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In real world applications, data are often uncertain or imperfect. In most classification approaches, they are transformed into precise data. However, this uncertainty is an information in itself which should be part of the learning process. Data uncertainty can take several forms: probabilities, (fuzzy) sets of possible values, expert assessments, etc. We therefore need a flexible and generic enough model to represent and treat this uncertainty, such as belief functions. Decision trees are well known classifiers which are usually learned from precise datasets. In this paper we propose a methodology to learn decision trees from uncertain data in the belief function framework. In the proposed method, the tree parameters are estimated through the maximization of an evidential likelihood function computed from belief functions, using the recently proposed E 2 M algorithm that extends the classical EM. Some promising experiments compare the obtained trees with classical CART decision trees.

I. INTRODUCTION

Handling data uncertainty is an old and well-known problem in statistics and applied sciences [START_REF] Little | Statistical analysis with missing data[END_REF], [START_REF] Dempster | Maximum likelihood from incomplete data via the em algorithm[END_REF]. Most of the time, this uncertainty is removed from samples and datasets, for instance by replacing uncertain data with precise ones [START_REF] Josse | Handling missing values with regularized iterative multiple correspondence analysis[END_REF]. By doing so, a part of the information that should be integrated to the estimation process is lost.

Data uncertainty is of epistemic nature, as data can be assumed to have a unique true value which may be ill-known due to unreliable or imprecise information. Such uncertainty is most often described either by (fuzzy) sets or (partially specified) subjective probabilities. In the past decades, the capacity of probability models to faithfully represent such uncertainty have been questioned by imprecise probabilities tenants [4, chapter 5], [5, chapter 3]. For instance, probabilities cannot distinguish between uniformity due to ignorance (such as an imprecise observation) and uniformity as a physical property. There is therefore a need for a more general framework able to model non-probabilistic uncertainty. The theory of belief functions [START_REF] Dempster | Upper and lower probabilities induced by a multivalued mapping[END_REF], [START_REF] Shafer | A mathematical theory of evidence[END_REF] or Dempster-Shafer theory (DST) satisfies this need by blending probability and set representations. It includes as special cases many uncertainty models such as sets, possibility distributions, probability distributions, . . . . The DST was first presented as a statistical approach by Dempster [START_REF] Dempster | Upper and lower probabilities induced by a multivalued mapping[END_REF] and then extended by Shafer [START_REF] Shafer | A mathematical theory of evidence[END_REF] to also deal with non-statistical uncertainty. Most of evidential works then focused on problems such as information fusion or uncertain reasoning [START_REF] Denoeux | Conjunctive and disjunctive combination of belief functions induced by nondistinct bodies of evidence[END_REF], [START_REF] Lefevre | Belief function combination and conflict management[END_REF], [START_REF] Dubois | Comparative uncertainty, belief functions and accepted beliefs[END_REF]. This paper, however, is focused on the issue of learning and predicting from uncertain data.

The EM algorithm, also proposed by Dempster [START_REF] Dempster | Maximum likelihood from incomplete data via the em algorithm[END_REF], is a means of learning from incomplete data by maximizing a likelihood function computed from set-valued observations. The evidential EM (E 2 M) was recently proposed by Denoeux [START_REF] Denoeux | Maximum likelihood estimation from uncertain data in the belief function framework[END_REF] as an extension of the EM algorithm that is able to handle uncertain data modeled by belief functions.

In this paper we apply the E 2 M to a well-known statistical model: classification decision trees. Indeed, learning decision trees from uncertain data remains a challenge, as there are only few methods tackling this problem in the literature. This paper is organized as follows: after providing the basic background on decision trees and belief function theory in Section II, we present the proposed methodology in Section III. Finally, experiments are given in Section IV to show how the proposed methodology can enhance classical decision trees accuracy.

II. BACKGROUND

After introducing the needed notations, this section recalls the basis of usual classification trees and the necessary tools of the DST. Finally a brief overview of decision tree methodologies that take into account different types of uncertainty is presented.

A. Formalism

As in any classification problem, the goal is to learn a model to predict the class label y of an instance with attribute (or feature) values x. During the learning phase, the classifier is built from a learning dataset LD containing samples of (X,Y ) joint realisation. Its accuracy is then evaluated on a test dataset T D by comparing the model predictions with the corresponding observed classes.

The attributes X = (X 1 , . . . , X J ) take their values on

Ω X = Ω X 1 × • • • × Ω X J , the class Y on Ω Y = {ω 1 , . . . , ω K }. That is, K different classes can be predicted using J different attributes.
Spaces Ω X i can be categorical or continuous.

A precise dataset containing N samples is a set of realisations of the couple (X,Y ) and is denoted by

D =    x 1 , y 1 . . . x N , y N    =    x 1 1 , . . . , x J 1 , y 1 . . . x 1 N , . . . , x J N , y N    .
Samples are here assumed to be i.i.d.

B. Decision tree

Decision trees are well-known classifiers [START_REF] Breiman | Classification And Regression Trees[END_REF] that combine good performances with a simple graphical representation allowing for an easy interpretation.

A decision tree is formally a rooted tree structure. Terminal nodes are called leaves. To each non-terminal node of the tree is associated an attribute, and to each branch issued from this node is associated a condition on this attribute that determines which data of the sample D go into that branch. A given decision tree therefore determines a partition of the space Ω X where each element of the partition is associated to a leaf. In the sequel, we will use interchangeably the term leaf and its associated partition element.

We will describe a tree P H = {t 1 , . . . ,t H } by its set of leaves t 1 , . . . ,t H . The leaf index variable is then defined relatively to P H by:

Z H ∈ Ω Z H = {1, . .

. , H}

In order to lighten the notations, Z H will be simply denoted Z when there is no ambiguity about the tree to which it refers.

We can associate to each leaf t h the following quantities:

• by an abuse of language we will denote by t h the partition element t h = A 1 h × . . . × A J h where A j h ⊆ Ω X j , j = 1, . . . , J is associated to branches leading to t h . By definition, for any two distinct leaves t h and t h we have t h ∩ t h = / 0.

• the probability

π h = P(Z = h) of leaf t h • a multinomial distribution α h = (α 1 h , . . . , α K h ) where α k h = P(Y = ω k | Z = h) is the probability of the k th class inside leaf t h .
Usually, if a data item falls into leaf t h , the predicted class is arg max

ω k ∈Ω Y α k h , i.e.
the class with highest probability.

The parameters of a tree P H can be summarized as a multidimensional parameter θ H :

θ H =    α 1 1 • • • α K 1 π 1 . . . . . . . . . . . . α 1 H • • • α K H π H    ∈ Θ H
where Θ H is the space of all possible parameters given a tree containing H leaves. In the case of precise data, the parameters π h , α k h , h = 1, . . . , H, k = 1, . . . , K are simply estimated by proportions:

π h = |{x i : x i ∈t h , i=1,...,N}| /N (1) 
α k h = |{(x i , y i ) : x i ∈ t h , y i = ω k , i = 1, . . . , N}| |{x i : x i ∈ t h , i = 1, . . . , N}| (2) 
These notations are unusual to describe decision trees, but they will be instrumental when introducing the learning problem with uncertain data. We can already notice that the distributions π h , α h , i = 1, . . . , H can be viewed as a mixture of multinomial distributions. The next small example illustrates those notations.

Example 1 Let us consider a data set with N = 12 data items, J = 2 attributes and K = 3 classes. Spaces are described as follows: 

Ω X 1 = [1, 10], Ω X 2 = [13, 150], Ω Y = {a, b, c}. X 1 y = a X 1 < 3 X 2 y = b X 2 < 45 y = c X 2 ≥ 45 X 1 ≥ 3 t 1 t 2 t 3
A 1 2 × A 2 2 = [3, 10] × [13, 45[, π 2 = 3 /12, α 2 = ( 1 /3, 2 /3, 0)
, and the prediction for any test data item in t 2 (for example, x 1 = 6 and x 2 = 30) will be y = b.

As illustrated in Fig. 1, each non-terminal node of a tree is associated to a split of its parent. There are two main kinds of decision trees in the literature: CART trees [START_REF] Breiman | Classification And Regression Trees[END_REF], where each split is binary (as in Example 1) and C4.5 [START_REF] Quinlan | Induction of decision trees[END_REF] where a nonterminal node is split in as much branches as the number of modalities of the variable associated to the node (preliminary discretization can be required). In this paper, the approach will be applied on CART trees, but it extends easily to C4.5.

The construction of a CART tree goes as follows: given a tree P H = {t 1 , . . . ,t H }, for every leaf t h , find the best split s among all possible splits that divides t h into two new leaves t L ,t R and the resulting tree is P H+1 = {t 1 , . . . ,t h-1 ,t L ,t R ,t h+1 . . . ,t H }. The construction starts with the root node P 1 and proceeds recursively. By a small abuse of notation we denote by P H (s) = P H+1 the tree obtained from P H with the split s, and by θ H (s) = θ H+1 its parameter.

The quality of a split s dividing a node t h is usually measured by how well it separates its classes. This is measured by a so-called impurity measure i (a pure node is a node that contains samples of the same class).

The tree learning requires to specify some stopping criteria such as minimum purity gain threshold, maximum number of leaves, maximum tree depth, . . . . Those criteria are called prepruning whereas post-pruning procedures aim to reduce the tree once it is fully grown. Both procedures strive to make the tree more readable and to reduce the risk of overfitting of the tree model without diminishing too much its predictive accuracy.

In our methodology we retained as measure of informative content the usual entropy of the distribution α h of a leaf t h , defined by

i(t h ) = - K ∑ k=1 α k h log(α k h ).
The quality ∆i(θ H (s), θ H ) of the split s is then measured as

∆i(θ H (s), θ H ) = i(t h ) - π L π L + π R i(t L ) - π R π L + π R i(t R ) (3) 

C. Belief function

Let Ω W be a finite set representing all the possible values of a variable W whose value is uncertain. In the case of uncertainty over a single sample or datum, this uncertainty concerns a fixed but ill-known value, hence is of epistemic nature (as opposed to aleatory uncertainty). As said in the Introduction, such type of uncertainty may be modelled by a variety of representations, including subjective probabilities but also sets, possibility distributions, p-boxes, etc. DST offers a generic and unifying framework to model all these representations.

A mass function or a basic belief assignment (bba) m W on W , the basic tool of DST, is a function from the powerset

2 Ω W of W to [0, 1] verifying ∑ B∈2 Ω W m W (B) = 1. A set A ∈ 2 Ω W is a focal element of m W if m W (A) > 0.
The particular case of probabilities is retrieved when all the focal elements are singletons (i.e., m W (A) > 0 iff |A| = 1), while an imprecise observation A is modelled by committing all the mass to the set A (i.e., m W (A) = 1). Ignorance or missing data are just an extreme case of such imprecision, and a missing data sample W can be modelled by m W (Ω W ) = 1. Another interesting possibility is to assign a reliability value 1-γ to an information source. 1γ can then be considered as the belief degree that the source is relevant, and the information can be modelled by the following equation:

m W ({w}) = 1 -γ; m W (Ω W ) = γ (4) 
The belief and plausibility functions are defined by:

Bel W (A) = ∑ B⊆A m W (B), Pl W (A) = ∑ B∩A = / 0 m W (B) (5) 
Bel W (A) measures the amount of information that implies W ∈ A, and is a measure of certainty, while Pl W (A) measure the amount of information that does not conflict with W ∈ A, and is a measure of plausibility. We naturally have Bel W (A) ≤ Pl W (A) with the two being equal in the specific case of probabilities.

In our classification context, an evidential dataset ED will be of the form

ED = m X,Y =    m X,Y 1 . . . m X,Y N    =    m X 1 1 • • • m X J 1 m Y 1 . . . . . . . . . . . . m X 1 N • • • m X J N m Y N   
where m X,Y i describes the i th sample with its uncertainty . Note that precise data set D is retrieved when m({x j i }) = 1 and m(y i ) = 1 for all i, j.

D. Related work

Uncertainty in classification problems can be related to data quality (imperfection of data), on which this paper focuses, or to the classification prediction model (such as the frequentist estimations of the leaves and class probabilities in CART purity gain computations).

Globally, works have been done in classical probabilistic framework, in the fuzzy set one, in the imprecise probabilistic one, or in the belief function one.

Most works dealing with uncertainty in classification (be it in probabilistic, fuzzy, imprecise probabilistic or evidential frameworks) concern uncertainties related to the classification model [START_REF] Abellán | An ensemble method using credal decision trees[END_REF], [START_REF] Elouedi | Belief decision trees: theoretical foundations[END_REF], [START_REF] Sutton-Charani | Classification trees based on belief functions[END_REF]. The few methodologies that handle uncertain attributes in the data are either fuzzy [START_REF] Bouchon-Meunier | Modelling and management of subjective information in a fuzzy setting[END_REF], [START_REF] Olaru | A complete fuzzy decision tree technique[END_REF] or probabilistic [START_REF] Tsang | Decision trees for uncertain data[END_REF], [START_REF] Ciampi | Growing a tree classifier with imprecise data[END_REF] and rely heavily on considering "fractions" of examples falling in the tree leaves, something that cannot be done when the uncertainty model does not (always) bear on singletons, as is the case with belief functions.

In the probabilistic framework, Perinel [START_REF] Périnel | Construire un arbre de discrimination binaire à partir de données imprécises[END_REF] proposed a tree learning algorithm handling uncertain data modelled by subjective probabilities. It considers uncertainty on the attributes (not the class) and uses the EM algorithm on the conditional likelihood of the class given the input to estimate the set of probability densities of the classes in the leaves (our α k h parameters). Our work follows a similar line, but with a more generic uncertainty model (belief functions). Furthermore we consider that both the attributes and the class label can be uncertain.

III. LEARNING DECISION TREES WITH UNCERTAIN DATA

In this section, the evidential likelihood and the E 2 M algorithm basis are first recalled, then application of the E 2 M to the tree parameter estimation is then presented and we finally give the general algorithm of our methodology. We only give the essential tools necessary to apply our method. Details about the general interpretation and implementation of E 2 M can be found in [START_REF] Denoeux | Maximum likelihood estimation from uncertain data in the belief function framework[END_REF].

A. Evidential likelihood and E 2 M algorithm

The E 2 M algorithm is an EM extension that handles uncertain data modelled by belief functions [START_REF] Denoeux | Maximum likelihood estimation from uncertain data in the belief function framework[END_REF]. It maximizes the evidential likelihood, which weights incomplete likelihood of each focal element by its mass. Given a parametric model {P θ | θ ∈ Θ}, the likelihood is L(θ ; w) = P θ (W = w). The incomplete likelihood of a set-valued observation w ∈ A is

L(θ ; A) = ∑ w∈A P θ (W = w) = P θ (w ∈ A)
and when uncertainty is described by m W , evidential likelihood is given by:

L(θ ; m W ) = z ∑ i=1 m W (A i )L(θ ; A i ) (6) 
where {A 1 , . . . , A z } are the focal elements of m W .

As for the classic EM algorithm, the maximisation of ( 6) is done through an iterative procedure alternating between two steps: Expectation (E) and Maximisation (M).

During the r th iteration, at the E step, the expectation of the complete likelihood's logarithm log L(θ ;W ) is computed with respect to a specific probability measure P(. | θ (r) , m W ), that we denote E[log(L(θ ,W )) | θ (r) , m W ]. This probability measure is obtained by applying Dempster's combination [START_REF] Dempster | Upper and lower probabilities induced by a multivalued mapping[END_REF] between P θ (r) (the current parametric model) and the uncertain observation m W . This combination results, ∀w ∈ Ω W , in:

P(w | θ (r) , m W ) = P θ (r) (w)Pl W ({w}) L(θ (r) ; m W ) (7) 
The resulting mass function is a probability distribution (as one mass is a probability distribution). Eq. ( 7) can be applied if we assume cognitive independence between data uncertainty, that is learning the value of a given datum will not change our uncertainty about the value of other data (we refer to [START_REF] Denoeux | Maximum likelihood estimation from uncertain data in the belief function framework[END_REF] for further explanations).

Once probability measure ( 7) is computed, we can proceed to the M step, in which the parameter θ (r+1) maximising this expectation is found.

• E-step: Q(θ , θ (r) ) = E[log(L(θ ;W )) | θ (r) , m W ] • M-step: θ (r+1) = arg max θ ∈Θ Q(θ , θ (r) )
As proved in [START_REF] Denoeux | Maximum likelihood estimation from uncertain data in the belief function framework[END_REF], the obtained parameter happens to increase the value of the evidential likelihood [START_REF] Dempster | Upper and lower probabilities induced by a multivalued mapping[END_REF]. The E 2 M algorithm therefore converges towards a local maximum of evidential likelihood estimator. Any likelihood maximisation problem where the data are evidential can thus be solved with the E 2 M algorithm.

In this work, we use the E 2 M algorithm considering that our model is a mixture of multinomial distribution, that is each leaf has a given probability and contains class items coming from a multinomial distribution. It can also be seen as a particular case of the general classification problem handled in [START_REF] Denoeux | Maximum likelihood estimation from uncertain data in the belief function framework[END_REF].

B. Tree parameters estimation through the E 2 M algorithm

During the learning of a E 2 M decision tree, the probabilities (π h , α h ) h=1,...,H cannot be estimated by proportions because of the uncertain nature of the data.

For a given tree P H , the basic principle of our methodology it to estimate parameters (π h , α h ) h=1,...,H by the maximisation of the evidential likelihood of the data in regard to the couple (Z,Y ) with the E 2 M algorithm. This likelihood maximisation requires some definitions:

• the latent or hidden variables (not directly observable) resulting from the data uncertainty: y k i = 1 if y i = ω k , 0 otherwise and z ih = 1 if the i th sample is in the leaf t h , 0 otherwise.

• the plausibility pl ih that a sample m X,Y i belong to a given leaf t h :

pl ih = Pl Z i (z ih = 1) = Pl X i (× J j=1 A j h ) = J ∏ j=1 Pl X j i (A j )
where Pl X j i is the plausibility computed from m X j i and × the cartesian product. By this mean we can compute plausibility on X from plausibility on Z. The last product is due to the cognitive independence assumption.

• the plausibility pl k i that a class of sample m X,Y i is k:

pl k i = Pl Y i (y k = 1) = Pl Y i ({ω k }) where Pl Y i is the plausibility computed from m Y i .
If we denote by L(θ H , m X,Y ) the evidential likelihood of the observed evidential data (X,Y ) relatively to a tree P H , the results of applying E 2 M algorithm with observation m X,Y i and the complete likelihood of θ H is

L(θ H ; m X,Y ) = N ∏ i=1 H ∑ h=1 pl ih π h K ∑ k=1 pl k i α k h (8) 
Q(θ H , θ (q) 
H ) = ∑ i,h t (q) ih log π h + ∑ i,h,k β k(q) ih log α k h (9) 
and the maximum of

Q(θ H , θ (q) 
H ) is obtained for θ

(q+1) H := (α k(q+1) h , π (q+1) h ) h=1,...,K k=1,...,K-1 j=1,...,H-1 where α k(q+1) h = ∑ i β k(q) ih ∑ i t (q) ih and π (q+1) h = 1 N N ∑ i=1 t (q) ih with t (q) ih = E[z ih | m X,Y ; θ (q) H ] = π (q) h pl ih K ∑ k=1 α k(q) h pl k i H ∑ h=1 pl ih π (q) h K ∑ k=1 pl k i α k(q) h and β k(q) ih = E[z ih y k i | m X,Y ; θ (q) H ] = α k(q) h π (q) h .pl ih pl k i H ∑ h=1 pl ih π (q) h K ∑ k=1 pl k i α k(q) h
Algorithm 1 summarizes the E 2 M algorithm applied to the maximisation of L(θ H ; m X,Y ).

C. Tree learning and best split selection

During the tree learning, for every leaf t h and for every possible split s dividing t h in t L and t R , θ H (s) is estimated by the maximization of L(θ H (s); m X,Y ). Indeed, to compute the Algorithm 1: θ H estimation with the E 2 M algorithm applied to a tree P H Input:

θ (0) H , ε Output: final θ H 1 r = 1; 2 repeat 3 Estimate θ (r+1) = (α k(q+1) h , π (q+1) h ) from θ (r) H ; 4 Estimate L(θ (r+1) ; m X,Y ) using (8) ; 5 r = r + 1; 6 until L(θ (r) ;m X,Y )-L(θ (r-1);m X,Y ) L(θ (r-1) ;m X,Y ) > ε; 7 θ H = θ (r) ;
purity gain resulting from s, we use the parameters associated to leaves t h , t L and t R , we thus need the initial tree parameters θ H and the split tree θ H+1 = θ H (s) parameters has illustrated in formula [START_REF] Josse | Handling missing values with regularized iterative multiple correspondence analysis[END_REF].

The main difference between our trees and classical CART trees is the way parameters θ H (s) are estimated at each split during the growing phase. In fact, with the E 2 M estimation, when a leaf is split all the other leaf parameters change so computing the purity gain of a given split requires to reestimate all the parameters of the tree (run Algorithm 1). In the precise case (classical CART), assessing the quality of a split does not require to re-estimate all the parameters. This means that our method is more computationally demanding, but has the advantage of handling uncertain data.

The global algorithm to build a E 2 M decision tree is represented in algorithm 2. It results in a grown tree from which predictions can be done.

Algorithm 2: Learning of a E 2 M decision tree general algorithm IV. EXPERIMENTS Though real world applications often have imperfect and uncertain data, there is a lack of benchmark datasets with those characteristics. Therefore, in order to evaluate our methodology, we use classical benchmark datasets and introduce data reliability into them. The main idea is that, if some data can be false (due to measurement error or expert mistake) and we are just aware of some reliability degree about the data, then we can build belief functions to model this awareness with Equation (4). In applications, the data reliability is often unknown. In this case a first step is advised in order to evaluate it. This can be done for example by verifying the rate of the corrupted data after a second measurement of a sample of the whole dataset. By this means we can get global reliability levels or local ones when repeating this verification separately for all variables (attributes and class labels), a complete, some other methods could be explored but this is not the topic of this paper.

Input: P 1 = {t 1 } = {Ω X }, data m X,Y Output: final tree P H 1 H = 1; 2 P 1 = {t 1 } = {Ω X };
The E 2 M decision tree methodology is tested and compared to CART with a 10-fold cross validation procedure on several UCI datasets with the following characteristics: For the stopping criteria, we set a maximum number of leaves at 5 and a relative minimum purity gain of 5%.

Following a procedure similar to the one used in [START_REF] Denoeux | Maximum likelihood estimation from uncertain data in the belief function framework[END_REF], a simple noise injection procedure is performed as follows: for each observation x j i (when attributes are noised) or class y i (when classes are noised), a noise level γ j i (γ i in the case of classes) is sampled from a uniform distribution on [0, 1]. To decide whether we replace (noise) an attribute/class value x j i or y i by another value x j i or ỹi , a number u is uniformly simulated on [0,1], and the value is replaced if u < γ j i (γ i ). Replacing values x j i or ỹi are uniformly drawn from Ω X j or Ω Y . In the case of CART trees, noised observations are used to learn the model, while in the case of E 2 M trees, data uncertainty is modelled by masses on the noised observations in regards to Equation (4) with the sampled levels γ j i . As the application of the noise procedure is stochastic, we make all experiments five times and retain the mean error rates obtained by the cross-validation procedures. We also compare the model prediction accuracies with the accuracy obtained by predicting systematically the most represented class of the learning data set. We call this predictor naive.

Tables I, II and III provide the error rate means for naive, CART and the E 2 M decision trees respectively with noise on all the attributes, on class labels and on both. A Wilcoxon rank sum test was performed with a signifiance level of 5% to test if the obtained error rates were statistically significatively different, and best significant error rates were put in bold in the tables. Although these results concern a limited number of data sets, they are clearly promising, as the E 2 M trees almost always perform better than CART trees, and perform almost as well in other cases. This means that our algorithm is able to take advantage of those data that are highly reliable, leaving aside data with high uncertainty. The difference is obvious when both attributes and classes are noised, in which case E 2 M trees accuracy is much better than those of CART trees. This difference could be explained by the number of noised variables. In deed, when only class labels are noised, the advantage of the evidential modelling of the data reliability is less exploited as it only concerns a single variable.

V. CONCLUSION

A decision tree methodology was presented in the belief function framework. The trees are grown from evidential datasets and during the learning of the tree, the probabilities of the different leaves and of the classes in the leaves are estimated with the E 2 M algorithm. This method allows us to take account of different kinds of uncertainty: probabilistic data, missing data, imprecise data, fuzzy data, . . . . We have demonstrated with some first experiments the potential interest of our algorithm and of such a modelling. Therefore it seems to have a lot of potential for a whole range of applications. In particular, it appears quite better in a very noisy (i.e., noised attributes and classes) environment.

There are also a couple of perspective or possible ameliorations that we could mention:

• using the E 2 M to evaluate classifiers when test data classes (and possibly attributes) are themselves uncertain. Indeed, in real application it will not always be possible to have a sufficient number of precise test data. Also, being able to do such an evaluation will be necessary to develop pruning procedures of learned trees;

• develop a local learning algorithm, that avoids having to evaluate the whole set of parameters θ H (s) for each split, and compare its performances to the global method;

• extend the methodology to regression decision trees when classes are numerical.
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 11 = H + 1;

  Estimate ∆i(θ H (s), θ H ); 8 s optimal = arg max s ∆i(θ H (s), θ H ); H+1 = P H (s optimal );

	3 Apply Algorithm 1 to θ 1 ;
	4 while STOPPING CRITERIA not met do
	5	foreach Possible split s do
	6	Compute θ H (s) ;
	10	θ H+1 = θ H (s optimal );
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TABLE II

 II 

	.	ERROR RATES WITH NOISED CLASS LABELS
	algorithm naive CART E 2 M
		iris	0.67	0.44	0.17
		balance	0.54	0.54	0.39
		wine	0.63	0.46	0.22
		glass	0.65	0.65	0.58
		E.Coli	0.39	0.38	0.22
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