncertainty, such as belief functions. Decision trees are well
known classifiers which are usually learned from precise datasets.
In this paper we propose a methodology to learn decision trees
from uncertain data in the belief function framework. In the
proposed method, the tree parameters are estimated through the
maximization of an evidential likelihood function computed from
belief functions, using the recently proposed EZM algorithm that
extends the classical EM. Some promising experiments compare
the obtained trees with classical CART decision trees.

Keywords—classification; decision trees; belief functions; algo-
rithm EM;

I. INTRODUCTION

Handling data uncertainty is an old and well-known prob-
lem in statistics and applied sciences [1], [2]. Most of the
time, this uncertainty is removed from samples and datasets,
for instance by replacing uncertain data with precise ones [3].
By doing so, a part of the information that should be integrated
to the estimation process is lost.

Data uncertainty is of epistemic nature, as data can be
assumed to have a unique true value which may be ill-known
due to unreliable or imprecise information. Such uncertainty is
most often described either by (fuzzy) sets or (partially speci-
fied) subjective probabilities. In the past decades, the capacity
of probability models to faithfully represent such uncertainty
have been questioned by imprecise probabilities tenants [4,
chapter 5], [5, chapter 3]. For instance, probabilities cannot
distinguish between uniformity due to ignorance (such as an
imprecise observation) and uniformity as a physical property.
There is therefore a need for a more general framework able
to model non-probabilistic uncertainty. The theory of belief
functions [6], [7] or Dempster-Shafer theory (DST) satisfies
this need by blending probability and set representations. It
includes as special cases many uncertainty models such as
sets, possibility distributions, probability distributions, ....

The DST was first presented as a statistical approach by

Dempster [6] and then extended by Shafer [7] to also deal
with non-statistical uncertainty. Most of evidential works then
focused on problems such as information fusion or uncertain
reasoning [8], [9], [10]. This paper, however, is focused on the
issue of learning and predicting from uncertain data.

The EM algorithm, also proposed by Dempster [2], is a
means of learning from incomplete data by maximizing a
likelihood function computed from set-valued observations.
The evidential EM (E>M) was recently proposed by Denceux
[11] as an extension of the EM algorithm that is able to handle
uncertain data modeled by belief functions.

In this paper we apply the EZM to a well-known statistical
model: classification decision trees. Indeed, learning decision
trees from uncertain data remains a challenge, as there are only
few methods tackling this problem in the literature. This paper
is organized as follows: after providing the basic background
on decision trees and belief function theory in Section II,
we present the proposed methodology in Section III. Finally,
experiments are given in Section IV to show how the proposed
methodology can enhance classical decision trees accuracy.

II. BACKGROUND

After introducing the needed notations, this section recalls
the basis of usual classification trees and the necessary tools
of the DST. Finally a brief overview of decision tree method-
ologies that take into account different types of uncertainty is
presented.

A. Formalism

As in any classification problem, the goal is to learn a
model to predict the class label y of an instance with attribute
(or feature) values x. During the learning phase, the classifier
is built from a learning dataset LD containing samples of
(X,Y) joint realisation. Its accuracy is then evaluated on a
test dataset 7D by comparing the model predictions with the
corresponding observed classes.

The attributes X = (X!,...,X’) take their values on Qy =
Qy1 X -+ X Qyy, the class Y on Qy = {wy,...,wg}. Thatis, K
different classes can be predicted using J different attributes.
Spaces Qy: can be categorical or continuous.



A precise dataset containing N samples is a set of realisa-
tions of the couple (X,Y) and is denoted by

1
X1, )1 xlv"'ax]/ayl
XN, YN Xhs e XN IN

Samples are here assumed to be i.i.d.

B. Decision tree

Decision trees are well-known classifiers [12] that combine
good performances with a simple graphical representation
allowing for an easy interpretation.

A decision tree is formally a rooted tree structure. Terminal
nodes are called leaves. To each non-terminal node of the tree
is associated an attribute, and to each branch issued from this
node is associated a condition on this attribute that determines
which data of the sample D go into that branch. A given
decision tree therefore determines a partition of the space Qy
where each element of the partition is associated to a leaf. In
the sequel, we will use interchangeably the term leaf and its
associated partition element.

We will describe a tree
Py = {tl,...JH}

by its set of leaves f1,...,tg. The leaf index variable is then
defined relatively to &y by:

ZHEQZH:{l,.H,H}

In order to lighten the notations, Zy will be simply denoted Z
when there is no ambiguity about the tree to which it refers.

We can associate to each leaf 7, the following quantities:

e by an abuse of language we will denote by f; the
partition element 7, = A} x ... x A] where A} C Qy;,
j=1,...,J is associated to branches leading to #;,. By
definition, for any two distinct leaves #;, and 7,y we
have t, Nty = 0.

e the probability @, = P(Z = h) of leaf #,

e a multinomial distribution @, = (},...,aX) where
af =P(Y = @ |Z = h) is the probability of the k™
class inside leaf 7.

Usually, if a data item falls into leaf #;, the predicted class

is argmaxa,’j, i.e. the class with highest probability.

W €Qy
The parameters of a tree &y can be summarized as a
multidimensional parameter Op:
af
€ Oy

1 K
oy - O Ty

where O is the space of all possible parameters given
a tree containing H leaves. In the case of precise data,

the parameters 77:;,,05,’1‘, h=1,....Hk=1,... K are simply
estimated by proportions:

m, = Wven,i=1..N}/N 1)
a% _ {(xi,yi) :xi €ty yi = @y,i=1,...,N}| @

H{xi:xi€tpi=1,...,N}|

These notations are unusual to describe decision trees,
but they will be instrumental when introducing the learning
problem with uncertain data. We can already notice that the
distributions 7, ay,i = 1,...,H can be viewed as a mixture of
multinomial distributions. The next small example illustrates
those notations.

Example 1 Let us consider a data set with N = 12
data items, J = 2 attributes and K = 3 classes. Spaces
are described as follows:

Q1 =[1,10], Q4 =[13,150], Qy = {a,b,c}.

x!'>3

X2<45 X2>45
y=c
1) 13

X' <3

15
Fig. 1.

Decision tree illustration

Xl

Fig. 2. Partitioned attribute space

Figures 1 and 2 respectively represent a possible
decision tree and its corresponding partition of the
attribute space with the learning dataset represented
in it. To leaf #, are associated the values A} x A3 =
[3,10] x [13,45[, m =3/12, 0 = (1/3,2/3,0), and the
prediction for any test data item in #, (for example,
x! =6 and x> = 30) will be y = b.

As illustrated in Fig. 1, each non-terminal node of a tree is
associated to a split of its parent. There are two main kinds of
decision trees in the literature: CART trees [12], where each
split is binary (as in Example 1) and C4.5 [13] where a non-
terminal node is split in as much branches as the number of
modalities of the variable associated to the node (preliminary
discretization can be required). In this paper, the approach will
be applied on CART trees, but it extends easily to C4.5.



The construction of a CART tree goes as follows:
given a tree Py = {t1,...,ty}, for every leaf #,, find the
best split s among all possible splits that divides #, into
two new leaves 77,fg and the resulting tree is Py =
{t1,.. s th—1,tL,tR, tpt1 - - - .t +. The construction starts with the
root node | and proceeds recursively. By a small abuse of
notation we denote by Py (s) = Py the tree obtained from
Py with the split s, and by Oy (s) = Oy its parameter.

The quality of a split s dividing a node 7, is usually
measured by how well it separates its classes. This is measured
by a so-called impurity measure i (a pure node is a node that
contains samples of the same class).

The tree learning requires to specify some stopping criteria
such as minimum purity gain threshold, maximum number of
leaves, maximum tree depth, . ... Those criteria are called pre-
pruning whereas post-pruning procedures aim to reduce the
tree once it is fully grown. Both procedures strive to make
the tree more readable and to reduce the risk of overfitting
of the tree model without diminishing too much its predictive
accuracy.

In our methodology we retained as measure of informative
content the usual entropy of the distribution o, of a leaf #,

defined by
K

Z log (xh

The quality Ai(By(s),0y) of the split s is then measured as

Ai(Oh (s),0m) = i(th) — i(t) — i(tr)  (3)

Ty, + TR T, + TR

C. Belief function

Let Qp be a finite set representing all the possible values
of a variable W whose value is uncertain. In the case of uncer-
tainty over a single sample or datum, this uncertainty concerns
a fixed but ill-known value, hence is of epistemic nature (as
opposed to aleatory uncertainty). As said in the Introduction,
such type of uncertainty may be modelled by a variety of
representations, including subjective probabilities but also sets,
possibility distributions, p-boxes, etc. DST offers a generic and
unifying framework to model all these representations.

A mass function or a basic belief assignment (bba) m"
on W, the basic tool of DST, is a function from the powerset
2% of W to [0,1] ver1fy1ng Y pooaw mY (B) =1. A set A €2
is a focal element of m" if mﬁv( A) > 0. The particular case
of probabilities is retrieved when all the focal elements are
singletons (i.e., m" (A) > 0 iff |A| = 1), while an imprecise
observation A is modelled by committing all the mass to the
set A (i.e., m" (A) = 1). Ignorance or missing data are just an
extreme case of such imprecision, and a missing data sample
W can be modelled by m" (Qy) = 1. Another interesting
possibility is to assign a reliability value 1 — Y to an information
source. 1 — ¥ can then be considered as the belief degree that
the source is relevant, and the information can be modelled by
the following equation:

Y =1-r mY(Qw) =y )
The belief and plausibility functions are defined by:

Bel™(A)=Y m"(B), PI"(A)= Y m"(B) 5
BCA BNAZ0D

Bel" (A) measures the amount of information that implies W €
A, and is a measure of certainty, while PI" (A) measure the
amount of information that does not conflict with W € A, and is
a measure of plausibility. We naturally have Bel" (A) < PIV (A)
with the two being equal in the specific case of probabilities.

In our classification context, an evidential dataset £D will
be of the form

XY X! x/ Y
my’ my . oceeompom
ED=m"" = : = ,
Xy X! x/ Y
my’ my e omy My
where m Y describes the i h sample with its uncertainty . Note

that precise data set D is retrieved when m({x{ 1) =1 and
m(y;) =1 for all i, j.

D. Related work

Uncertainty in classification problems can be related to data
quality (imperfection of data), on which this paper focuses, or
to the classification prediction model (such as the frequentist
estimations of the leaves and class probabilities in CART
purity gain computations).

Globally, works have been done in classical probabilistic
framework, in the fuzzy set one, in the imprecise probabilistic
one, or in the belief function one.

Most works dealing with uncertainty in classification (be
it in probabilistic, fuzzy, imprecise probabilistic or evidential
frameworks) concern uncertainties related to the classification
model [14], [15], [16]. The few methodologies that handle
uncertain attributes in the data are either fuzzy [17], [18]
or probabilistic [19], [20] and rely heavily on considering
“fractions” of examples falling in the tree leaves, something
that cannot be done when the uncertainty model does not
(always) bear on singletons, as is the case with belief functions.

In the probabilistic framework, Perinel [21] proposed a tree
learning algorithm handling uncertain data modelled by sub-
jective probabilities. It considers uncertainty on the attributes
(not the class) and uses the EM algorithm on the conditional
likelihood of the class given the input to estimate the set
of probability densities of the classes in the leaves (our a;l‘
parameters). Our work follows a similar line, but with a more
generic uncertainty model (belief functions). Furthermore we
consider that both the attributes and the class label can be
uncertain.

III. LEARNING DECISION TREES WITH UNCERTAIN DATA

In this section, the evidential likelihood and the E*M
algorithm basis are first recalled, then application of the E2M
to the tree parameter estimation is then presented and we
finally give the general algorithm of our methodology. We only
give the essential tools necessary to apply our method. Details
about the general interpretation and implementation of E>M
can be found in [11].

A. Evidential likelihood and E*M algorithm

The E’M algorithm is an EM extension that handles
uncertain data modelled by belief functions [11]. It maximizes



the evidential likelihood, which weights incomplete likelihood
of each focal element by its mass. Given a parametric model
{Pg | 0 € O}, the likelihood is L(6;w) = Pg(W = w). The
incomplete likelihood of a set-valued observation w € A is

L(6:A) = ) Py(W=w)=Py(weA)
weA

and when uncertainty is described by m", evidential likelihood

is given by:
/4
Y m" (A)L(6:A;) (6)
i=1

where {A],...,A.} are the focal elements of m" .

As for the classic EM algorithm, the maximisation of (6)
is done through an iterative procedure alternating between two
steps: Expectation (E) and Maximisation (M).

During the 7 iteration, at the E step, the expectation of
the complete likelihood’s logarithm logL(6;W) is computed
with respect to a specific probability measure P(.|0) m"),
that we denote E|[log(L(6,W)) |8 m"]. This probability
measure is obtained by applying Dempster’s combination [6]
between Py, (the current parametric model) and the uncertain
observation m". This combination results, Yw € Qy, in:

Py ()P ({w})

P 07 mY) = =T

)

The resulting mass function is a probability distribution (as one
mass is a probability distribution). Eq. (7) can be applied if
we assume cognitive independence between data uncertainty,
that is learning the value of a given datum will not change our
uncertainty about the value of other data (we refer to [11] for
further explanations).

Once probability measure (7) is computed, we can proceed
to the M step, in which the parameter 8! maximising this
expectation is found.

o E-step: 0(0,00)) = E[log(L(6;W))|6"), m"]

o M-step: 0+ = argmaxQ(6,6("))
0cO

As proved in [11], the obtained parameter happens to
increase the value of the evidential likelihood (6). The E2M
algorithm therefore converges towards a local maximum of
evidential likelihood estimator. Any likelihood maximisation
problem where the data are evidential can thus be solved with
the E>M algorithm.

In this work, we use the E2M algorithm considering that
our model is a mixture of multinomial distribution, that is
each leaf has a given probability and contains class items
coming from a multinomial distribution. It can also be seen as
a particular case of the general classification problem handled
in [11].

B. Tree parameters estimation through the E*M algorithm

During the learning of a E’M decision tree, the prob-
abilities (7, 0,)p—1,..# cannot be estimated by proportions
because of the uncertain nature of the data.

For a given tree &y, the basic principle of our method-
ology it to estimate parameters (7,0 )s—1,.n by the max-
imisation of the evidential likelihood of the data in regard
to the couple (Z,Y) with the E>M algorithm. This likelihood
maximisation requires some definitions:

e the latent or hidden variables (not directly observable)
resulting from the data uncertainty: yf =1if y; = oy,
0 otherwise and z;;, = 1 if the i sample is in the leaf
t,, 0 otherwise.

e the plausibility ply that a sample m
given leaf #; :

belong to a

- [T )

j=1

plin = Pl (zy = 1) :Plz{)((szlAl];)

where PIX ’is the plausibility computed from mf“
x the cartesian product.

By this mean we can compute plausibility on X from
plausibility on Z.

The last product is due to the cognitive independence
assumption.

and

e the plausibility plf‘ that a class of sample mf’Y is k:

=Pl ({ax})

where PI! is the plausibility computed from m! .

plf =PI ( = 1)

If we denote by L(6y,m*Y) the evidential likelihood of
the observed evidential data (X,Y) relatively to a tree Py,
the results of applying E>M algorithm with observation mf’y
and the complete likelihood of Oy is

H Z PlinTy Z pli oy, (®)

i=1h=

Ztih logm, + Z ,Bih logof (9
i,h i,hk

L(QH;mX’Y) =

Q(BH’QIS{(I)) =

and the maximum of Q(6y, Gl(f)) is obtained for 6(’”1) =

k(g+1) _(g+1)

(o " m ) LK
=1, H—1
Z,Bk<q) N
k(g+1) _ 77 (g+1) _ 1 (9)
where @ = ‘Zt(‘” and 7w N,Z ty
~"ih i=1
K
W _ “ 7l ¥ o pif
with £,/ = E[zy, |m*Y ;0] = p
¥ pl,-hn,f” x plha @
h=1 k=1
k(q) . (q) k
XY.gl@y _ % °m Plh!’l
and B0 = Elzyf |V 0ff) = i plarl
): zh”h Z plk

Algorithm 1 summarizes the E>M algorithm applied to the
maximisation of L(0g;m*").

C. Tree learning and best split selection

During the tree learning, for every leaf #;, and for every
possible split s dividing #, in 7;, and g, Oy (s) is estimated by
the maximization of L(0y(s);m*Y). Indeed, to compute the



Algorithm 1: 6y estimation with the E2M algorithm
applied to a tree Py

Input: 61(10) €

Qutput: final 6y

r=1;

repeat
Estimate 9(+1) = (aﬁ(ﬁl),ﬂff’H)) from 6] ;
Estimate L(0+D;mXY) using (8) ;
r=r+1;

(00) ;XY ) (0= Dm*T)
LT DX Y)

7 0y =00,

N oA W N -

6 until £ > €;

purity gain resulting from s, we use the parameters associated
to leaves 1y, t; and tg, we thus need the initial tree parameters
Oy and the split tree Oy = Oy (s) parameters has illustrated
in formula (3).

The main difference between our trees and classical CART
trees is the way parameters Oy (s) are estimated at each split
during the growing phase. In fact, with the E>M estimation,
when a leaf is split all the other leaf parameters change so
computing the purity gain of a given split requires to re-
estimate all the parameters of the tree (run Algorithm 1). In
the precise case (classical CART), assessing the quality of a
split does not require to re-estimate all the parameters. This
means that our method is more computationally demanding,
but has the advantage of handling uncertain data.

The global algorithm to build a E>M decision tree is
represented in algorithm 2. It results in a grown tree from
which predictions can be done.

Algorithm 2: Learning of a E>M decision tree general
algorithm

Input: 2, = {1} = {Qx}, data m*¥
Output: final tree Py
1 H=1;
2 Py ={n}={Qx}
3 Apply Algorithm 1 to 6;;
4 while STOPPING CRITERIA not met do
5 foreach Possible split s do
6 Compute O (s) ;
7 L Estimate Ai(6y(s),0);
Soptimal = argmaXg Ai(eH (s)v GH);
9 Py = @H(Soptimal);

10 Or-+1 = O (Soptimal )
11 H=H+1,

o

IV. EXPERIMENTS

Though real world applications often have imperfect and
uncertain data, there is a lack of benchmark datasets with those
characteristics. Therefore, in order to evaluate our methodol-
ogy, we use classical benchmark datasets and introduce data
reliability into them. The main idea is that, if some data can
be false (due to measurement error or expert mistake) and

we are just aware of some reliability degree about the data,
then we can build belief functions to model this awareness
with Equation (4). In applications, the data reliability is often
unknown. In this case a first step is advised in order to evaluate
it. This can be done for example by verifying the rate of the
corrupted data after a second measurement of a sample of
the whole dataset. By this means we can get global reliability
levels or local ones when repeating this verification separately
for all variables (attributes and class labels), a complete, some
other methods could be explored but this is not the topic of
this paper.

The E>M decision tree methodology is tested and com-
pared to CART with a 10-fold cross validation procedure on
several UCI datasets with the following characteristics:

data set | #features  # classes  # examples
Iris 4 3 150
Balance scale 4 3 625
Wine 13 3 178
Glass 9 7 214
E.Coli 8 7 336

For the stopping criteria, we set a maximum number of
leaves at 5 and a relative minimum purity gain of 5%.

Following a procedure similar to the one used in [11], a
simple noise injection procedure is performed as follows: for
each observation xlj (when attributes are noised) or class y;
(when classes are noised), a noise level },ii (7; in the case of
classes) is sampled from a uniform distribution on [0,1]. To
decide whether we replace (noise) an attribute/class value xlj or
y; by another value )le or ¥;, a number u is uniformly simulated
on [0,1], and the value is replaced if u < }’l’ (7). Replacing
values )Zl’ or y; are uniformly drawn from Qy; or Qy.

In the case of CART trees, noised observations are used
to learn the model, while in the case of E2M trees, data
uncertainty is modelled by masses on the noised observations
in regards to Equation (4) with the sampled levels ;.

As the application of the noise procedure is stochastic, we
make all experiments five times and retain the mean error rates
obtained by the cross-validation procedures. We also compare
the model prediction accuracies with the accuracy obtained
by predicting systematically the most represented class of the
learning data set. We call this predictor naive.

Tables I, II and III provide the error rate means for naive,
CART and the E>M decision trees respectively with noise on
all the attributes, on class labels and on both. A Wilcoxon
rank sum test was performed with a signifiance level of 5% to
test if the obtained error rates were statistically significatively
different, and best significant error rates were put in bold in
the tables.

algorithm ‘ naive CART E*M
iris 0.67 0.22 0.14
balance 0.54 0.54 0.37
wine 0.60 0.28 0.19
glass 0.65 0.54 0.58
E.Coli 0.57 0.34 0.28
ERROR RATES WITH NOISED ATTRIBUTES

TABLE 1.



algorithm | naive CART E’M
iris 0.67 0.15 0.16
balance 0.54 0.54 0.39
wine 0.63 0.23 0.20
glass 0.66 0.57 0.58
E.Coli 0.57 0.27 0.29
TABLE II. ERROR RATES WITH NOISED CLASS LABELS
algorithm | naive CART E*M
iris 0.67 0.44 0.17
balance 0.54 0.54 0.39
wine 0.63 0.46 0.22
glass 0.65 0.65 0.58
E.Coli 0.39 0.38 0.22
TABLE IIL ERROR RATES WITH NOISED ATTRIBUTES AND CLASS
LABELS

Although these results concern a limited number of data
sets, they are clearly promising, as the E2M trees almost
always perform better than CART trees, and perform almost
as well in other cases. This means that our algorithm is able to
take advantage of those data that are highly reliable, leaving
aside data with high uncertainty. The difference is obvious
when both attributes and classes are noised, in which case
E>M trees accuracy is much better than those of CART trees.
This difference could be explained by the number of noised
variables. In deed, when only class labels are noised, the
advantage of the evidential modelling of the data reliability
is less exploited as it only concerns a single variable.

V. CONCLUSION

A decision tree methodology was presented in the belief
function framework. The trees are grown from evidential
datasets and during the learning of the tree, the probabilities
of the different leaves and of the classes in the leaves are
estimated with the E2M algorithm. This method allows us
to take account of different kinds of uncertainty: probabilistic
data, missing data, imprecise data, fuzzy data, ....

We have demonstrated with some first experiments the
potential interest of our algorithm and of such a modelling.
Therefore it seems to have a lot of potential for a whole range
of applications. In particular, it appears quite better in a very
noisy (i.e., noised attributes and classes) environment.

There are also a couple of perspective or possible amelio-
rations that we could mention:

e using the E2M to evaluate classifiers when test data
classes (and possibly attributes) are themselves uncer-
tain. Indeed, in real application it will not always be
possible to have a sufficient number of precise test
data. Also, being able to do such an evaluation will
be necessary to develop pruning procedures of learned
trees;

e develop a local learning algorithm, that avoids having
to evaluate the whole set of parameters Oy(s) for
each split, and compare its performances to the global
method;

e extend the methodology to regression decision trees
when classes are numerical.
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