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Abstract.

When a territory is poorly instrumented, geostationary satellites data can be useful to predict global
solar radiation. In this paper, we use geostationary satellites data to generate 2-D time series of solar
radiation for the next hour. The results presented in this paper relate to a particular territory, the
Corsica Island, but as data used are available for the entire surface of the globe, our method can be
casily exploited to another place. Indeed 2-D hourly time series are extracted from the HelioClim-3
surface solar irradiation database treated by the Heliosat-2 model. Each point of the map have been
used as training data and inputs of artificial neural networks (ANN) and as inputs for two persistence
models (scaled or not). Comparisons between these models and clear sky estimations were proceeded
to evaluate the performances. We found a normalized root mean square error (nRMSE) close to 16.5%
for the two best predictors (scaled persistence and ANN) equivalent to 35-45% related to ground
measurements. Finally in order to validate our 2-D predictions maps, we introduce a new error metric
called the gamma index which is a criterion for comparing data from two matrixes in medical physics.
As first results, we found that in winter and spring, scaled persistence gives the best results (gamma
index test passing rate is respectively 67.7% and 86%), in autumn simple persistence is the best

predictor (95.3%) and ANN is the best in summer (99.8%).
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1. Introduction

The production and use of non-renewable resources based on fossil fuels combustion are

responsible of real public health problem and raise environmental concerns. dargetots of

alternatives such as photovoltaic and wind energy sources, which one of the main adeaattuyes

renewable and inexhaustible aspects and the main disadvantage is related to théiteirdigsn

(Hocaoglu, 2011; Voyant et al., 2012fhese non-continuities can cause a demand/production



unbalance involving irrelevant wind or solar systems uses. To overcome this pribbkemecessary
to predict the resource and to manage the transition between different eseugoes (Bouhouras et
al., 2010; Darras et al., 2012; Muselli et al., 199&m)nsidering the grid manager's point of view
(Kopken et al., 2004), needs in terms of prediction can be distinguished accordingtogiuered
horizon: following days, next day by hourly step, next hour and next few minutes. Weeahdas
paper to focus only on h+1 horizon prediction of global radiation as at#st(one hour in advance)
Of course, we are aware concerning the importance of other horizons (oghn2013h)Note that

it is appreciable to know the eventual fluctuations at least 30 minutes ahead (ignitioof dethines)
for an ideal electrical grid management (Troccoli, 2010). With efficiesdiption tools dedicated to
grid managers, the PV part in the mix energy would be increased; actufgnice, the intermittent

energy contribution is limited to 30%.

Several prediction methods have been developed by experts and can be divided in three mai
groups: methods using mathematical formalism of times series (TS) (De Gooijeyramthdh, 2006;
Elminir et al., 2007; Hamilton, 1994), numerical weather predictions (NWP) and snbdséd on
clouds detection (Inness and Dorling, 2012; Perez et al., 2013). In this stuldgyevehosen to study
prediction methods of the first group and we will study if this methodology can b&ernative to the
NWP models. Not that in the literature, the NWP models are compared against ground nedsurem
and the error established is approximately 30-40% but depends on the orography aralimédbeo-
studied (Paulescu, 2013). The time series formalism (TS) and modelling is s#témul dimensional
(1-D) global radiation predictions, i.e. related to one measurement system at grounédexgehiid
Ninyerola, 2008). Persistence, autoregressive models, multilayer perceptron (MLPyrandidely
artificial neural network (ANN) often applied to this aim (Hocaoglu, 2044lit et al., 2009; Voyant
et al., 2012).

In this paper, we will complete the first prediction results exposed in édaat al., 2013) and
we will show that the TS formalism applied to surface solar irradiar88$ €stimations reduced to
one point(1-D approach) can be generaliziedthe 2-D case, even if no ground detector is present.
Alternative approaches are available in (Loyola R., 2006; Rahimikhoob et E8). Zdom this point
of view, satellite derigd SSI maps extracted from the HelioClim-3 (HC-3) (Rigollier et al., 2004)
database and centered on Corsica are used as hourly 2-D data generator. Each dsiarsesiesed
with stochastic estimators in order to generate 1158 predictions per H&8 fixels per map
separately treated). In fact, for an overall year of prediction, keessaryo generate more than 10
million of hourly predictions(24x365x1158). The purpose of this paper is to generate one hour in
advance predicted global radiation maps of a specific area from HC-3 SSI maps. data used are
available for the entire surface, the method can be easily generalized. Thapbaad effects are
taken into account using clear sky index in addition to temporal or seasonairgman(Allan, 2011).

The uncertainty ofthe used satellite derived SSI maps is about 16-28fp:f/www.soda-
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http://www.soda-is.com/eng/helioclim/helioclim3_uncertainty_eng.html

is.com/eng/helioclim/helioclim3_uncertainty _eng.htnMoreover, in this paper, inputs of stochastic

models are previously measured values, however, in a previous paper we have shovagémnauex
data (parameters such as temperature, air pressure etc.) improve the predicimtieffVoyant et
al., 2013b). As it was our first experiment in using geostationary satelliiswathave preferred to

start without the multivariate case.

In the next section, the Meteosat images acquisitibe SSI computation by Heliosat-1l model
described in (Rigollier et al., 2004; Gueymard, 2012) and clear sky index comm#thgdologies
(Maini and Agrawal, 2006) will be first explained. Then we will detail the methodologies otoadi
we have tested, taking care to explain first the TS formalism dedicatdte t80 global solar
radiation modeling. Then we will expose results of evaluation between modelingCaB&8I over 2
years allowing the cross-comparison of models. Finally we will close the paper with a canclusio

2. Materials and methods

Before to expose the time series modeling in the 2-D case, two brief sezt@dedicated to
the global radiation estimations from satellite acquisititims determination of clouds and the clear
sky index described ir§énkal, 2010; Singh et al., 2011; Thies and Bendix, 2011). The clear sky index
based on the European Solar Radiation Atlas (ESRA) model (Rigollier et ap) 2@s the
characteristic to define a TS made stationary (Cybenko, 1989; Hornik et al., 12B®eagfore

directly usable by most stochastic models (as MLP for example).

2.1. Satellite-derived hourly radiation

Many methods allow a precise knowledge of spatial distribution and temporal dreb&SiSI
over a territory. Among trs2 methods, remote sensing allows processing efficiency satellite images to
estimate the cloud cover related to the studied area and so, indirectly thEh&Shterest of SSI
estimated from satellite data for a great area has been demonstrated ini @lasell998a; Perez et
al., 2013). In this study, SSI was extextfrom the Helioclim-3 database (Vernay et al., 2013)
centered on Corsica. This database provides hourly SSI maps with a a#dirrsepolution of 2.5 km
obtained from Meteosat Second Generation (MSG) images treated by the HeliagiatZ@Guemene
Dountio et al., 2010). This model uses calibrated satellite images that are convertecdirnce
They result from radiation-atmosphere interactions: a fluctuatidmeaignal measured by the sensors
is interpreted as variation of the cloud cover. Heliosat-2 computes the SSI from the clear sky

radiation multiplied by a cloud indeu;t{xhy}-} which expresssthe clearness of the atmosphere for

the pixel(x;¥;) and the time (equation 1).
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i pe (xi)— pE* (xinvy)
Tlr'[x:':}'j} = pgzuud,fx:}ﬂ_ pgg,fx:}ﬂ (1)

In this equationg, (x;¥;) is the reflectance (or apparent albedo) meashyethe sensor,
pEto % (x;,y;) is the apparentlbedo of the brightest clouds and p (x;, ¥;) is the apparent albedo of
the ground under clear sky. (Rigollier et al., 2004) have explicated the relation between tfy, }-'j}

parameter and the clear sky index nat&d. '[xfj}-‘}-} as described in the equation 2.

csi, (x.y;) = 1.2ifn, (x,y;) < —02 ()
CSI, {x:-,}-'}-} =1—-mn, {x:-,}-'}-} if—0.2 <n, I[x:-,}-'}-} = 0.8 ]

cst, (x.y;) = 2.0667 — 3.6667n, (x.,y;) +1.6667 (n, {xb}-}-})‘ if0.8 < n, (x,;) < 1.1
st (x.y;) = 005 if n, (x,7;) = 1.1

As the global radiatiof, (x; ;) and the global radiation under clear gky(x;,v;) are linked
by the simple relatiorCSI, (x;y;) = I.(x,3;) /155 (x;,3;), it is particularly evident to generate
I (2 v; ) if IE%(x;,%;) is known. The clear sky model implemented in Heliosat-2 was developed in the

framework of the European Solar Radiation Atlas (ESRA model) (Rigollier.e2@00). In this
model, the global horizontal irradiance under clear sky is split imartdand diffuse components.
Their computations are based on the Linke turbidity factor (Remund et al., tB@03ummarizes the
turbidity of the atmosphere, and hence the attenuation of the direct beam and théogenéthe
diffuse fraction (Kasten, 1996).

2.2.Studied zone and data

Corsica is a Mediterranean island located in the golf of Genoa. It stretchas D88 km long
between latitudes 41° 20’ 02” N and 43° 01 31” N and 83.5 km wide between longitudes 8° 32’ 30” E
and 9° 33” 38” E extending to an area of 8722 km® The island's seaside globally benefits from a
Mediterranean climate characterized by hot dry summers and mild wet wibbesica presents one
of the greatest solar potential of metropolitan France. The island's mountainous inme&titmade of
height elevations or even alpine climate. The summers are hot and sunny but the weatiner is m
instable on winters and the precipitations are abundant. Thus, the geograplitaitidis of solar
potential and the dynamics of meteorology are particularly heterogeneous in serchosy. The
public meteorological network is composed of only six stations. Only three of thwalghourly

radiations measurements while the others provide 10 days integrated data (Haurant et al., 2012). In this



context, predictions from 1-D TS modeling can be realized for three putmtatbns in Corsica, not
enough to allow a global management of electrical network and photovol&its.pThus 2D
prediction map from satellite SSI maps can be a good alternative related tktbérnseasured data

In the present study, 1158 points are considered, defined by the HelioClim-3 meshgrid aamtered
Corsica (not necessarily coincident with the native MSG pixels). Figure 1 shsmmeshgrid and
three of the principal cities of the island where there are weatt@nst In fact, each SSI pixel as
generator of one global radiation time series. Eight yearBl@8 hourly global radiations are
available, from 2005 to 2012 for these three places. The two last years2@)lare used for
testing the different predictors and the six first years (2005-2010) areatitio the learning phase
concerning the MLP approach.

184 km

s0000000000
ccc000000

Figure 1. Points of the HelioClim3 meshgrid and location of the 3 meteorological stations
providing hourly solar radiation measuremenisle locates Ajaccio (41°55°N and 8°44’E, elev. 0-
787 m), square locates Corte (42°18’N and 9°09’E, elev. 300-2626 m) and triangle locates Bastia
(42°42°N and 9°27’E, elev. 0-963 m)

2.3.Prediction models

There are a lot of different approaches to model time series and comprehengves rare
available(Hamilton, 1994; Mellit et al., 2009; Sahin et al., 2012.; Voyant et al., 2013). The common

base of all these modetsthat an element of Tgrqi{xf,}-}-}) can be defined by a linear or non-linear

model called, (see Equation 3 whete= n,n-/,...,p+1,p with n, the number of observations andhe



number of parameters with=* p,and Er+1{xﬂ }-‘}-} the error term of the prediction a tirt¥el and for

the pixel(x:,3;)) (Crone, 2005).

Ly (ewy) = fully Ceoyy ooy (o) v Dpas (e ) + 24 (2yy) (3)

In the extended territory case, the previous equation is applicable for each phesirohge as

described in the Figure 2. The following part is dedicated to particatailiés of functionsf,

especially related to the persistence and its scaled form, artificial metnadrks and to the cloudless

approximation and modeling. Note that the ARMA approach is not tested here, hiecapsevious
study (Voyant et al., 2013b) we show that MLP and ARMA give the same results fglotiad
radiation prediction in Corsica Island in the univariate case.
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Figure 2. TS definition from successive satellite acquisitions. In dark grey the(pixs}) at

timet defining the global radiation notéd (x; 3;). The intensity of successive pixels defines each

TS (e Fema (%035 Femy (0 v T, (e035)-).



2.3.1. Persistence and scaled persistence

The first of studied prediction methods is the persistence method; the siwgjest producing
a forecast. The persistence method assumes that the atmospheric conditions are stasiooaryias
the equation 4 (Voyant et al., 2013a).

pers

Fr(xwy) — 1y (o) 4)

To take into account the fact that the apparent position of the sunidenttal betweent and
t+1, it is possible to correct the previous form with a clear sky rati {see equation 5) (Sfetsos and

Coonick, 2000) and to generate the scaled persistence.

- zcaled pers
Foa(xeyy) ——— 1y (xoyy).

J1r':—51.I:II:F.T_.I'} (5)

L5 ol
i I:IE-JJ'.:

2.3.2. Clear sky approximation

Another way to estimate the global radiation the next hour is to consider thae wleading
exclusively with sunny days (without cloud cover). In this case, the predictidonis only with

determinist model as clear sky model presented previously (see equation 6) (Rigallje2G90).

- cE
Fows Gy ) = 185, (xayy) (6)
2.3.3. Artificial neural networks

To estimate the global radiation with stochastic models, a stationary hypothediens
necessary. This result, initially shown for autoregressive and movinggavg@rocesses (Hamilton,
1994) can be also applicable for the study and prediction from artificial neuvabrket (ANN)
(Mellit et al., 2009). In fact, before to uséN, time series must be made stationary. In previous work
we have demonstrated that the clear sky index is a stationary computed series thatlicectlype

operated by neural networks (Voyant et al., 2012).

Although a large range of different architecture of ANN is available tivayler Perceptron
(MLP) remains the most popular (Mellit et al., 2009). In particular, feed-foriviife networks with
two layers (one hidden layer and one output layer) are often used for modelirayenasting time
series. Several studies have validated this approach based on ANN for the non-linear rabtieieng
series. To forecast the next value of a time series, a fixed nyndigrast values are set as inputs of
the MLP, the output is the prediction of the future value (Voyant et al., 20@8%idering the initial
time series equation (equation 3), we can transform this formula motirinear case of one hidden

layer MLP withb related to the biasef,andg to the activation functions of the output and hidden



layer, andwto the weights (see equation 7). The number of hidden nétjesnf input nodesirf)
allow detailing this transformation. Note that as MLR &ationary estimator, it is the clear sky index
which is used during the modeling which defines a time series made stationary. Te fireitictor of
the global radiation, it is possible to construct and train a MLP Wwélclear sky estimation at time

t+1 and the clear sky index of previous lags

fr+1(xz'r}’j] = fffl[xi,}y}f(Eiil o, wf + sz

With 0, = E(Zjn:j_ ijr_j_l_l[:xi’}r}.:] ‘1’:1} + sz'] (7)

In the presented study, the MLP has been computed with the Matlab© software and its Neural
Network toolbox. The characteristics chosen and related to previous works (¢oghn2013b): one
hidden layer, the activation functions are the continuously and differentiable hypetdoudjent
(hidden) and the linear function (output), the Levenberg-Marquyapgtoximation to the Newton’s
method) learning algorithm with a max fail parameter before stoppimgnigagqual to 3 (Voyant et
al., 2013b). The detail of the MLP architecture used is shown in the Figure 3t insiaglar MLP is
defined for all the pixels of the radiation map: 1158 different MLP without gppthesis on the
spatial coherency.

| — |
- () 9]
c5
IS5, (o) —> (2) ] _Output_
eé. . @ — [rffl (xpy)
E ——
»(Z) 9]

cs —
*rr— m+1 X)) @

Neuron H

Figure 3. MLP architecture for the pixed,{;)

Training, validation and testing data sets were respectively set to 80%araD%@o (Matlab
parameters). These three phases concern the six first years (4.6 years for training and 1.2 years in ord
to execute an early stopping), and the two last years (2011-2012; not use duniappiting) tare used
for the global solar radiation forecasting test. All predictors are compared dinese two last years
In order to optimize the different MLP, it is essential to construct aatalel to determine the number
and the nature of the MLP inputs. We propose to use the automutual informatiavil{@l I("X;) for
T > 1 in equation 8) which is a quantity measuring the automutual dependence ab&esAi(L and
7 the lag operator and associated order). In fact, this formalism re@ladegeneralizes the auto-

correlation which allows to measures only the linear relationship. Mutwamation is more general



and measures the reduction of uncertainty‘ after observing( (Parviz et al., 2008). SdI (Jiang
et al., 2010) can measure non-monotonic and other more complicated relationships. It can be

expressed as a combination of marginal and conditional entropies (respedi(#ly) and

H(X,|L*X,)) as described in the equation 8 (Huang and Chow, 2005).

MI(X,, L X, )=H(X,)-H(X L7 X, ) 3

Entropy corresponds to a measure of unpredictability or information content ahd weaitten
by the expression detailed in the equation 9 (entropy of a discrete random v&riafile possible
values x={;,..%}).

H(X,) = —X,.p(x)log(p(x)) ©)

One may also define the conditional entropy of two evehtandL® X; (Equation 10). This
guantity should be understood as the amount of randomness of the random Yagalda that you

know the value oW,=L"X; (possible values y4,..yu}).

H(X,IL'X,) = —X, X, p(x,y)log(p(x)/p(x¥)) (10)

The definition of the joint probability distribution functiop(k,y) and marginal probabilities

(p(x) andp(y)), allows to define a new form of the mutual information as described in the equation 11.

. . (xa)
MI(xX,, LX) = T, Z,p(x,M)log (L35 (11)

We consider that the maximum lag to take as input of the MLP corresponds tiwsthe f
minimum of the automutual information graptinE& argmin, MI(CSI,, LTCEIr}). In example

presented in the Figure 4 (the MI versus the time lag for a pixel near Ajaccio), thera frst
minimum corresponding to the 10 time lag, and thereby inducing a MLP with 10 inputs

(I - I55).

10
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Figure 4. Example of automutual information of the clear sky index in the Ajaccio site

The first minimum of auto-mutual information concerning all the pointhefmeshing (1158
different operations) haamedian value equal to 7 time lags (min=5, max=10, mean value=7.63 and
standard deviation=1.08). Thereby, for the overall territory, the number d§ifipliis takes equal to
7 (i.e. 7 hours of passed measurements). Related to previous studies (Voyag0é&Bal.2012), we
consider that the optimal configuration of the MLP corresponds to one hidden layer pwittd&d

hidden neurons (size of inputs and hidden nodes should be equivalent).

3. Results

Before exposing prediction results, it is important to define error metrisgdpthis study, two
parameters are dedicated to the standard TS analysis (see Equations 12 and 13) and one has been
constructed to take into account the 2-D aspect of predictions and measurements (Equation 14 and 15)
The nRMSE metrics is expressed with the expected v&uelfich is in this case, the temporal mean

computed on the overall test sampling.

fr+1{xid’_f} =I4q [:xir}:.'j —Tu [:xir}:.'j (12)

nRMSE = [ |(Tesa (xoyy) = Tess (o)) | /BT ooy (13)

In the present study, the clear sky index is used in all the predictive methodologies and is related
to some geographical (altitude, longitude or latitude) and modeling parameterst(lrivikiéy factor
or relative air mass). Because of the sampling process of the HG-& 8Spossible that for some
pixels, these parameters could not be adapted (especially altitude, if & maountainous region). In

this context, we need a tool giving information about the fact that neighbor potdts have a better

11



forecasted value. In physics and particularly in medical physics, the gamenaignd criterion for
comparing data from two matrixeBhis interpretation is based on the assumption that sometime the
discrepancy between measures and calculi from the model may not be due ta @ tieomap
calculation algorithm or delivery hardware, but simply due to experimental (different offsets or
spatial resolutions). In the high gradient region, a small offset aodigte a significant error between
real pixel and forecasted one while the modeling is good. More abstractlynimeagindex takes two
2D arrays and compares each element of array_1 with spatially-nearby elementsy a2. afthe
gamma test was first introduced by Low et al. (1998) as a single metraothhined features of both
pixel intensity difference (PIDasdescribe in equations 12 or 13) and distance to agreement, (DTA
e.g. distance between iso-intensity curves), allowing a robustly perfoiimitige regions prone to
failure. It is the minimum Euclidean distanceamormalized intensity pixel-distance space. In this
way, both PID and DTA are taken into account for every point in the evaluatedutiistr (Thomas

and Cowley, 2012) generating a dimensionless métoica measured imager] and predicted image

(p), the gamma index{ is defined from the distance (notﬁ{d-p,rm}, Equation 1between points in
reference (or measurement;) and evaluation distributions (or predictiorr), note that polar

coordinates are used but a Cartesian approach is also possible:

rlgm) =g —nl (14)

If M{rpj rm} is the pixel intensity difference at poirgt in the predicted image and pofi in
the measured imageAi(r,, 1y ) = I, (r,) — I (), SO the gamma indexy) is defined for two

tolerance termsl(pl, for the distance and Tol, for the pixel intensity) by the equation 1576l is

in fact a fixed DTA androl,, a fixed PID). The minimum radial distance between the measurement
point and the calculation points (expressed as a surface in the intdissityce space of the Figurg 5

induced the index metrics.

Ir2lrporm])  ArE(rpoml

v = m[n{f{?ﬁ,rm}}f'nr all , where I"{Tp,rm} = -\,II T T T (15)

Each pixel of the image is associated with a gamma index value.igter s this index, the
less the prediction is good so the determination thfroughout the predicted irradiance distribati
provides a presentation that quantitatively indicates the calculation accMi@®pver, regions where

I" > 1 correspond to locations where the calculation does not meet the acceptameNbiethat, it

12



possible to construct the same type of test with the hypothesiBdhattow, in this case the physical

Al 'ﬁ?‘pﬁu])
Tel; 7

distance is not taken into account, only the pixels intensity are consiﬂ‘nﬁfgm(u} =
With this index, it is possible to construct a statistical test based onlthe/pothesisHO: the

prediction related to the pix&} is relevant.fl y(r;) > 1, HO is rejected else HO is accepted. This test

is represented in the Figure 5 for each pixel in a space composed of pixeltyngbkispatial
coordinates. The acceptance criteria form an ellipsoid surface, the majacalds of which are
determined by individual acceptance criteria and the center of whichaigdbat the estimated point
in question. When the calculated intensity distribution surface passes througHipgbeidel the

calculation passes the acceptance test for the measurement point.

A
Al

Tol, o

Tol r

'

Figure 5. Schematic representation of the gamma index test. Inside the ellipse, the test is

accepted (red point) and outside, it is rejected (black point).

The measure of acceptability is the multidimensional distance between the eneaguand
calculation points in both the pixel intensity and the physical distaweded as a fraction of the
acceptance criteria. For an overall image, it is possible to synthetizestheomputing the gamma
passing rate (%oGPfor each map it is the percentage of pixels passing the test), highbisi

percentage and better is the prediction.
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3.1. Performances of HC-3 SSI estimations

The data used during this study are related to global solar estimaimanttie Helioclim-3
database. The performances of the satellite derivate SSI estimations have beesdeuaiuatcase of
Corsica. In that view, they have been compared to hourly radiometric measurements prothdee by
meteorological stations in Corsica (Fig 1, table 1) that cover the period faih 1&, 2004 to
December 1%, 2006.

The table 1 summarizes seasonal performances of SSI estimations for the times $tas
shown these performances when irradiations under 0.1 Wh/m2 and 10 Wh/m?2 are elimingted. In
first case all the night values are removed (~6:00-22:00 in summer; peri@dponding to daytime
and concerning the second case, one or two additional hours are removed. Imposing sucHd thresho
allows limiting uncertainties due to the air optical air mass artifacaraise and sunset and shading

effects.
Periods | Threshold | Ajaccio Corte Bagtia Mean
0.1 19.8 23.5 22.0 21.8
Year
10 18.3 22.6 19.5 20.1
0.1 24.5 29.6 27.6 27.2
Winter
10 23.6 28.0 23.0 24.8
0.1 16.4 20.8 20.9 19.4
Spring
10 15.7 20.2 18.1 18.0
0.1 18.7 20.0 19.5 20.1
Summer
10 17.9 19.5 17.7 18.3
0.1 19.3 31.9 22.9 24.7
Autumn 10
18.6 29.9 21.6 23.4

Table 1. Comparison between helioclim-3 satellite SSI and ground measurements for the 3 studied

stations in Corsica (nRMSE in %)

Firstly, we can see that the 10 Wh/m?2 threshold allows decreasing trearfob to 1.5 points
demonstrating that the sunrise and sunset artefacts induce important epecgligsin Corte (the
only mountainous site) but also in Basiian’t forget that the NRMSE is also linked with errors in the
reference data: the location of radiometric stations is not necessdaliveg to the center of each
pixel. We can also observe that the cloudy periods (winter - autumn) presergshenportant error
(NRMSE between 20 and 30 %) showing that SSI under cloudy sky are particuladyltditii be
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calculated by the model as we could have expected. However, during cloudy montbsetrig of
observed nRMSE can be also or partly explained by a decreasing of tlemcefaradiation (see
equation 13). In fact, the HelioClim3 database (due to the pixel size) ieenosensitive to small
clouds formations while they can have a big impact on the ground measures. Wénediy note that
the estimations are correlated with measurements sincdy yaad seasonal cross correlation
coefficients are over 0.96. Yearly nRMSE are between 18.0 and 27.2 %, comparable lgutvaght
the NRMSE of Meteosat-8 estimations for the same stations and the same periodst (elaal.,
2012). However, these data have been selected for this study because HelioClim-3 ishene of
databases that offer SSI maps (or data series) on a long period butnublets exist (CM-SAF,
Land-SAF, etc.) as described in (Ineichen et al., 2009). Also, the HelioClim-3tegtrmaps have
higher resolution than Meteosat-8 images. HelioClim-3 allows also thebjibssif near real-time
SSI acquisitions: the day after in standard mode and on specificsieqd® minutes MSG

acquisitions plus some minutes on a selected region.

3.2. Irradiation prediction validation

Now the sensibility study is done concerning the validation ofH8e3 data, in this part we
will expose the performance of the four methods of prediction described in tiwn szcDuring all
the experimentations only hours between 8:00 and 18:00 are used (UTC), outside rifdb timte
choice to predict the global radiation is not really justified. The table 2 desthbesomparison
between the four predictors. The nRMSE, the gamma index and the gamma passireygaien for

the four seasons. The gamma index is related™®,a= 1 pixel (2.5 km) and'ol; = 10%.We choose

intuitively these values because this parameter is never used in gidiagion forecasting. If gamma

is less than it corresponds to a prediction error lower ti@#o with a precision better than 2.5 km.

*gamma passing rate

Criteria Scaled persistence MLP Persistence Clear sky model
nRMSE (%) 16.61 16.54 34.11 45.04
Ywi 0.84 1.21 1.21 4.9
Ysp 0.36 0.94 1.3 1.01
Ysu 0.04 0.27 0.28 0.12
Yau 0.27 0.58 0.51 0.23
%GP,;* 67.7 45.6 47.6 0.01
%GPg, 86.0 58.4 124 78.4
%GPy, 99.5 99.8 99.7 98.6
%GP,, 93.8 94.5 95.3 94.5

Table 2. Comparison of the 4 predictors, the best values are in bold

The two better predictors are the scaled persistence and the MLP, their nRMSEthsiiess
17%, the average gamma index is lower than 1 (except 1.21 for MLP in spring)eagdniima

passing rate (%GP) is upper than 65% for the scaled persistence and upper tham H8%.f
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Concerning the clear sky model, the gamma passing rate is very good in summemhan®8%
related to few cloud occurrence) and very bad in winter (less than 1%, redagedot of cloud
occurrences). Note that the variability of the global radiation from ligatelcquisitions is less
important than in the case of ground-based measurements. If in the first caseVitBE oRthe
prediction is close to 20% and in the second it is less than 17%. In fatribk clouds are not well
consideredn the Helioclim-3 data (because of the pixels size), there is sometime owatiest and

then underestimation regarding ground measurements. As scaled persistence and MLP peedictions
equivalent, the simplicity of the first one, led us to thinis the most interesting. In the Figure 6 the
gamma test is presented for 4 typical days related to each season withleédepscsistence. Black
pixels if the test is rejected and white if it is passed.

Winter -~ y=084(67.7%) Sping  y=036(96.0%)

Surmer  y=0.04 (99.5%) Auumn - ¥=027(938%)

Figure 6. Gamma test for 4 typical days with scaled persistence. Black pixel if the test is

rejected and white pixel if it is passed

During summer and autumn, there are a lot of white pixels, almosegtirédictions are in ¢h
ellipse 2.5km/10%. For the other seasons, results are less uniform: in bprimgntber of black and

white pixels is equivalent but in winter, there are more black than whitspAnother way to see the
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quality of the prediction it generate thalgebraic errorﬁ(tﬂ(x:-, }5—}} between prediction (for typical

days) and measurement as shown in figure 7. If in winter the error is cagni{a lot of red pixels
indicating that absolute error is upper than 100Wh/m?2), in summer it is ol0¥&h/m?2 (a lots of light

blue pixels). In this example, there is not significant relationship betweealtttude and the error of
prediction (mountain ridge in the center of the island longitudinally).

Forecasts HC-3 SSI

Winter

Spring

Summer

Auntumn

Latitude

Figure 7. Forecasted SSI with scaled persistence, HC-3 SSI and algebraic error

Erﬂ(xh j;j-} (Color map in Wh/m?)

In the Figure 8a and b are represented the spatial repartition of NRMSE and tharhistoipe
global NRMSE of the best predictor (scaled persistence). The center of the Gaugsiah.#%. The
behavior of the NRMSE seems to follow a normal distribution reminiscent ofpdesiandom walk
(no bias and no strong heterogeneity in the nRMSE). Note that the high altitudegpmeelsetter
result than peripheral regions (in blue in the middle of Corsica), and that ith@n asymmetry

between east and west coasts.
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To appreciate visually the quality of prediction, it is essential to grafiles ofHC-3 SSI map

and predictions as in the Figures 9-11. In these plots we see that during the sunimdethper

prediction is effective unlike the other seasons.
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Figure 9. Profiles o0HC-3 SSI data and scaled persistence estimation of the global radiation
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(respectively line and marks) in pixel localized near Corte
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Figure 11. Profiles of HC-3 SSI data and scaled persistence estimation of the global radiation

(respectively line and maks) in pixel localized near Bastia

4. Conclusions

With this article, we add a new original approach for global radiation predicfion
methodology usually applied for 1-D time series modeling has been modified and used to géherate
D predictions map foan overall territory (Corsica Island in our case). Classical time sarial/ze

tools were used, however a lot of new methods are developed:

-usually, the TS formalism is applied for a specific location and not coveringesallospatial
territory (resolution of 2.5km);

-the mutual information as MLP optimization parameter is rarely used,;
-the scaled persistence is very rarely used in time series prediction;
-the gamma index is never used in global radiation forecasting.

The methodology applied admits two sources of uncertainty, the first one ésl linkthe
Helioclim-3 database and the global radiation computing from satellite acojssithe second one is
linked to the prediction method used. The value of nRMSE including the two error compignents
close to 37% (respectively 20.1% and 16.5%). Concerning the gamma passing rétgjyosh®wvs
that for winter and spring the scaled persistence gives the best resultstifrelsp@¢.7% and 86%),
for autumn, it is the simple persistence (95.3%) and for summer it is the 98L8%€). We think that
this new methodology based on the 2-D time series modeling with scaled persistéib@) tras to

be compared against the complex model NWP (with different pixels sizes and orfgets)ofThe
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next step will be to compare in Corsica, using the gamma index and nRMS&ediction of NWP
reference methodologies (NOAA and AROME) and the time series appo@dhP and scaled
persistence). Moreover, if in the 1-D case the MLP gives very good resiié 83D case the interest
of this methodology is not shown in this paper, new adaptations are necessary (speiakzby
geographical clustering, use of adjacent pixels values, round off the optimipateach MLP, etc.).
Finally, with MLP there is the operational possibility to integrate to the dsteschema, existing real-
time measurements of irradiation and/or PV production at different locatidhs region of interest
This approach which incles a possible calibration with historical existing databases and auto-
correction in the real-time basis is certaialgood way to dramatically decrease the nRMSE of the
forecast (Kalman filter, recursive least squares filter, etc.). Morewovénis paper, inputs of models
are previously measured values, the multivariate case (with exogenous datatsaaswimulispeed,

temperature, humidity, etc.) could improve the result and it will be a good perspective ohrtkire
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List of captions

Table 1. Comparison between helioclim-3 satellite SSI and ground measurements for the 3 studied stations in
Corsica (nRMSE in %)
Table 2. Comparison of the 4 predictors, the best values are in bold

Figure 1. Points of the HelioClim3 meshgrid and location of the 3 meteorological stations providing
hourly solar radiation measurements, circle locates Ajaccio (41°55°N and 8°44’E, elev. 0-787 m), square locates
Corte (42°18’N and 9°09’E, elev. 300-2626 m) and triangle locates Bastia (42°42’N and 9°27’E, elev. 0-963 m)

Figure 2. TS definition from successive satellite acquisitions. In dark grey the pixel I[_rl-, yj-} at time ¢ defining

the global radiation noted I; I[xl-, }-‘_i-}.The intensity of successive pixels defines each TS (

---Ir—:{xv}’j}:Ir—i{xv.‘ﬁj}fr {IIJJ’J"}-")

Figure 3. MLP architecture for the pixel (x;y;)

Figure 4. Example of automutual information of the clear sky index in the Ajaccio site

Figure 5. Schematic representation of the gamma index test. Inside the ellipse, the test is accepted (red point)
and outside, it is rejected (black point).

Figure 6. Gamma test for 4 typical days with scaled persistence. Black pixel if the test is rejected and white
pixel if it is passed

Figure 7. Forecasted SSI with scaled persistence, HC-3 SSI and algebraic error EHi{x[J }-‘J-} (Color map in
Wh/m?)

Figure 8. Distribution of the annual nRMSE (a. spatial repartition and b. histogram)

Figure 9. Profiles of HC-3 SSI data and scaled persistence estimation of the global radiation (respectively line
and marks) in a pixel localized near Ajaccio

Figure 10. Profiles of HC-3 SSI data and scaled persistence estimation of the global radiation (respectively
line and marks) in pixel localized near Corte

Figure 11. Profiles of HC-3 SSI data and scaled persistence estimation of the global radiation (respectively
line and maks) in pixel localized near Bastia
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