O Bodini

J David ⋆⋆

Ph Marchal

Random-bit optimal uniform sampling for rooted planar trees with given sequence of degrees and Applications

In this paper, we redesign and simplify an algorithm due to Remy et al. for the generation of rooted planar trees that satisfies a given partition of degrees. This new version is now optimal in terms of random bit complexity, up to a multiplicative constant. We then apply a natural process "simulate-guess-and-proof" to analyze the height of a random Motzkin in function of its frequency of unary nodes. When the number of unary nodes dominates, we prove some unconventional height phenomenon (i.e. outside the universal Θ(√ n) behaviour.)

Introduction

Trees are probably among the most studied objects in combinatorics, computer science and probability. The literature on the subject is abundant and covers many aspects (analysis of structural properties such as height, profile, path length, number of patterns, but also dynamic aspects such as Galton-Watson processes or random generation, ...) and use various techniques such as analytic combinatorics, graph theory, probability,... More particularly, in computer science, trees are a natural way to structure and manage data, and as such, they are the basis of many crucial algorithms (binary search trees, quad-trees, 2-3-4 trees, ...). In this article, we are essentially interested in the random sampling of rooted planar trees. This topic itself is also subject to a extensive study. To mention only the best known algorithms, we can distinguish four approaches. The first two of them are in fact more general, but can be applied efficiently to the sampling of trees, the two others are ad hoc to tree sampling:

1. The random sampling by the recursive method [START_REF] Flajolet | A calculus for the random generation of labelled combinatorial structures[END_REF] of generating a tree from rules described with coefficients associated generating series [START_REF] Denise | Controlled non uniform random generation of decomposable structures[END_REF], 2. The random generation under Boltzmann model that allows uniform generation to approximate size from the evaluation of generating functions [START_REF] Duchon | Boltzmann samplers for the random generation of combinatorial structures[END_REF][START_REF] Bodini | Multi-dimensional Boltzmann Sampling of Languages[END_REF].

3. The random generation by Galton-Watson processes based on the dynamics of branching processes [START_REF] Devroye | Simulating size-constrained galton-watson trees[END_REF], 4. Samplers following Remy precepts [START_REF] Remy | Un procédé itératif de dénombrement d'arbres binaires et son application a leur génération aléatoire[END_REF][START_REF] Alonso | A lineartime algorithm for the generation of trees[END_REF][START_REF] Alonso | Uniform generation of a schröder tree[END_REF][START_REF] Bacher | Exact-size sampling for motzkin trees in linear time via boltzmann samplers and holonomic specification[END_REF].

Concerning the generation of trees with a fixed degree sequence, the reference algorithms are due to Alonso et al [START_REF] Alonso | A lineartime algorithm for the generation of trees[END_REF]. However, the complete understanding of their approach seems to us quite intricate. Moreover their approach is not optimal in terms of entropy (i.e. the minimum numbers of random bits necessary to draw an object uniformly as described in the famous Knuth-Yao paper [START_REF] Knuth | The Complexity of Nonuniform Random Number Generation[END_REF]). In this article, we give two versions of an algorithm for drawing efficiently trees whose the degree sequence is given. Our first version is fast and easy to implement, and its description is simple and (we hope) natural. It works, essentially like Alonso's algorithm, though we explicitly use the Lukasiewicz code of trees. Our second version only modifies the two first steps of the first algorithm. It is nearly optimal in terms of entropy because it uses only in average a linear number of random bits to draw a tree. Moreover, Lukasiewicz codes and a very elementary version of cyclic lemma allows us to give a simple proof of the theorem of Tutte [START_REF] Tutte | The number of planted plane trees with a given partition[END_REF] which gives under an explicit multinomial form the number of plane trees with a given partition of the degrees. From our sampler, we simulate various kind of trees. We focus our attention on unary-binary rooted planar trees (also called Motzkin trees) with a fixed frequency of unary nodes. In particular, we look for the variation of the height depending of the frequency of unary nodes. We can easily conjecture the nature of the variation. Our second contribution is to describe and prove the distribution of the height according to the number of unary nodes. The proof follows a probabilistic approach and uses in a central the notion of continuous random trees (CRT). Even if the distribution of the height still follows a classical theta law, the expected value can leave the universal Θ(√ n)

behaviours.

The general framework used in this paper to describe trees is the analytic combinatorics even if we use some classical notion on word theory and a basis of probabilistic concepts in the second part of the paper. More specifically, we deal with the symbolic method to describe the bijection between Lukasiewicz words and trees. A combinatorial class is a set of discrete objects O, provided with a (multidimensional) size function s : O → N d for some integer d, in such way that for every n ∈ N d , the set of discrete objects of size n, denoted by On, is finite. In the classical definition, the size is just scalar, but for our parametrized problem this extension is more convenient. For more details, see for instance [FS09]. This approach is very well suited to the definition of trees. For instance, the class of binary trees B can be described by the following classical specification :

B = Z + ZB 2 .
In this framework, random sampling can be interpreted as follows. A size uniform random generator is an algorithm that generate discrete objects of a combinatorial class (O, s), such that for all objects o1, o2 ∈ On of the same size, the probability to generate o1 is equal to the probability to generate o2.

The paper is organized as follows. Section 2 presents the definition of tree-alphabets, valid words, Lukasiewicz words ordered trees and the links between the objects. Section 3 presents a re-description of an algorithm by Alonso et al. [START_REF] Alonso | A lineartime algorithm for the generation of trees[END_REF], using the notion of Lukasiewicz words.

Our approach is to prove the algorithm step by step, using simple arguments. Section 4 present the dichotomic sampling method, which directly generates random valid words, using a linear number of random bits.

The last part of the paper follows a simulate-guess-and-prove scheme. We first show some examples of random trees obtained from the generator. Then, we experimentally and theoretically study the evolution of the tree's height according to the proportion of unary nodes.

2 Words and Trees

Valid words and Lukasiewicz Words

This section is devoted to recall the one-to-one map between trees and Lukasiewicz words. This bijection is the central point for the sampling part of the paper. Let us recall basic definitions on words. An alphabet Σ is a finite tuple (a1, ..., a d) of distinct symbols called letters. A word w defined on Σ is a sequence of letters from Σ. In the following, wi denotes the i-th letters of the word w, |w| its length and for all letter a ∈ Σ, |w|a counts the occurrences of the letter a in w. A language defined on Σ is a set of words defined of Σ.

The following new notion of tree-alphabet will make sense in the next sections. It will allow us to define subclasses of Lukasiewicz words which are in relation to natural combinatorial classes of trees.

Definition 1. A tree-alphabet Σ f is a couple (Σ, f) constituted by an alphabet Σ = (a1, . . . , a k) and a function f : Σ → N ∪ {-1} that associates each symbol of Σ to an integer such that: i. f (a1) = -1, ii. f (ai) ≤ f (ai+1), for 1 ≤ i < k.

We finish this section by introducing Lukasiewicz words. Definition 2. A word w on the tree-alphabet Σ f = ((a0, ..., a k), f) is a f -Lukasiewicz word if :

i. for all i < k, we have i j=0 |w|a j f (aj) ≥ 0 ii.

k i=1 |w|a i f (ai) = -1
When the condition ii. is verified, we say that the word w if f -valid. By extension and convenience, we also say that a k-tuple (n1, . . . , n k) is f -valid k i=1 f (ni) = -1. The Lukasiewicz words L f are just the union over all tree-alphabet Σ f of the f -Lukasiewicz words. A classical and useful representation of words on a tree-alphabet is to plot a path describing the evolution of i j=1 f (wj). Then, a word of size n is valid if and only if the path terminates at position (n, -1) and it is a Lukasiewicz word if and only if the only step that goes under the x -axis is the last one. In particular, these remarks prove that we can verify in linear time if a word is or not a Lukasiewicz word. For instance, if f (a) = -1, f (b) = 0 and f (c) = 1, the following paths represent (from left to right) a Lukasiewicz word, a f -valid word and a non valid word:

i i j=1 f (w i) + 1 c c b a b a a i j=1 f (w i) + 1 b a b a c c a i j=1 f (w i) + 1
c a c a b a a Finally, we can give an alternative definition of Lukasiewicz words in the framework of the symbolic method as follows: a word w defined over Σ f is a Lukasiewicz word if w = aw1 . . . w f (a)+1 n where a ∈ Σ f and ∀i ≤ f (a)+1, wi is a Lukasiewicz word. In other word, the combinatorial class of Lukasiewicz words follow the recursive specification:

L = a∈Σ f aL f (s)+1

The Tree classes

Rooted planar trees are very classical combinatorial objects. Let us recall how we can define them recursively and how this can be described by a formal grammar. Let us begin by the rooted tree class T over the tree-alphabet Σ f which can be defined as the smallest set verifying:

-[x] ∈ T for every x ∈ Σ such that f (x) = -1. -Let x such that f (x) = k and T1, • • • , T k in T , then x[T1, • • • , T k] is in T .
So, the set T of all planar Σ f -labelled trees is a combinatorial class whose the size of a tree T is (|f

-1 (a1)|, • • • , |f -1 (a d)|)
where Σ = (a1, ..., a d).

And just observing the recursive definition, we can specify it from the following symbolic grammar:

G = s∈Σ f sG f (s)+1
Theorem 1 (Lukasiewicz). The combinatorial class of f -Lukasiewicz words L f is isomorphic to the combinatorial class of trees described by the specification (grammar

) G = s∈Σ f sG f (s)+1 .
An explicit bijection can be done as follows: from a Σ f -labelled tree T , a prefix walk gives a word. This word is a f -Lukasiewicz word. Conversely, from a f -Lukasiewicz word w, we build a tree recursively, the root is of degree f (w1) + 1 and we continue with the sons as a left-first depth course.

Input: A tree-alphabet Σ f of k letters, a tuple n

Permutation

Probability of each permutation: 1 n!

Valid Word

Probability for each valid word:

k i=1 n i ! n! Lukasiewicz Word
Probability for each Lukasiewicz word:

k i=1 n i ! (n-1)! Planar Tree
Probability for each tree:

k i=1 n i ! (n-1)! Fisher-Yates Algorithm: Θ(n) Dichotomic Sampling: Θ(n) random bit complexity
Transform according to n Circular permutation:

Θ(n) Bijection in Θ(n)
Fig. 1. Diagram of the two possible algorithms. The algorithm (Section 3) using the Fisher-Yates algorithm uses Θ(n log n) random bits to generate a random tree with n nodes, but is easy to implement. The algorithm (Section 4) using the Knuth-Yao algorithm [START_REF] Knuth | The Complexity of Nonuniform Random Number Generation[END_REF] or our dichotomic sampling method use a linear number of randombit, but doesn't allow us to prove the Tutte's enumerative theorem.

A random sampler as a proof of Tutte's theorem

This section is devoted to describe the algorithm that we propose for drawing uniformly a rooted planar tree with a given sequence of degree. The diagram (Fig. 1) shows the very simple strategy we adopt. The first algorithm contains 4 steps. The first and the last steps respectively consist in generating a random permutation using the Fisher-Yates algorithm and the transformation of a Lukasiewicz word into a tree. The two other steps are described in the two following subsections. Each subsection contains an algorithm, the proof of its validity, and its time and space complexity. We also uses the transformations to obtain enumeration results on each combinatorial object. Those enumeration results will be useful to prove that the random generator is size-uniform.

From a permutation to a valid word This part is essentially based on the following surjection from permutations to words. Consider the application Φ from Σn the set of permutations of size n to Wn the words of size n having for 1 ≤ i ≤ k, ni letters ai such that :

Φ((σ1, ..., σn)) = φ(σ1) • • • φ(σn)
where

φ(k) = ai if n1 + • • • n k-1 + 1 ≤ k ≤ n1 + • • • n k .
Algorithm 1: From a permutation to a valid word

Input: A tree-alphabet Σ f of
n! k i=1 n i ! . Lemma 2

. The time and space complexity of Algorithm 1 is Θ(n).

Proof. The space complexity is linear since we create a tabular of size n. Instructions of line 1, 2, 5, 6 can be done in constant time. Lines 5 and 6 are executed k i=1 ni times, that is to say n times.

From a valid word to a Lukasiewicz word This part is essentially based on a very simple version of the cyclic lemma which says that among the n circular permutations of a valid word, there is only one which is a Lukasiewicz word. Therefore, if we have a uniform random valid word and transform it into a Lukasiewicz word, we obtain a uniform Lukasiewicz word. Proof. Let w ′ = w ℓ+1 • • • wnw1 • • • w ℓ be the circular permutation of w at a position ℓ. We notice that w ′ is a valid word. Let's now picture the path representation of w and w ′ (see Figure 2). Let b(i) (resp. (a(i)) be the height of the path at position i before (resp. after) the circular permutation. In other words:

b(i) = i j=1 f (wj) a(i) = b(i) -b(ℓ), for all i ∈ {ℓ + 1, . . . , n} b(i) -b(ℓ) -1, for all i ∈ {1, . . . , ℓ}
w ′ is a Lukasiewicz word iff a(i) ≥ 0, for all i ∈ {1, . . . , ℓ-1, ℓ+1, . . . , n}, that is to say:

a(i) ≥ 0 ⇐⇒ b(i) ≥ b(ℓ), for all i ∈ {ℓ + 1, . . . , n} b(i) > b(ℓ), for all i ∈ {1, . . . , ℓ -1}
This concludes the proof.

Corollary 2. The number of Lukasiewicz words in

Σ n f is exactly (n-1)! k i=1 n i ! . Proof.
From Lemma 3 we know that each Lukasiewicz word can be obtained from exactly n valid words. We conclude using Corollary 1 Corollary 3 (Tutte). The number of trees having ni of type i and such that (n1, ..., n k) is f -valid is exactly (n-1)! k i=1 n i ! . Proof. It is a direct consequence of the bijection between trees and Lukasiewicz words.

We use the property of Lemma 3 to describe an algorithm that transforms any valid word into its associated Lukasiewicz word.

Lemma 4. Algorithm 2 transforms a valid word into its Lukasiewicz word. Its time and space complexity is Θ(n).

Proof. The space complexity is linear since we create a tabular v of size n. The first loop computes unique integer ℓ such that w ℓ+1 • • • wnw1 • • • w ℓ is a Lukasiewicz word, in linear time. The second and the third loop fill the tabular v of length

n such that v = w ℓ+1 • • • wnw1 • • • w ℓ .

First algorithm

Theorem 2. Algorithm 3 is a random planar tree generator. Its time and space arithmetic complexity is linear.

The dichotomic sampling method

Using the diagram of Figure 1 above, we arrive at the algorithm 3. However, this algorithm is not optimal in the number of random bits because drawing the permutation consumes more bits than necessary. We shall describe another method to generate valid words more efficiently. The problem is just to draw a f -valid word from a f -valid tuple n = (n1, . . . , n k). For that purpose, consider the random variable A on the letters of Σ, assume that A1 follows the distribution Dn:

P rob(A1 = ai) = ni i ni
, draw A1 (says A1 = aj) and put it in the first place in the word (i.e. w1 = aj). Now, A2 is conditioned by A1, just by decrease by one nj , again draw A2 and put it in the second place, and so on. This algorithm is described below (see Algorithm 5). It is clear that the built word is a f -valid word, because it contains exactly the good number of each letters. Now, it is drawn uniformly, indeed, in a uniform f -valid word, the first letter follows exactly the distribution Dn, the sequel follows directly by induction.

Algorithm 4: From a tuple n to a valid word So, to obtain a random-bit optimal sampler, we just need to have a optimal sampler for general discrete distribution. But, it is exactly the result obtained by Knuth-Yao [START_REF] Knuth | The Complexity of Nonuniform Random Number Generation[END_REF]. Therefore we have the following result:

Theorem 3. By replacing the two first steps of Algorithm 3 by Algorithm 5, one obtains a random-bit optimal sampler for rooted planar tree with a given sequence of degree.

Nevertheless, according to the authors, the Knuth-Yao algorithm can be inefficient in practice (because it needs to solve the difficult question to generate infinite DDG-trees). There is a long literature on it which is summarized in the book of L. Devroye [START_REF] Devroye | Non-uniform random variate generation[END_REF]. Let just mention the interval sampler from [START_REF] Sun | Interval algorithm for random number generation[END_REF] and the alias methods [START_REF] Michael | A linear algorithm for generating random numbers with a given distribution[END_REF][START_REF] Walker | An Efficient Method for Generating Discrete Random Variables with General Distributions[END_REF][START_REF] Marsaglia | Fast generation of discrete random variables[END_REF].

We propose in the sequel a nearly optimal and very elementary algorithm, called dichotomic sampling, to draw a random variable X following a given discrete distribution of k parts, say, P rob(X = xi) = pi for 1 ≤ i ≤ k.

Fig. 3. Graphic for Mean Cost

C k 2 + ln2(k) 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
Fig. 4. Example of Motzkin trees with 101 nodes generated with our algorithm, where the proportion of unary nodes varies from 0% to 90%.

The continuum random tree (CRT) is a random continuous tree defined by Aldous [START_REF] Aldous | The continuum random tree[END_REF], which is closely related to Brownian motion.

In particular, the height of the CRT has the same law as the maximum of a Brownian excursion. The CRT can be viewed as the renormalized limit of several models of large trees, in particular, critical Galton-Watson trees with finite variance conditioned to have a large population [START_REF] Geiger | The galton-watson tree conditioned on its height[END_REF][START_REF] Duquesne | A limit theorem for the contour process of conditioned galton-watson trees[END_REF][START_REF] Ph | A note on the fragmentation of a stable tree[END_REF]. Our model does not exactly fit into this framework, however, it is quite clear that the proofs can be adapted to our situation. We show here a convergence result related to the height of Motzkin trees.

Theorem 1 Let (cn, n ≥ 1) be a sequence of integers such that cn = o(n) and (log n) 2 = o(cn). Then one can construct, on a single probability space, a family (Tn, n ≥ 1) of random trees and a random variable H > 0 such that (i) for every n ≥ 1, Tn is a uniform Motzkin tree with n vertices and cn + 1 leaves. Proof. The proof's idea is the following: -A Motzkin tree can been seen as a binary tree with 2cn + 1 nodes in which we each node can be replaced by a sequence of unary nodes.

If n is the size of the Motzkin tree, then the number of unary node is n -2cn -1. -The height of a leaf in the Motzkin tree is equal its length in the binary tree plus the lengths of the sequences of unary nodes between the leaf and the tree's root. -We study the probability that the lengths sum of the sequences of unary nodes between a given leaf and the tree's root is equal to a given value. -We use this result to frame the generic height of Tn. We assume that (cn, n ≥ 1) is non-decreasing, otherwise, the proof can be easily adapted. Let us call the skeleton of a Motzkin tree the binary tree obtained by forgetting the vertices having one child. Denote by Sn the skeleton of Tn. For a leaf l, let d(l) be the distance of l to the root in Sn and D(l) the distance of l to the root in Tn. First, one can construct the sequence (Sn, n ≥ 1) by Rémy's algorithm [START_REF] Remy | Un procédé itératif de dénombrement d'arbres binaires et son application a leur génération aléatoire[END_REF] and it can be shown that Sn converges in a strong sense to a CRT [CHar], in particular,

height(Sn) √ cn → H
where H has the law of the height of the CRT.

Next, for every n ≥ 1, one can obtain Tn from Sn by replacing each edge e of Sn with a "pipe" containing Xe nodes of degree 2. The family (Xe) is a 2cn-dimensional random vector with non-negative integer entries, and it is uniformly distributed over all vectors of this kind such that the sum of the entries is n -2cn -1. Let us denote (Xe) = (X1, . . . , X2c n) (we should write (X

(n) 1 , . . . , X (n)
2cn) but we want to make the notation lighter). It is a classical remark that the random variable (X1, . . . , X2c n) has the same law as (Y1, . . . , Y2c n) conditional on the event i Yi = n -2cn -1, where the Yi are independent, geometric random variables with mean

mn = n -2cn -1 2cn
Moreover, since the sum i Yi has mean n-2cn -1 and variance ∼ cnm 2 n , a classical local limit theorem [START_REF] Gnedenko | On a local limit theorem of the theory of probability[END_REF] tells us that there exists a constant c > 0 such that for every n ≥ 1,

P(i Yi = n -2cn -1) ≥ 1 c √ cnmn (1)
Fix ε > 0. Pick at random a realization of Rémy's algorithm, yielding a sequence of binary trees (Sn, n ≥ 1) such for every n ≥ 1, Sn, has cn + 1 leaves. Then almost surely, there exists H > 0 such that the height of Sn, which we denote hn, satisfies

hn √ cn → H (2)
From now on, since we have chosen our sequence (Sn, n ≥ 1), the symbols P and E will refer to the probability and expectation with respect to the random variables (Xi), (Yi), (Zi). If a leaf l in Sn is at a distance d(l) from the root, then its distance D(l) from the root in Tn is the sum of d(l) random variables in the family (Xe). Therefore,

P(D(l) = k) = P(X1 + . . . + X d(l) = k) = P(Y1 + . . . + Y d(l) = k| i Yi = n -2cn -1) = P(Y1 + . . . + Y d(l) = k, i Yi = n -2cn -1) P(i Yi = n -2cn -1) ≤ P(Y1 + . . . + Y d(l) = k) P(i Yi = n -2cn -1)
The right-hand side is maximized when d(l) = hn. We shall now use independent, exponential random variables (Z1, . . . , Z2c n) with mean µn = 1 log(mn/(mn -1))

(3)

It is easy to check that for every integer k ≥ 0,

P(Z1 ∈ [k, k + 1]) = P(Y1 = k).
Therefore, we can define Yi as the integer part of Zi for each i. Since Zi ≥ Yi for each i,

P Y1 + . . . + Y hn √ cnmn ≥ (1 + ε)H ≤ P Z1 + . . . + Z hn √ cnmn ≥ (1 + ε)H
Substracting the expectation,

P Z1 + . . . + Z hn √ cnmn ≥ (1 + ε)H = P Z1 + . . . + Z hn -hnµn √ cnmn ≥ (1 + ε)H - hnµn √ cnmn
Because of (3) and (2), we have, for n large enough,

1 - ε 2 H ≤ hnµn √ cnmn ≤ 1 + ε 2 H
This entails that for n large enough,

(1 + ε)H - hnµn √ cnmn ≤ εH 2
and therefore,

P Z1 + . . . + Z hn -hnµn √ cnmn ≥ (1 + ε)H -hnµn ≤ P Z1 + . . . + Z hn -hnµn √ cnmn ≥ εH 2
We now use the Laplace transform: for every λ > 0,

E exp(λZ1 -µn) = e -
P D(l) √ cnmn ≥ (1 + ε)H ≤ (1 + 2t 2 n) hn exp - εHtn √ cn 4 P(i Yi = n -2cn -1)
Using the estimate (1),

P D(l) √ cnmn ≥ (1 + ε)H ≤ c √ cnmn(1 + 2t 2 n) hn exp - εHtn √ cn 4
Since there are cn + 1 leaves, and since the probability of the union is less that the sum of the probabilities, for n large enough,

P height(Tn) √ cnmn ≥ (1 + ε)H ≤ c(cn+1) √ cnmn(1+2t 2 n) hn exp - εHtn √ cn 4
The upper bound can be rewritten as c exp hn log(1 + 2t This being true for every positive ε, our result is established.

Remark In the case when the number of leaves is proportional to the number of vertices, cn ∼ kn for some constant k ∈ (0, 1/2], it can be shown by the same arguments that height(Tn)

√ n converges to 2(1 -k)H. In the case when (log n) 2 /cn does not tend to 0, a refinement in the proof is necessary. Typically, replacing the inequality (1) with a stochastic domination argument would prove that the height of the tree converges in distribution whenever cn → ∞. To prove an almost sure convergence, a more detailed construction would be needed.

General case

We only assume that cn tends to infinity. The construction of the skeleton and the convergence of Rémy's algorithm still hold. The representation of the variables Xi as conditioned versions of the Yi can be refined in the following manner:

P(X1 + . . . + X d(l) ≥ A) = P(Y1 + . . . + Y d(l) ≥ A| i Yi = n -2cn -1) = ∞ k=A P(Y1 + . . . + Y d(l) = k| i Yi = n -2cn -1) = ∞ k=A P(Y1 + . . . + Y d(l) = k| 2cn i=d(l) Yi = n -2cn -1 -k) = ∞ k=A P(Y1 + . . . + Y d(l) = k, 2cn i=d(l) Yi = n -2cn -1 -k) P(i Yi = n -2cn -1)
Recall that for every leaf l of Sn, d(l) ≤ hn, and that because of (2), the condition d(l) ≤ cn/2 is satisfied for all leaves if n is large enough. The bound using conditioning gave

Conclusion

In this paper, we gave two new samplers for rooted planar trees that satisfies a given partition of degrees. This sampler is now optimal in terms of random bit complexity. We apply it to predict the average height of a random Motzkin in function of its frequency of unary nodes. We then prove some unconventional height phenomena (i.e. outside the universal Θ(√ n) behaviour. Our work can certainly be extended to more complicate properties than the list of degrees. Letters of a tree-alphabet could for instance encode more complicated patterns, whose number of leaves would be given by the function f .

Fig. 2 .

 2 Fig. 2. An example: the valid word babacac is not a Lukasiewicz word but cacbaba is. The idea is to find the smallest value of i such that i j=1 f (wi) is minimal, and compute the word wi+1 • • • w |w| w1 • • • wi

Input:

 A tree-alphabet Σ f of k letters and a tuple n Output: A tabular w encoding a valid word Create a tabular w of size n; for i ∈ {1, . . . , n} do k ← Distrib(n) (k is drawn according to the distribution Dn); w[i] ← a k ; n ← ne k (e k denotes the k-th canonical vector); return w;

Fig. 5 .

 5 Fig.5. In this example, all random trees have n = 1000 nodes. For each proportion of unary nodes, varying from 0 to 99, 9 percent, 10 000 Motzkin trees have been generated. The curve shows how the average height of Motzkin trees, divided by the square-root of n.

 + . . . + Y d(l) = k)P(2cn i=d(l) Yi = n -2cn -1 -k) P(i Yi = n -2cn -1)Gnedenko's result also gives the existence of a real C such that for every integer k,P(2cn i=d(l) Yi = n -2cn -1 -k)) ≤ C cn -d(l)mn(4)From (1) and (4) we deduce that if d(l) ≤ cn/2, the following stochastic domination bound hols:P(Y1 + . . . + Y d(l) ≥ A| i Yi = n -2cn -1) = ∞ k=A P(Y1 + . . . + Y d(l) = k)P(2cn i=d(l) Yi = n -2cn -1 -k) P(i Yi = n -2cn -1) + . . . + Y d(l) = k) To sum up, if d(l) ≤ cn/2, P(X1 + . . . + X d(l) ≥ A) ≤ C √ 2 c P(Y1 + . . . + Y d(l) ≥ A)

 Yi = n -2cn -1) But using the stochastic domination bound (5), we can improve this to enough. Taking tn = c -1/4 n and using (2), we find that the probabilityP D(l) √ cnmn ≥ (1 + ε)Htends to 0 as n goes to infinity, for every positive ε. Likewise, if en is a leaf in Sn such that d(l) = hn, one can prove that the probabilityP D(en) √ cnmn ≤ (1 -ε)Hgoes to 0 as n goes to infinity. This proves that height(Sn) √ cn converges in distribution to H. So we have the more general result Theorem 2 Let (cn, n ≥ 1) be a sequence of integers such that cn → ∞ as n → ∞. Let (Tn, n ≥ 1) be a family of random trees such that for every n ≥ 1, Tn is a uniform Motzkin tree with n vertices and cn + 1 leaves. Then √ cn n height(Tn) converges in distribution to the law of the height of a CRT.

 k letters and a tuple n, a permutation σ of length n Output: A tabular w encoding a valid word 1 Create a tabular w of size n; 2 pos ← 0; 3 for i ∈ {1, . . . , k} do The application is invariant by permutation of the values inside [mi, . . . , mi + ni]. So, the cardinality of the kernel is k i=1 ni!.

	4 5 6	for j ∈ {1, . . . , ni} do w[σpos] ← ai; pos ← pos + 1;
	7 return w;
		f defined over a k letters alpha-Lemma 1. For each valid word w ∈ Σ n bet, the number of permutation associated to w by the Algorithm 1 is exactly k i=1 ni!.

Proof. Let us define mi = i-1 j=1 ni and m1 = 0.

Corollary 1. The number of valid words in Σ n

f is exactly

 log n tends to infinity. Choose λ such that λµn = tn.Summing up, if n is large enough, then for every leaf l,

								λµn	
								1 -λµn	
	The Markov inequality yields						
	P	Z1 + . . . + Z hn -hnµn √ cnmn	≥	εH 2	≤	e -λµn 1 -λµn	hn	exp -λ	√ cnmn	εH 2
	Let (tn) be a sequence of positive real numbers such that tn tends to 0 and that √ cntn/ Then,
	P	Z1 + . . . + Z hn -hnµn √ cnmn	≥	εH 2	≤	e -tn 1 -tn	hn	exp -	tn	√ cnmnεH 2µn
	For n large enough, we have mn ≥ µn/2 and		
			e -tn 1 -tn	≤ 1 + 2t 2 n		
	Therefore, for n large enough						
	P	Z1 + . . . + Z hn -hnµn √ cnmn	≥	εH 2	≤ (1 + 2t 2 n) hn exp -	εHtn 4 √ cn
							14			

 Integrating with respect to the law of the sequence (Sn), we find that almost surely, there exists a random variable H which has the law of the height of the CRT and such that for n large enough,

			2 n) -	εHtn 4 √ cn	+ log mn +	3 2	log(cn + 1)
	Recall that for n large enough,		
			hn ≤ (1 + ε/2)H	√ cn
	and then our bound becomes			
	exp H	√ cn (1 + ε/2) log(1 + 2t 2 n) -	εtn 4	+ log mn +	3 2	log(cn + 1)
	Since tn → 0, for n large enough, [(1 + ε/2) log(1 + 2t 2 n) -	εtn 4] ≥ -	εtn 8
	and so for n large enough, our bound becomes
		bn = exp	-Hεtn 8	√ cn	+ log mn +	3 2	log(cn + 1)
	Now because of the assumption that bn < ∞. Thus by the Borel-Cantelli lemma, almost surely, conditional √ cntn/ log n → ∞, we remark that on the sequence (Sn), for n large enough,
			height(Tn) √ cnmn	≤ (1 + ε)H
			height(Tn) √ cnmn	≤ (1 + ε)H
	Likewise, one shows that almost surely, for n large enough,
			height(Tn) √ cnmn	≥ (1 -ε)H

⋆ Supported by ANR Magnum project BLANC 0204 (France) ⋆⋆ Supported by ANR Magnum project BLANC 0204 (France)

Algorithm 2: From a valid word to a Lukasiewicz word Input: A valid word w of length n according to (Σ, f, occ) Output: A tabular v encoding a Lukasiewicz word min ← cur ← f (w1); ℓ ← 1; for i ∈ {2, . . . , n} do

Algorithm 3: Random Planar Tree Generator Input: A tree-alphabet Σ f of k letters and a tuple n Output: A random planar tree satisfying Σ f and n Generate a random permutation σ using Fisher-Yates Algorithm; Transform σ into a valid word w; Transform w into a Lukasiewicz word v; Transform v in a planar tree t return t;

Algorithm 5: Dichotomic sampling Input: a tuple n = (n1, . . . , n k) such that n = k i=1 ni Output: An integer between 1 and k

The dichotomic sampling algorithm implies the following induction for Cn the mean number of flip needed for drawing when there are n + 1 parts : C1 = 2 and C k = 1 + 1 2 max 0≤k≤m (Cm + C k-m). First, let us assume that C k is concave, so let us consider Ck = 1 + 1 2 (C⌊ k 2 ⌋ + C⌈ k 2 ⌉). A short calculation shows that Cn = ⌊ln2(n -1)⌋ + 1 + n 2 ⌊ln 2 (n-1)⌋ . Now, by induction, we can easy check that C k = Ck . So, in particular, C k ≤ 2 + ln2(k). Note that the sequence C k can also be analyzed by classical Mellin transform techniques and the periodic phenomena we show in the figure 3 is quite familiar.

Simulate-Guess-and-prove : Analysis of height

In this section, we study experimentally and theoretically the height of random Motzkin trees (unary-binary) when the proportion of unary nodes fluctuates. Figure 4 shows example of random Motzkin trees generated with the algorithm from Section 3, with different proportions of unary nodes. Figure 5 shows the evolution of the height of trees when one increases the proportions of unary nodes. In the following, we study the height of Motzkin trees according to the proportion of unary nodes, using exclusively probabilistic arguments.