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Abstract

The unique properties of quantum Hall devices arise from the ideal one-dimensional edge states

that form in a two-dimensional electron system at high magnetic field. Tunnelling between edge

states across a quantum point contact (QPC) has already revealed rich physics, like fractionally

charged excitations, or chiral Luttinger liquid. Thanks to scanning gate microscopy, we show

that a single QPC can turn into an interferometer for specific potential landscapes. Spectroscopy,

magnetic field and temperature dependences of electron transport reveal a quantitatively consis-

tent interferometric behavior of the studied QPC. To explain this unexpected behavior, we put

forward a new model which relies on the presence of a quantum Hall island at the centre of the

constriction as well as on different tunnelling paths surrounding the island, thereby creating a

new type of interferometer. This work sets the ground for new device concepts based on coherent

tunnelling.

PACS numbers: 73.21.La,73.23.Ad,03.65.Yz,85.35.Ds
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Electron phase coherence is the cornerstone of quantum devices and computation [1, 2]. In

that perspective, quantum Hall (QH) devices are particularly attractive in view of their large

coherence times [3]. Quantum Hall edge states (ES) formed by Landau levels (LL) crossing

the Fermi energy near sample borders are ideal one-dimensional (1D) systems in which

scattering vanishes exponentially at low temperature T [1, 4]. Edge state loops surrounding

potential hills or wells, referred to as localized states or quantum Hall islands (QHIs), then

form unique zero-dimensional (0D) systems [5]. The last few years witnessed great progresses

in the transport spectroscopy of model QH localized states created by patterning quantum

dots [6] or antidots [7–9] in a two-dimensional electron system (2DES).

In parallel, new tools were developed to probe the microscopic structure of confined elec-

tron systems in the QH regime. In particular, scanning gate microscopy [10–16] (SGM)

makes use of a movable metallic tip, which is voltage-biased, to finely tune the electrons’

confining potential in its vicinity. This way, the geometry of propagating edge states and

localized states can be modified at will [17]. Very recently, SGM allowed us to locate active

QHIs in a QH interferometer [18]. Importantly, it appeared that QHIs do not only form

around antidots, but potential inhomogeneities also induce QHIs in the arms or near the

constrictions connecting a quantum ring to source and drain reservoirs [18]. Therefore, lat-

eral confinement, e.g. in Quantum Point Contacts (QPCs), offers the possibility to connect

a QHI to ES through tunnel junctions, and thus form a new class of 1D-0D-1D QH devices

(Fig. 1). In this case, the 0D island is characterized by a weak coupling (σ << e2/h) and

a large charging energy (Ec = e2/C >> kBT ) (C is the island capacitance), which induce

Coulomb blockade (CB) [1]. In such devices, Aharonov-Bohm (AB) like oscillations of the

resistance can be explained by Coulomb coupling between fully occupied LLs and confined

states in the QHI [7, 18–22]. It was also suggested that AB oscillations reported on a QPC

[23] could be attributed to tunnelling paths around the saddle point [24]. In contrast, trans-

port through QH devices, but in the strong coupling limit (σ >> e2/h), revealed coherent

effects analog to those observed in optical Mach-Zehnder [3, 25, 26] or Fabry-Pérot [22, 27–

32] interferometers.

Here, we examine an unexplored regime of transport across a QPC where QH edge states

are weakly coupled, but phase coherence is preserved. The SGM tip is used as a nanogate

to tune the potential landscape and hence edge states’ pattern and coupling. At first sight,

one expects that transport should be driven by tunnelling, and possibly by Coulomb block-

2



Vtip

3

1

4

2

FIG. 1: Schematic representation of our model and experimental setup. Tunnelling

paths (dotted lines) connect opposite ES through a quantum Hall island (circle). Current-carrying

contacts (1-2) and voltage probes (3-4) allow resistance measurements. (only one edge state is

represented for the sake of clarity)

ade if a quantum Hall island were mediating transport between edge states (Fig. 1) [18].

Indeed, SGM and magnetoresistance data corroborate with Coulomb blockade across a QHI

located near the saddle point of the QPC. However, temperature dependence and scanning

gate spectroscopy show clear signatures of quantum interferences. Since, up to now, such

interferences were exclusively observed in open QH devices, this observation sets the stage

for a new electron transport scenario. We propose a new model that provides a quantitative

interpretation of the data.

RESULTS

Our sample is a QPC etched in an InGaAs/InAlAs heterostructure holding a 2DES

25 nm below the surface. The QPC lithographic width is 300 nm. All the experiments were

performed at temperature between 4.2 K and 100 mK, in a dilution refrigerator. Here, the

perpendicular magnetic field B ∼ 9.5 T, which corresponds to a LL filling factor ν ∼ 6 in

the 2DES. The SGM experiment is schematically depicted in Fig. 1. It consists in scanning
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FIG. 2: Imaging tunnelling across a QPC. (a) SGM map at B = 9.5 T, T = 4.2 K, and

Vtip = -4 V. Continuous lines correspond to the edges of the QPC. The black bar represents 1 µm.

(b) B-dependence of R-profiles over the region marked with a dashed line in (a), with Vtip = -6 V.

Using Eq. (1) for the two consecutive fringes highlighted with the white dashed lines in (b), we

calculate in (c) the diameter of the QHI as the tip-QHI distance δx is varied.

a metallic atomic force microscope tip, polarized at voltage Vtip, along a plane parallel to

the 2DES at a tip-2DES distance of 50 nm while recording a map of the device resistance

R [13, 14]. The QPC resistance is defined as R = dV/dI, where V and I are the voltage

and the current through the device, respectively.

The 2DES being on a quantized Hall plateau, whenever some current tunnels between

opposite edge channels, R deviates from the zero value expected in QH systems at very low

T [2, 4, 18]. In our case, the SGM resistance map recorded at B = 9.5 T, Vtip = -4 V and

T = 4.2 K and presented in Fig. 2(a) reveals concentric fringes superimposed on a slowly

varying background. The origin of the background, related to reflection of ES at the QPC,

is discussed in the supplementary information. The fringe pattern can easily be understood

in the presence of a QHI surrounding a potential hill, close to the saddle point of the QPC

and tunnel-coupled to the propagating ES (Fig. 1). Indeed, approaching the polarized tip

gradually changes the potential of the QHI, and hence its area A, defined as the surface
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enclosed by the ”looping” ES. The enclosed magnetic flux φ varies accordingly and the

tip generates iso-φ lines when circling around the QHI. Since adding one flux quantum φ0

corresponds to trapping one electron per populated LL in the island, CB oscillations are

generated whenever B or A are varied [21], thereby producing AB-like oscillations [7, 18–

20, 22]. Isoresistance lines visible on Fig. 2(a) are, therefore, iso-φ lines that are crossed

as the tip-island distance is varied [18]. Consequently, the center of concentric fringes in

Fig. 2(a) indicates the position of the active QHI, which connects opposite propagating edge

channels through tunnel junctions (Fig. 1).

In the framework of this model, the area of the QHI can be determined thanks to the

B-dependence of AB-like oscillations [21]:

∆B = (φ0/A)/N (1)

where N is the number of completely filled LL in the bulk (here N = 6). The combined effect

of moving the tip along the dashed line in Fig. 2(a) and changing B is illustrated in Fig. 2(b)

for Vtip = -6 V. Along the B-axis, AB-like oscillations are highlighted with the white dashed

lines. The negatively polarized tip approaching the QHI raises its potential, which increases

its area A, and hence reduces the magnetic field that separates two resistance peaks ∆B.

This is illustrated in Fig. 2(c), where we assume that the QHI has a surface equivalent to

that of a disk with diameter d obtained from Eq. (1): d is found to increase from ∼65 nm to

∼95 nm as the tip-island distance δx decreases from 1300 nm to 300 nm, respectively. Note-

worthy, as expected for Coulomb dominated transport in a QH interferometer, increasing B

is equivalent to applying a more negative Vtip, yielding a positive dVtip/dB for isoresistance

stripes [22, 31, 32]. Since approaching the negatively charged tip has the same effect as

decreasing Vtip, Fig. 2(b) seems consistent with the Coulomb dominated transport.

But, surprisingly, the temperature dependence of fringes amplitude (δR, measured on

SGM maps), shown on Fig. 3, reveals a peculiar behaviour: it clearly does not follow the

T−1 dependence expected in the quantum regime of CB [18, 34, 35] (data from ref. [18] are

presented for comparison in Fig. 3). Instead, δR deceases very slowly from 100 mK to 4.2 K.

Indeed, for coherent transport through a Fabry-Pérot geometry, thermal smearing of inter-

ference gives rise to a temperature dependence δR(T ) ∼exp(−T/T0) in the low temperature

regime. In contrast, for transport processes involving a weakly coupled Coulomb island, this

form for δR(T ) is expected only for temperatures larger than the charging energy [32]. In
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FIG. 3: Temperature dependence : Coulomb blockade vs coherent transport. δR vs

T obtained from SGM maps with Vtip = -1 V (circles) and from data in ref. [18] (squares). The

dashed line corresponds to a T−1 dependence. The gray region corresponds to an exponential

dependence exp(−T/T0) with 9.5 K < T0 < 19.1 K, consistent with magnetoresistance data and

edge state velocity estimate along Ref. [29]. The solid line corresponds to T0 = 16.2 K, consistent

with the spectroscopy data (see text).

the Fabry–Pérot situation, T0 is linked to the excited states level spacing ∆EEx according

to the relation T0 = ∆EEx/kB = 2~v/(dkB) where v is the local edge state velocity, related

to the gradient of the confining potential. From experimental data measured in a GaAs QH

Fabry-Pérot interferometer [29], one can infer that, in our sample, 5 × 104 m/s < v < 105

m/s. Given this range for v, and d ∼ 80 nm (from Fig. 2(c), taking into account that the

T -dependence data were measured at δx ∼ 630 nm), we obtain the range of T -dependence

represented as a gray region in Fig. 3, which reproduces quite well the behaviour observed

experimentally. The corresponding range of 9.5 K < T0 < 19.1 K is consistent with the low

temperature limit and hence with a Fabry-Pérot behaviour. Earlier experiments already evi-

denced such an exponential decay with temperature, but only in Mach-Zehnder and ballistic

devices, which are known to be coherent [30, 36, 37].

However, our main observation confirming the preserved electron phase coherence emerges

from the analysis of non-linear transport through the QPC. Scanning gate spectroscopy is

realized by positioning the tip right above the QHI, and sweeping both Vtip and the dc

current I through the QPC. The voltage across our tunnel device, i.e. between propagating
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FIG. 4: Evidence for coherent transport in spectroscopy. (a) dR/dVtip as a function of

the dc component of Vtip and Vbias at B = 9.5 T and T=100 mK. Voltage modulation of Vtip was

set to 50 mV. (b) 2D fit of dR/dVtip using Eq. (2). (c-d) Transresistance vs Vbias taken along the

red (c) and blue (d) dashed lines in (a-b). The circles correspond to the experimental data and

the continuous lines to the fit.

edge states, is the Hall voltage: Vbias = h/(e2N∗)I [2], where N∗ is the (integer) number

of transmitted ES at the QPC (Fig. S1 - supplementary material). The measurement con-

figuration is indeed identical to that used to perform conventional electrical spectroscopy

on isolated quantum dots. If the QHI were weakly tunnel coupled to the propagating edge

states, one would expect to observe a ”Coulomb diamond” pattern [38]. Fig. 4(a) shows

dR/dVtip as a function of the dc component of Vtip and Vbias. Instead of Coulomb diamonds,
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the spectroscopy displays a checkerboard pattern of maxima and minima, indicating that

both Vtip and Vbias tune the interference of transiting electrons. Each bias independently

adds a phase shift between interfering paths, so that the transresistance is modulated by a

product of cosines and an exponential term accounting for a voltage-dependent dephasing

induced by electrons injected at an energy e|Vbias| [29, 30, 36, 39]:

dR

dVtip
= D cos

(
2π

Vbias
∆Vbias

)
cos

(
2π

Vtip
∆Vtip

+ ϕ

)
exp

(
−2πγ

(
Vbias

∆Vbias

)n)
, (2)

whereD is the zero-bias visibility of the oscillations, ∆Vtip is the oscillation period induced by

Vtip, ϕ is a constant phase factor, ∆Vbias = 4~ v/(ed) is the oscillation period along the Vbias

axis, and γ is directly related to the Vbias-dependent dephasing rate: τ−1
ϕ = γ(e|Vbias|)/2~ [29].

n varies from 1 to 2 according to Ref. [29, 30, 36, 39] and was set to 1 as we could not

discriminate from fitting the data. As shown in Figs. 4(b-d), we obtain an excellent fit of

the data in Fig. 4(a) using Eq. (2) with with a transist time τt = d/v = 1.7 × 10−12 s,

and a parameter γ = 0.2 in the range found in Ref. [29]. Note that in such a small QHI,

τt turns out to be smaller by at least one order of magnitude than the intrinsic τϕ in the

same 2DES [40]. This renders coherent resonant tunnelling through the whole QHI device

possible.

DISCUSSION

To interpret ∆Vtip obtained from the fit, one first notes that R evolves very similarly when

changing either Vtip or B in the vicinity of B = 9 T (Fig. S2 - supplementary material).

Therefore, one can convert ∆Vtip into an equivalent ∆B, through a lever arm ∆B/∆Vtip =

0.108 T/V. Hence, ∆Vtip = 0.46 V corresponds to ∆B = 50 mT for the AB-like oscillations.

In that range of Vtip, N∗ = 5 (Fig. S1(d)). This means that d = 2
√
φ0/(πN∗∆B) = 145 nm,

consistent with data in Fig. 2(c) since d is at a maximum when the tip is above the QHI

(δx = 0). Moreover, given the value of τt = 1.7 × 10−12 s found in fitting the spectroscopy

data, one obtains v = 8.5×104 m/s, within the range of values that was expected from data

in ref. [29], and in agreement with the exponential temperature dependence in Fig. 3. We

therefore have a fully consistent picture that explains all magnetoresistance, temperature

dependence and spectroscopy data, and shows that tunnelling across the QHI is indeed

coherent.
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FIG. 5: Potential landscape and tunnelling paths across the QPC. (a) Schematic rep-

resentation of the electrostatic potential in the vicinity of the QPC (in brown), with the ES in

yellow and the tunnelling paths connecting opposite ES (red and green). Only one edge state is

represented, for the sake of clarity. (b) top view of the three-dimensional figure in (a), with the

various tunnelling probabilities Ti between edge states.

One fundamental question remains: why do we observe two distinct behaviours of trans-

port through apparently similar QH devices, Coulomb blockaded transport in our previous

work [18], and coherent transport in this one? The qualitative difference cannot be ex-

plained by the fact that d is smaller than previously examined QHIs. T0 and ∆Vbias would

be reduced proportionally, but not enough to explain the observed T -dependence and spec-

troscopy. On the other hand, signs of coherent transport through CB quantum dots were

only obtained for symmetric tunnel junctions [34] that allow resonant tunnelling instead

of sequential tunnelling. In that framework, one might thus ascribe the loss of electron

coherence in other QHIs to an asymmetry of tunnel junctions. However, a difference in

the transmission coefficients Tc of the tunnel barriers may point towards an alternative ex-

planation. In the coherent regime, we find a rather strong coupling between the QHI and

propagating ES (0.27 < Tc < 0.43), which contrasts with the Coulomb blockade regime

where Tc << 1 [41]. A similar trend is observed in transport experiments at B = 0 T

on carbon nanotubes [42]: phase coherence is maintained when electrons tunnel through

barriers with a large transmission coefficient, so that interference effects can be observed.

9



Up to this point, our analysis is based on the presence of a QHI near the QPC, connected

to propagating ES on both sides through tunnelling paths (Fig. 1). However, one could

imagine the presence of additional tunnelling paths between propagating ES, in the vicinity

of the QPC saddle point. The resulting model is presented in Fig. 5(a-b). While the

”green” paths occur naturally when propagating ES and the QHI are close enough, the

”red” paths may originate from potential anharmonicities (i.e. non parabolicity) on both

sides of the saddle point, similar to the fast potential variations suggested in Ref. [24]. In

this model, transport depends in principle on the various tunnelling probabilities, denoted

T1,2 and T3,4 in Fig. 5. However, the presence of the QHI should always induce oscillations

in the magnetoresistance and spectroscopy of the QPC, either because it is enclosed in an

interferometer, created by the ”red” paths and propagating ES, when T1,2 < T3,4, or because

tunnelling occurs directly through it (T1,2 > T3,4) as discussed above (Fig. 1). Therefore,

whichever T1,2 or T3,4 dominates, transport is still controlled by the flux trapped in the QHI

and hence its Coulomb charging, so that the analysis developed above to extract parameters

from the magnetoresistance and spectroscopy are still valid. In that case, i.e. T3,4 > T1,2,

the amplitude of the fringes leads us to 0.043 < T3,4 < 0.078 (for details see Supplementary

Information).

In summary, we report first evidence for preserved electron phase coherence in tunnelling

across a quantum point contact in the quantum Hall regime. We propose a framework

that explains all magnetoresistance, temperature dependence and spectroscopy data. This

scenario relies on the presence of a potential hill that generates a quantum Hall island

near the saddle point of the QPC. Our data therefore provide new signatures of coherent

tunnelling in an ultra-small QH device.

METHODS

Device fabrication and 2DES parameters. Our device is fabricated from a In-

GaAs/InAlAs heterostructure grown by molecular beam epitaxy where a 2DES is confined

25 nm below the surface (the layer sequence of this heterostructure is detailed in [13, 14]).

The QPC was patterned using e-beam lithography followed by wet etching. The QPC re-

sistance R is measured in a four-probe configuration: a low-frequency (typically 10 to 20

10



Hz) oscillating current I is driven between contacts 1 and 2 on Fig. 1, and V is measured

between contacts 3 and 4 using a lock-in technique, with V across the QPC always less than

kBT/e. Next to the QPC, we patterned a Hall bar where we measured a low-T electron

density and mobility of 1.4× 1016 m−2 and 4 m2/Vs, respectively.

SGM and SGS techniques. All the experiments are carried out inside a 3He/4He

dilution refrigerator where a home-made cryogenic atomic force microscope (AFM) was

integrated [18]. The AFM is based on a quartz tuning fork to which a commercial metallized

Si cantilever (model CSC17 from MikroMasch) is glued by means of a conductive silver epoxy.

We image the sample topography by imposing a feedback loop on the shift in the tuning fork

resonant frequency and using standard dynamic AFM mode of operation. After locating the

QPC we perform SGM. It consists of scanning the tip along a plane parallel to the 2DES at

constant distance of 25 nm from the surface, i.e. 50 nm from the 2DES, with a bias voltage

Vtip applied to the tip and recording simultaneously the device resistance R. At the end of a

set of SGM experiments, we image the topography of the QPC to ensure that, during that

period, the position of the QPC did not change. The SGS is performed by positioning the

AFM tip at a fixed position in the vicinity of the QHI and by adding a dc current I to the

lock-in ac signal between contacts 1 and 2 (Fig. 1). The voltage between edge states Vbias

is obtained by multiplying the dc current I by h/(e2N∗). The transresistance dR/dVtip is

measured with a second lock-in using an ac modulation of Vtip.
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SUPPLEMENTARY INFORMATION FOR: “COHERENT TUNNELLING

ACROSS A QUANTUM POINT CONTACT IN THE QUANTUM HALL REGIME”

ORIGIN OF THE BACKGROUND IN SGM

Fig. S6 allows inferring the origin of the broad background in SGM images. By sweeping

Vtip below 0 V, the SGM maps measured at 100 mK shown in Figs. S6(a-c) reveal concentric

fringes marking the presence of a QHI near the saddle point of the QPC. The diameter of

circling fringes increases with decreasing Vtip, consistent with the observations in Fig. S 6.

Importantly, the SGM pattern around the QPC exhibits a strong variation that adds to

the concentric fringes on Figs. S6(b-c). The origin of the stronger contrast is found by

positioning the tip near the saddle point of the QPC and continuously decreasing Vtip (Fig.

S6(d)). The main trend shows step-like increases of the device resistance which can be

understood by invoking ES reflections at the constriction. Decreasing Vtip raises the energy

of the saddle point and decreases the local filling factor ν∗ near the constriction. Every time

ν∗ passes a half integer value, an ES is totally reflected and the device resistance shifts to

the next plateau given by R = h/e2(1/N∗ − 1/N) [1, 2] (brown dashed lines in Fig. S6(d)),

where N∗ is the (integer) number of transmitted ES at the constriction. The presence of

oscillations superimposed on the first plateau at N∗ = 5, similar to those around Vtip = 0 V,

indicate that the QHI is active even when one ES is reflected.

CALCULATION OF TRANSMISSION COEFFICIENTS ACROSS A QHI

Here we summarize the details concerning the determination of the coefficients of trans-

mission across the tunnel barriers defining the QHI in the coherent regime (we assume here

that all barriers have equal transmission coefficients). In this work it was found that the

peak-to-peak amplitudes in the coherent regime (∆R) were within the following intervals:

170Ω (N∗ = 5) < ∆R < 200Ω (N∗ = 6). Assuming that ∆R = h/e2(1/(N∗ − Tt) − 1/N∗)

[1, 2] where Tt is the total transmission through the QHI (i.e. taking into account the two

barriers defining the QHI), we conclude that Tt is the interval: 0.16 < Tt < 0.27.

In Fig. S 8 we draw the two models considered in the main article. In the following

subsections we deduce the coefficients of transmission of the tunnel barriers for the two

different situations presented in Fig. S 8(a) and (b).
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QHI at the centre of a QPC

We first consider the situation represented in Fig. S 8(a) where a QHI is located at the

centre of a QPC. In this case we assume that coherence is maintained during the multiple

reflections. For an off-resonance condition and assuming T1 = T2 = Tc, Tc is given by:

Tc = 2Tt(1 + Tt) [4], which implies that 0.27 < Tc < 0.42.

Interferometer formed around the QPC saddle point

In the case of an interferometer formed around the saddle point of a QPC, as illustrated

in Fig. S 8(b), we compute the reflection coefficient 1−Tt, taking into account interferences

between different semiclassical paths for electrons : 1) a direct path along the edge state,

which does not include transmission through the tunnel barriers, and 2) paths including

multiple transmissions through the tunnel barriers. The reflection coefficient is then given

by [4]:

1− Tt =
(1− T3)(1− T4)

1 + T3T4 − 2
√
T3T4cos($)

(3)

where $ is the phase difference accumulated along the two types of trajectories and T3 and

T4 are the transmissions at each side of the saddle point. Assuming that T3 = T4 = T3,4, we

obtain: 0.043 < T3,4 < 0.078.
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FIG. S 6: (a-c) Consecutive SGM images obtained at T = 100 mK, B = 9.5 T and Vtip = 0, -2

and -4 V, respectively. The top black bar represents 1 µm. (d) R vs Vtip with the tip positioned

near the saddle point of the QPC. The brown dashed lines indicate the resistance expected for N∗.
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FIG. S 7: QPC resistance vs B (top axis) and Vtip (bottom axis) at T = 4.2 K.
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FIG. S 8: (a) Schematic representation of a QHI at the center of the QPC. Tunnelling paths

(dotted lines) connect opposite ES through the QHI. T1 and T2 are transmission coefficients of the

tunnel barriers between ES and the QHI.. (b) Alternative model for the situation at the QPC: two

tunnelling paths (dotted lines) on both sides of the saddle point connect counterpropagating edge

states and form a closed loop. Note that in both cases, only one edge state is represented, for the

sake of clarity
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