Grégoire Allaire 
email: gregoire.allaire@polytechnique.fr
  
Zakaria Habibi 
email: zakaria.habibi@polytechnique.edu
  
Second Order Corrector in the Homogenization of a Conductive-Radiative Heat Transfer Problem *

Keywords: periodic homogenization, correctors, heat transfer, radiative transfer

published or not. The documents may come    

Second order corrector in the homogenization of a conductive-radiative heat transfer problem

Introduction

We study heat transfer in a very heterogeneous periodic porous medium. Since the ratio of the heterogeneities period with the characteristic length-scale of the domain, denoted by ǫ, is very small in practice, a direct numerical simulation of this phenomenon is either out of reach or very time consuming on any computer. Therefore, the original heterogeneous problem should be replaced by an homogeneous averaged (or effective, or homogenized) one. This approximation can be further improved if one add to the homogenized solution so-called corrector terms which take into account local fluctuations in each periodicity cell. The goal of homogenization theory [START_REF] Bakhvalov | Homogenisation: averaging processes in periodic media[END_REF], [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF], [START_REF] Cioranescu | An introduction to homogenization[END_REF], [START_REF] Hornung | Homogenization and porous media, volume 6 of Interdisciplinary Applied Mathematics[END_REF], [START_REF] Jikov | Homogenization of Differential Operators and Integral Functionals[END_REF], [START_REF] Sanchez-Palencia | Nonhomogeneous media and vibration theory[END_REF], [START_REF] Tartar | The general theory of homogenization. A personalized introduction[END_REF] is to provide a systematic way of finding such effective problems, of reconstructing an accurate 1 solution by introducing these correctors and of rigorously justifying such an approximation by establishing convergence theorems and error estimates. The purpose of this paper is to carry on this program for a model of conductiveradiative heat transfer in a domain periodically perforated by many infinitely small holes and, more specifically, to show that the second order corrector is crucial to achieve a good approximation in the present context.

Although our model could be applied to a large variety of physical problems, our work is motivated by the study of gas-cooled nuclear reactors which are one of the possible concepts for the 4th generation of reactors, considered in the nuclear industry (see [START_REF] Cea E | Les réacteurs nucléaires à caloporteur gaz[END_REF]). The core of these reactors is composed by many prismatic blocks of graphite in which are inserted the fuel compacts (playing the role of thermal sources). Each block is also periodically perforated by several channels where the coolant (Helium) flows. For simplicity, we consider a cross section (orthogonal to the cylindrical channels) of such a periodic domain (we refer to our other paper [START_REF] Allaire | Homogenization of a conductive, convective and radiative heat transfer problem[END_REF] for a discussion of the fully 3D case). In a cross section the gas channels are just a periodic distribution of disconnected circular holes (see Figure 1). The total number of holes is very large (of the order of 10 4 ) and their size is very small compared to the size of the core. Consequently, the direct numerical analysis of such a model requires a very fine mesh of the periodic domain. This induces a very expensive numerical resolution that becomes impossible for a real geometry of a reactor core. Therefore, our objective is to define a homogenized model, possibly corrected by several cell problems, in order to obtain an approximate solution, which should be less expensive in term of CPU time and memory, and should converge to the exact solution as ǫ goes to zero.

The homogenization of the conductive-radiative heat transfer model [START_REF] Bourgat | Numerical experiments of the homogenization method for operators with periodic coefficients[END_REF] was already carried out in [START_REF] Allaire | Homogenization of a conductive and radiative heat transfer problem[END_REF] for the 2D case and in [START_REF] Allaire | Homogenization of a conductive, convective and radiative heat transfer problem[END_REF] for a generalization to the 3D case. Thus, the originality of the present paper lies in the improvement of the homogenization approximation by taking into account the second order corrector. To be more specific, the improvement is dramatic when there is a large oscillating source term: then a strong temperature gradient appears in each cell between the source support and the holes boundaries where heat flows by exchange with the coolant. These localized gradients do not appear in the homogenized solution (which is expected), neither in the first order corrector (which is more surprising at first sight). Indeed, the first order corrector, defined as a linear combination of the cell solutions [START_REF] Gérard-Varet | Homogenization and boundary layer[END_REF], can be interpreted as the local fluctuation of the macroscopic temperature. However, it does not take into account the possible microscopic variations of the source term. It is rather the second order corrector which is the first term in the two-scale asymptotic expansion to admit a contribution due to a varying source term. Our numerical results confirm this asymptotic analysis.

The second order corrector is rarely studied in homogenization theory (see nevertheless the textbooks [START_REF] Bakhvalov | Homogenisation: averaging processes in periodic media[END_REF], [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF], [START_REF] Sanchez-Palencia | Nonhomogeneous media and vibration theory[END_REF], or the paper [START_REF] Conca | First and second corrector in homogenization by Bloch waves[END_REF]) and even more seldom used in numerical homogenization algorithms. To our knowledge the only noticeable exception is the early numerical work of Bourgat [START_REF] Bourgat | Numerical experiments of the homogenization method for operators with periodic coefficients[END_REF], [START_REF] Bourgat | Méthode d'homogénéisation des opérateurs à coefficients périodiques: étude des correcteurs provenant du développement asymptotique[END_REF] where a similar phenomenon was emphasized. More precisely, Bourgat showed that the second order corrector was again the first term in the two-scale asymptotic expansion which is influenced by a strong variation of the diffusion coefficient. Although these two phenomena (oscillating source term and large amplitude of the diffusion tensor) are different, in both cases the conclusion is the same: including the second order corrector in the reconstruction of an approximate solution improves a lot the comparison with the exact solution. One possible reason for the less systematic use of the second order corrector is that, in theory, it brings a correction of order ǫ 2 , much smaller than some neglected terms of order ǫ in the first order correction (including so-called boundary layers). We shall discuss at length this issue below but let us simply claim that, for many simple (or symmetric) geometries like the one considered here, these neglected terms of order ǫ turn out to very small, while the second order term of order ǫ 2 is much larger since it is proportional to the source term (which is large in our situation). In other words, the improvement is not obtained in the limit when ǫ goes to 0, but for fixed values of ǫ which, however small, are not negligible in front of other parameters like the magnitude of the source term.

The paper is organized as follows. In Section 2, we define the geometry and the heat transfer model [START_REF] Bourgat | Numerical experiments of the homogenization method for operators with periodic coefficients[END_REF]. The main properties of the radiative operator are recalled. It is an integral operator, the kernel of which is called the view factor (it amounts to quantify how a point on the hole boundary is illuminated by the other points on this surface). Section 3 is devoted to the formal method of two-scale asymptotic expansions applied to our problem. Its main result is Proposition 3.1 which gives the precise form of the homogenized problem and the so-called cell problems which define the first order corrector of the homogenized solution. Furthermore, Proposition 3.1 furnishes the second order corrector which can be decomposed as a sum of solutions to auxiliary cell problems (see Corollary 3.1). The rigorous mathematical justification of the homogenization process and of the first order approximation (but not of the second order improvement) has already been done in [START_REF] Allaire | Homogenization of a conductive and radiative heat transfer problem[END_REF] and [START_REF] Allaire | Homogenization of a conductive, convective and radiative heat transfer problem[END_REF] using the method of two-scale convergence [START_REF] Allaire | Homogenization and two-scale convergence[END_REF], [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF]. We shall not reproduce this argument here and we content ourselves in briefly recalling these results in Section 4. Similarly we recall the expected convergence rates in ǫ powers of our homogenization method, without any proof. As is well known, the two-scale convergence method does not justify the second order corrector. In truth, such a justification requires, as a preliminary step, to first introduce the ǫ-order boundary layers and to characterize the non-oscillating part of the first-order corrector (see [START_REF] Gérard-Varet | Homogenization and boundary layer[END_REF] and Remark 3.2). This process of constructing boundary layers is, in practice, restricted to rectangular domains and is quite intricate (see e.g. [START_REF] Allaire | Boundary layer tails in periodic homogenization[END_REF], [START_REF] Bakhvalov | Homogenisation: averaging processes in periodic media[END_REF], [START_REF] Lions | Some methods in the mathematical analysis of systems and their control[END_REF], [START_REF] Moskow | First-order corrections to the homogenised eigenvalues of a periodic composite medium. A convergence proof[END_REF]). The determination of the non-oscillating part of the first-order corrector is even more tricky and is rarely done in numerical practice (see [START_REF] Allaire | Boundary layer tails in periodic homogenization[END_REF], [START_REF] Bakhvalov | Homogenisation: averaging processes in periodic media[END_REF], [START_REF] Cherednichenko | On full two-scale expansion of the solutions of nonlinear periodic rapidly oscillating problems and higher-order homogenised variational problems[END_REF]). For the sake of brevity we do not reproduce these constructions here and we content ourselves in mentioning them in Section 4. As a matter of fact we shall not attempt to rigorously justify the improvement brought by the second order corrector. We simply claim that, in the geometrical setting under study, the ǫ-order boundary layer and the non-oscillating part of the first-order corrector are numerically negligible. Thus, the second order corrector brings a significant qualitative improvement in the approximation of the true solution, at least from a practical point of view. A formal generalization to the non-linear case is briefly sketched in Section 5. Indeed, the true physical model of radiative transfer is non-linear since the emitted radiations are following the Stefan-Boltzmann law of proportionality to the 4th power of temperature. Taking into account this non-linearity is not difficult for the formal method of two-scale asymptotic expansions. Thus we give the homogenized and cell problems in this case too, all the more since all our numerical computations are performed in this non-linear setting. Eventually Section 6 is devoted to some 2D numerical results for data corresponding to gas-cooled reactors. For this peculiar model the second order corrector is very useful to improve the qualitative behavior of the approximate solution obtained by homogenization. The results of this paper are part of the PhD thesis of the second author [START_REF] Habibi | Homogénéisation et convergence à deux échelles lors d'échanges thermiques stationnaires et transitoires dans un coeur de réacteur à caloporteur gaz[END_REF] and were announced in [START_REF] Habibi | Homogenization of a conductive-radiative heat transfer problem, the contribution of a second order corrector[END_REF].

Setting of the problem

The goal of this section is to define the geometry of the periodically perforated domain and to introduce the model of conductive heat transfer problem. For more details we refer to [START_REF] Habibi | Homogénéisation et convergence à deux échelles lors d'échanges thermiques stationnaires et transitoires dans un coeur de réacteur à caloporteur gaz[END_REF] and references therein.

Geometry

Let Ω = 2 j=1 (0, L j ) be a rectangular open set of R 2 with positive lengths L j > 0. It is periodically divided in N (ǫ) small cells (Y ǫ,i ) i=1...N (ǫ)
, each of them being equal, up to a translation and rescaling by a factor ǫ, to the same unit periodicity cell Y = 2 j=1 (0, l j ) with l j > 0. To avoid unnecessary complications with boundary layers (and because this is the case in the physical problem which motivates this study) we assume that the sequence of small positive parameters ǫ, going to zero, is such that Ω is made up of entire cells only, namely L j /(ǫl j ) is an integer for any j = 1, 2.

We define a reference solid cell Y S as the cell Y perforated by a smooth hole occupied by a gas with a known temperature T gas (see Figures 1 and2). We denote by Γ the boundary between Y S and the hole (which is assumed to be strictly included in Y so that, upon periodic repetition, a collection of disconnected isolated holes is obtained). Note that, for notational simplicity, we consider only one hole per cell, although there is no difficulty in treating several disjoint holes per cell (as is the case in our numerical tests where there are two holes per cell). Then, we define the domain Ω ǫ as the union of Y S ǫ,i , where Y S ǫ,i are the translated and rescaled version of Y S for i = 1, ..., N (ǫ) (similar to the correspondence between Y ǫ,i and Y ). On the same token we define the entire holes boundary Γ ǫ as the union of individual surfaces Γ ǫ,i . In summary we have

Ω ǫ = N (ǫ) i=1 Y S ǫ,i , Γ ǫ = N (ǫ) i=1 Γ ǫ,i . 4 
We define x 0,i as the center of mass of each cell Y ǫ,i such that

Yǫ,i (x -x 0,i ) dx = 0. ( 1 
)
Figure 1: The periodic domain Ω (or Ω ǫ ).

Figure 2: The reference cell Y .

Governing equations

First, we recall that the current study holds in a simplified 2D setting where convection and diffusion are neglected in the gas. A more complete 3D study, by homogenization, of stationary heat transfer in nuclear reactor cores is undertaken in [START_REF] Allaire | Homogenization of a conductive, convective and radiative heat transfer problem[END_REF]. In the present 2D setting, heat is transported by conduction in the solid part Ω ǫ of the domain and by radiation in the holes Ω \ Ω ǫ . A non-local boundary condition models the radiative transfer on the hole walls. There is a vast literature on heat transfer and we refer the interested reader to [START_REF] Chandrasekhar | Radiative transfer[END_REF], [START_REF] Modest | Radiative heat transfer[END_REF], [START_REF] Tiihonen | Stefan-boltzman radiation on non-convex surfaces[END_REF] for an introduction to the modelling of radiative transfer. We denote by T ǫ the temperature in the domain Ω ǫ . The thermal diffusion tensor in Ω ǫ is given by

K ǫ (x) = K(x, x ǫ ) (2) 
where

K(x, y) ∈ C(Ω; L ∞ # (Y )) 2×2 is a periodic symmetric positive definite ten- sor, satisfying ∀v ∈ R 2 , ∀ y ∈ Y, ∀ x ∈ Ω, α|v| 2 ≤ 2 i,j=1 K i,j (x, y)v i v j ≤ β|v| 2 ,
for some constants 0 < α ≤ β. The gas occupying the holes, being almost transparent, the radiative transfer could be modelled by a non local boundary condition on the boundary Γ ǫ between Ω ǫ and the holes:

-K ǫ ∇T ǫ • n = σ ǫ G ǫ (T ǫ ) on Γ ǫ , (3) 
where σ ǫ > 0 is the Stefan-Boltzmann constant, n is the unit outward normal on Γ ǫ and G ǫ is the radiative operator defined by

G ǫ (T ǫ )(s) = T ǫ (s) - Γǫ,i T ǫ (x)F (s, x)dx = (Id -ζ ǫ )T ǫ (s) ∀ s ∈ Γ ǫ,i , (4) 
with ζ ǫ (f )(s) = Γǫ,i F (s, x)f (x)dx. ( 5 
)
The scaling ǫ -1 in front of the radiative operator G ǫ in (3) is chosen because it yields a perfect balance, in the limit as ǫ goes to zero, between the bulk heat conduction and the surface radiative transfer (this scaling was first proposed in [START_REF] Allaire | Homogenization of a conductive and radiative heat transfer problem[END_REF]). In other words, if we perform the change of variables y = x/ǫ, then the boundary condition (3) appears at the microscopic scale without any ǫ scaling. In (5) F is the so-called view factor (see [START_REF] Modest | Radiative heat transfer[END_REF], [START_REF] Howell | A catalogue of radiation heat transfer factors[END_REF], [START_REF] Heckbert | Simulating global illumination using Adaptive Meshing[END_REF]) which is a geometrical quantity between two different points s and x of the same boundary Γ ǫ,i . Its explicit formula for surfaces enclosing convex domains in 2D is

F (s, x) := n x • (s -x)n s • (x -s) 2|x -s| 3 (6) 
where n z denotes the unit normal at the point z.

In truth, some convection and diffusion takes place in the holes due to the gas. It is further modelled by a fixed gas temperature T gas ∈ H 1 (Ω) and a heat exchange coefficient, given by

h ǫ (x) = h(x, x ǫ ) with h(x, y) ∈ C(Ω; L ∞ # (Y )) satisfying h(x, y) ≥ 0.
Then, in absence of radiative transfer, the heat flux on the boundary is

-K ǫ ∇T ǫ • n = ǫh ǫ (T ǫ -T gas ) on Γ ǫ , (7) 
where the scaling in ǫ is such that, again, there is a balance in the homogenized limit between diffusion and exchange with the gas. Actually, we shall use a combination of (3) and [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF].

Eventually, the only heat source is a bulk density of thermal sources in the solid part which, furthermore, is an oscillating function given by

f ǫ (x) = f (x, x ǫ ), with f (x, y) ∈ L 2 (Ω × Y )
which is Y -periodic and satisfies f ≥ 0 (see Figure 3 for the geometrical configuration of the support of f ). The external boundary condition is a simple Dirichlet condition. Thus, the governing equations of our model are

     -div(K ǫ ∇T ǫ ) = f ǫ in Ω ǫ -K ǫ ∇T ǫ • n = ǫh ǫ (T ǫ -T gas ) + σ ǫ G ǫ (T ǫ ) on Γ ǫ T ǫ = 0 on ∂Ω. (8) 
Applying the Lax-Milgram lemma we easily obtain the following result (see [START_REF] Allaire | Homogenization of a conductive and radiative heat transfer problem[END_REF] for a proof, if necessary). The main point is that the operator G ǫ is self-adjoint and non-negative (see Lemma 2.1).

Proposition 2.1. The boundary value problem (8) admits a unique solution

T ǫ in H 1 (Ω ǫ ) ∩ H 1 0 (Ω).
We recall in Lemma 2.1 some useful properties of the view factor F and of the radiative operator G ǫ (see [START_REF] Habibi | Homogénéisation et convergence à deux échelles lors d'échanges thermiques stationnaires et transitoires dans un coeur de réacteur à caloporteur gaz[END_REF] [START_REF] Laitinen | Conductive-radiative heat transfer in grey materials[END_REF][START_REF] Tiihonen | Stefan-boltzman radiation on non-convex surfaces[END_REF][START_REF] Tiihonen | Finite element approximation of nonlocal heat radiation problems[END_REF] for further details).

Lemma 2.1. For points x and s belonging to the same isolated hole boundary Γ ǫ,i , the view factor F (s, x) satisfies 1.

F (s, x) ≥ 0, F (s, x) = F (x, s),

Γǫ,i F (s, x)ds = 1, (9) 
2. as an operator from L 2 (Γ ǫ,i ) into itself,

ζ ǫ ≤ 1, and 
ker(G ǫ ) = ker(Id -ζ ǫ ) = R, (10) 
3. the radiative operator G ǫ is self-adjoint on L 2 (Γ ǫ,i ) and non-negative in the sense that

Γǫ,i G ǫ (f ) f ds ≥ 0 ∀ f ∈ L 2 (Γ ǫ,i ). ( 11 
)
The following lemma makes the connection between the radiative operators at the macroscopic and microscopic scales. It will be a key ingredient in the homogenization process.

Lemma 2.2. Define an integral operator G from L 2 (Γ) into L 2 (Γ) by G(φ)(z) = φ(z) - Γ φ(y)F (z, y)dy . ( 12 
)
For any φ ∈ L 2 (Γ), introducing φ ǫ (x) = φ( x ǫ ), we have

G ǫ (φ ǫ )(x) = G(φ)( x ǫ ).
Proof This is a simple change of variable y = x/ǫ and z = s/ǫ using the specific form (6) of the view factor.

Remark 2.1. Lemma 2.2 applies to a purely periodic function φ(y) but it is no longer true for a locally periodic function φ(x, y).

Namely, if φ ǫ (x) = φ(x, x ǫ ), then usually G ǫ (φ ǫ )(x) = G φ(x, •) (y = x ǫ ).
Remark 2.2. The radiation operator introduced in ( 4) is a linear operator: this is clearly a simplifying assumption. Actually, the true physical radiation operator is non-linear and defined, on each

Γ ǫ,i , 1 ≤ i ≤ N (ǫ), by G ǫ (T ǫ ) = e(Id -ζ ǫ )(Id -(1 -e)ζ ǫ ) -1 (T 4 ǫ ). ( 13 
)
where ζ ǫ is the operator defined by [START_REF] Amosov | Stationary nonlinear nonlocal problem of radiativeconductive heat transfer in a system of opaque bodies with properties depending on radiation frequency[END_REF]. To simplify the exposition, we focus on the case of so-called black walls, i.e., we assume that the emissivity is e = 1 (we can find in [START_REF] Amosov | Stationary nonlinear nonlocal problem of radiativeconductive heat transfer in a system of opaque bodies with properties depending on radiation frequency[END_REF] a study of this kind of problems when the emissivity depends on the radiation frequency). However, our analysis can be extended straightforwardly to the other cases 0 < e < 1 and non-linear operator, at the price of more tedious computations. Therefore we content ourselves in exposing the homogenization process for the linear case. Nevertheless, in Section 5 we indicate how our results can be generalized to the above non-linear setting. Furthermore, our numerical results in Section 6 are obtained in the non-linear case which is more realistic from a physical point of view.

Remark 2.3. As already said in the introduction, the main novelty of the present paper is the introduction of the second order corrector in the approximation of model [START_REF] Bourgat | Numerical experiments of the homogenization method for operators with periodic coefficients[END_REF]. It is motivated by the appearance of strong gradients of the temperature, solution of ( 8), between the periodic support of the source term and the holes where heat is exchanged with the exterior. The presence of a radiative term plays no role in this phenomenon which could appear with the mere exchange boundary condition [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF]. Nevertheless, in a high temperature regime, radiation becomes dominant compared to other means of heat transfer. Therefore, to be physically correct in this study, we take into account the radiative heat transfer.

Homogenization

The homogenized problem can be formally obtained by the method of two-scale asymptotic expansion as explained in [START_REF] Bakhvalov | Homogenisation: averaging processes in periodic media[END_REF], [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF], [START_REF] Cioranescu | An introduction to homogenization[END_REF], [START_REF] Sanchez-Palencia | Nonhomogeneous media and vibration theory[END_REF]. It consists in introducing firstly two variables x and y = x ǫ , where x is the macroscopic variable and y is the microscopic one. Secondly, the solution T ǫ of ( 8) is assumed to be given by the following series

T ǫ = T 0 (x) + ǫ T 1 (x, x ǫ ) + ǫ 2 T 2 (x, x ǫ ) + O(ǫ 3 ) ( 14 
)
where the functions y → T i (x, y), for i = 1, 2, are Y -periodic. The function T 0 is the homogenized profile of T ǫ , while T 1 is the first order corrector and T 2 the second order corrector. Third, plugging this ansatz in the equations of the model, a cascade of equations are deduced for each term T 0 , T 1 , T 2 . Finally, the true solution T ǫ can be approximated either by T 0 , (T 0 +ǫT 1 ) or (T 0 +ǫT 1 +ǫ 2 T 2 ), depending on our needs for precision.

Introducing [START_REF] Cherednichenko | On full two-scale expansion of the solutions of nonlinear periodic rapidly oscillating problems and higher-order homogenised variational problems[END_REF] in the equations of model ( 8), we deduce the main result of this section. Proposition 3.1. Under assumption ( 14), the zero-order term T 0 of the expansion for the solution T ǫ of ( 8) is the solution of the homogenized problem

-div(K * (x)∇T 0 (x)) + h * (x)(T 0 (x) -T gas (x)) = f * (x) in Ω T 0 (x) = 0 on ∂Ω (15) 
with the homogenized thermal source f * and homogenized exchange coefficient h * given by simple averages

f * (x) = 1 |Y | Y S f (x, y)dy, h * (x) = 1 |Y | Γ h(x, y)dy, (16) 
and the homogenized conductivity tensor K * (x), given by its entries, for j, k = 1, 2,

K * j,k = 1 |Y | Y S K(e j + ∇ y ω j ) • (e k + ∇ y ω k )dy + σ Γ G(ω k + y k )(ω j + y j )dy , ( 17 
)
where G is the microscopic radiative operator defined by ( 12) and (ω j (x, y)) 1≤j≤2 are the solutions of the cell problems

         -div y K(x, y)(e j + ∇ y ω j ) = 0 in Y S -K(x, y)(e j + ∇ y ω j ) • n = σG(ω j + y j ) on Γ y → ω j (y) is Y -periodic (18) 
Furthermore, the first order corrector T 1 (x, y) can be written

T 1 (x, y) = 2 j=1 ∂T 0 ∂x j (x)ω j (x, y) + T1 (x), (19) 
and the second order corrector T 2 (x, y) is the solution of the second order cell problem

                                 -div y K(x, y) [∇ y T 2 (x, y) + ∇ x T 1 (x, y)] = f (x, y) +div x K(x, y) [∇ x T 0 (x) + ∇ y T 1 (x, y)] in Y S -K(x, y) [∇ y T 2 (x, y) + ∇ x T 1 (x, y)] • n = h(x, y) T 0 (x) -T gas (x) +σG T 2 + ∇ x T 1 • y + 1 2 ∇ x ∇ x T 0 y • y -σG ∇ x T 1 + ∇ x ∇ x T 0 y • y on Γ y → T 2 (x, y)is Y -periodic. (20) 
Remark 3.1. It is proved in [START_REF] Allaire | Homogenization of a conductive and radiative heat transfer problem[END_REF], [START_REF] Allaire | Homogenization of a conductive, convective and radiative heat transfer problem[END_REF] that the homogenized tensor K * , defined by ( 17), is symmetric positive definite. Hence, the homogenized equation ( 15) admits a unique solution T 0 ∈ H 1 0 (Ω). Furthermore, the following Fredholm alternative is also proved in [START_REF] Allaire | Homogenization of a conductive and radiative heat transfer problem[END_REF], [START_REF] Allaire | Homogenization of a conductive, convective and radiative heat transfer problem[END_REF]: for p(y) ∈ L 2 # (Y S ) and q(y) ∈ L 2 (Γ), there exists a unique solution w(y

) ∈ H 1 # (Y S )/R (i.e., up to an additive constant) of    -div y (K∇ y w) = p in Y S , -K∇ y w • n = σG(w) -q on Γ, y → w(y) is Y -periodic, (21) 
if and only if the data satisfy

Y S p(y) dy + Γ q(y) ds(y) = 0. ( 22 
)
Therefore, it implies that the cell problems (18) admit unique solutions in the same space. Similarly, the second order cell problem (20) admits a unique solution too since the homogenized equation for T 0 is precisely the compatibility condition [START_REF] Habibi | Homogénéisation et convergence à deux échelles lors d'échanges thermiques stationnaires et transitoires dans un coeur de réacteur à caloporteur gaz[END_REF] in the Fredholm alternative.

Remark 3.2. The function T1 (x) appearing in [START_REF] Gérard-Varet | Homogenization and boundary layer[END_REF] is not specified at this point. It is called the non-oscillating part of the first-order corrector and it will be characterized later in Remark 4.1. The fact that the solution of ( 21) is merely defined up to an additive constant is the reason for introducing this unknown function T1 (x) in [START_REF] Gérard-Varet | Homogenization and boundary layer[END_REF].

Remark 3.3. As usual in homogenization, the cell problems ( 18) and ( 20) are partial differential equations with respect to the microscopic variable y while x plays the role of a parameter. Naively solving cell problems for each value of this parameter x may increase the cost of the homogenization method. Fortunately, there exist several methods to limit this computational cost. For example, one can use reduced bases methods as in [START_REF]Reduced-bases approach for homogenization beyond the periodic setting[END_REF], [START_REF] Maday | Global a priori convergence theory for reduced-basis approximations of single-parameter symmetric coercive elliptic partial differential equations[END_REF], or one can rely on sparse bases on the tensorial product Ω × Y as in [START_REF] Hoang | High-dimensional finite elements for elliptic problems with multiple scales[END_REF]. Nevertheless, if the conductivity tensor depends only on y, namely K(x, y) ≡ K(y) (which is the case in our industrial application), the cell problems (18) are completely independent of the parameter x.

As an immediate corollary of Proposition 3.1, using the linearity of ( 20) we obtain the following result (see [START_REF] Habibi | Homogénéisation et convergence à deux échelles lors d'échanges thermiques stationnaires et transitoires dans un coeur de réacteur à caloporteur gaz[END_REF] for a proof, if necessary). Note that all second-order cell problems ( 26), ( 27) and ( 28) below are well-posed since they satisfy the compatibility condition [START_REF] Habibi | Homogénéisation et convergence à deux échelles lors d'échanges thermiques stationnaires et transitoires dans un coeur de réacteur à caloporteur gaz[END_REF] of the Fredholm alternative.

Corollary 3.1. Under the same hypotheses than in Proposition 3.1 and assuming further that the conductivity tensor K(x, y) ≡ K(y) depends only on the microscopic variable and that the functions f and h are given by

f (x, y) = F (x)f # (y) and h(x, y) = H(x)h # (y), ( 23 
)
introducing the averages

F * = 1 |Y | Y S f # (y)dy and H * = 1 |Y | Γ h # (y)dy, ( 24 
)
the second order corrector T 2 (x, y) can be written

T 2 (x, y) = T F 2 (y)F (x) + T H 2 (y)H(x)(T 0 (x) -T gas (x)) + 2 i,j=1 ∂ 2 T 0 ∂x i ∂x j (x) θ i,j (y) + T2 (x), (25) 
where T F 2 , T H 2 and θ i,j are the solutions of the second order cell problems

         -div y K(y)∇ y T F 2 (y) = f # (y) in Y S -K(y)∇ y T F 2 (y) • n = |Y | |Γ| F * + σG(T F 2 (y)) on Γ T F 2 (y) is Y -periodic (26) 
         -div y K(y)∇ y T H 2 (y) = 0 in Y S -K(y)∇ y T H 2 (y) • n = (h # (y) -|Y | |Γ| H * ) + σG(T H 2 (y)) on Γ T H 2 (y) is Y -periodic (27) 
and

                 -div y K(y) [∇ y θ i,j (y) + e j ω i (y)] = K i,j (y) + K(y)∇ y ω i (y) • e j in Y S -K(y) [∇ y θ i,j (y) + e j ω i (y)] • n = |Y | |Γ| K * i,j +σG θ i,j (y) + ω i (y)y j + 1 2 y i y j -σG ω i (y) + y i y j on Γ θ i,j (y) is Y -periodic (28)
Remark 3.4. The first order cell problem [START_REF] Gérard-Varet | Homogenization in polygonal domains[END_REF] does not depend at all on the thermal source f and on the heat exchange coefficient h. On the contrary, the cell problem (20) for T 2 does depend on f and h. More precisely, Corollary 3.1 shows that the second-order cell problems ( 26) and ( 27) depend on the source f (x, y) and of the coefficient h(x, y). Recall that the homogenized problem [START_REF] Cioranescu | An introduction to homogenization[END_REF] depends merely on the cell average of f and h. Therefore, the interest of the second order corrector T 2 is obvious if one is concerned with the influence of the local variations of f and h. As we shall see in the numerical experiments, these microscopic variations are at the root of local temperature gradients for T ǫ which can be reproduced only by T 2 .

If there are no local oscillations for the coefficient h, namely h(x, y) ≡ h(x), then the solution of ( 27) vanishes. Note however that, even if the source term f is constant, i.e., f (x, y) ≡ f (x), the solution of ( 26) does not vanish.

Remark 3.5. The function T2 (x) appearing in [START_REF] Hornung | Homogenization and porous media, volume 6 of Interdisciplinary Applied Mathematics[END_REF] is not specified at this point. It is similar to T1 (x) in [START_REF] Gérard-Varet | Homogenization and boundary layer[END_REF] and is due to the non-uniqueness of the solution of ( 21) as explained in Remark 3.2.

Proof (of Proposition 3.1) As explained in [START_REF] Allaire | Homogenization of a conductive and radiative heat transfer problem[END_REF][START_REF] Allaire | Homogenization of a conductive, convective and radiative heat transfer problem[END_REF], using the method of two scale asymptotic expansions in the strong formulation of problem ( 8) is cumbersome because of the non-local boundary condition on the holes, arising from the radiative transfer operator. Rather, following an original idea of J.-L. Lions [START_REF] Lions | Some methods in the mathematical analysis of systems and their control[END_REF], it is simpler to perform this two-scale asymptotic expansion in the weak formulation of (8), thus taking advantage of its symmetry and minimizing the amount of computations. The following proof is essentially an extension of those in [START_REF] Allaire | Homogenization of a conductive and radiative heat transfer problem[END_REF][START_REF] Allaire | Homogenization of a conductive, convective and radiative heat transfer problem[END_REF] (which stopped at first order), going one step further, up to the second order term.

The variational formulation of ( 8) is: find

T ǫ ∈ H 1 0 (Ω ǫ ) such that a ǫ (T ǫ , φ ǫ ) = L ǫ (φ ǫ ) for all function φ ǫ ∈ H 1 0 (Ω ǫ ), (29) 
with

a ǫ (T ǫ , φ ǫ ) = Ωǫ K ǫ ∇T ǫ • ∇φ ǫ dx + σ ǫ Γǫ G(T ǫ )φ ǫ dx + ǫ Γǫ h ǫ (T ǫ -T gas )φ ǫ dx and L ǫ (φ ǫ ) = Ωǫ f ǫ φ ǫ dx.
We choose φ ǫ of the same form than T ǫ in ( 14), without remainder term,

φ ǫ (x) = φ 0 (x) + ǫ φ 1 (x, x ǫ ) + ǫ 2 φ 2 (x, x ǫ ), (32) 
with smooth functions φ 0 (x) and φ i (x, y), i = 1, 2, which are Y -periodic in y and have compact support in x ∈ Ω. Inserting the ansatz ( 14) and [START_REF] Modest | Radiative heat transfer[END_REF] in the variational formulation (29) yields

a 0 (T 0 , T 1 , φ 0 , φ 1 ) + ǫa 1 (T 0 , T 1 , T 2 , φ 0 , φ 1 , φ 2 ) = L 0 (φ 0 , φ 1 ) + ǫL 1 (φ 0 , φ 1 , φ 2 ) + O(ǫ 2 ). ( 33 
)
Equating identical powers of ǫ we successively obtain:

a 0 (T 0 , T 1 , φ 0 , φ 1 ) = L 0 (φ 0 , φ 1 )
which is the two-scale limit variational formulation (in the sense of [START_REF] Allaire | Homogenization and two-scale convergence[END_REF]), namely a combination of the homogenized problem and of the (first order) cell problems, and

a 1 (T 0 , T 1 , T 2 , φ 0 , φ 1 , φ 2 ) = L 1 (φ 0 , φ 1 , φ 2 )
which yields the second order cell problem defining T 2 (this is the new part compared to [START_REF] Allaire | Homogenization of a conductive and radiative heat transfer problem[END_REF][START_REF] Allaire | Homogenization of a conductive, convective and radiative heat transfer problem[END_REF]).

For the sake of clarity we divide the proof in three steps. The first step is devoted to the ansatz for the diffusion and thermal exchange terms. The second step focuses on the radiation term, while the third one combines these various terms to identify the limit equations. We write the bilinear form in the variational formulation [START_REF] Laitinen | Conductive-radiative heat transfer in grey materials[END_REF] as

a ǫ (T ǫ , φ ǫ ) = a C ǫ (T ǫ , φ ǫ ) + a R ǫ (T ǫ , φ ǫ ) with a C ǫ = Ωǫ K ǫ ∇T ǫ • ∇φ ǫ dx + ǫ Γǫ h ǫ (T ǫ -T gas )φ ǫ dx, a R ǫ = σ ǫ Γǫ G ǫ (T ǫ )φ ǫ dx.
Step 1 : Expansion of a C ǫ -L ǫ This is a standard calculation that we briefly sketch

a C ǫ -L ǫ = Ωǫ K(∇ x T 0 + ∇ y T 1 ) • (∇ x φ 0 + ∇ y φ 1 )dx + ǫ Γǫ h(T 0 -T gas )φ 0 dx + ǫ Ωǫ K(∇ x T 1 + ∇ y T 2 ) • (∇ x φ 0 + ∇ y φ 1 )dx + ǫ Ωǫ K(∇ x T 0 + ∇ y T 1 ) • (∇ x φ 1 + ∇ y φ 2 )dx + ǫ 2 Γǫ h [(T 0 -T gas )φ 1 + T 1 φ 0 ] dx - Ωǫ f (φ 0 + ǫφ 1 )dx + O(ǫ 2 ) ( 34 
)
where all functions are evaluated at (x, x/ǫ). Using Lemma 3.1 below to convert the integrals on varying domains, we deduce

|Y |(a C ǫ -L ǫ ) = Ω Y S K(x, y)(∇ x T 0 (x) + ∇ y T 1 (x, y) • (∇ x φ 0 (x) + ∇ y φ 1 (x, y))dydx + Ω Γ h(x, y)(T 0 (x) -T gas (x))φ 0 (x)dydx - Ω Y S f (x, y)φ 0 (x)dydx +ǫ Ω Y S K(x, y) (∇ x T 1 (x, y) + ∇ y T 2 (x, y)) • (∇ x φ 0 (x) + ∇ y φ 1 (x, y)) +(∇ x T 0 (x) + ∇ y T 1 (x, y)) • (∇ x φ 1 (x, y) + ∇ y φ 2 (x, y)) dydx + Ω Γ h(x, y) (T 0 (x) -T gas (x))φ 1 (x, y) + T 1 (x, y)φ 0 (x) dydx - Ω Y S f (x, y)φ 1 (x, y)dydx + O(ǫ 2 ). ( 35 
)
Step

2 : Expansion of a R ǫ = a R 0 + ǫa R 1 + O(ǫ 2
) This is the delicate term because the radiative operator G ǫ is integral. Following [START_REF] Allaire | Homogenization of a conductive and radiative heat transfer problem[END_REF][START_REF] Allaire | Homogenization of a conductive, convective and radiative heat transfer problem[END_REF], for both T ǫ and φ ǫ , we perform a Taylor expansion with respect to the macroscopic variable x around each center of mass x 0,i of each cell Y ǫ,i (the choice of x 0,i or of any other point in the cell Y ǫ,i is irrelevant as we shall see in the end). This has the effect that the integral operator G ǫ will apply only to the microscopic variable. Then, according to Lemma 2.2 we can rescale it in the unit cell as G (in view of Remark 2.1 it is not possible to perform this rescaling if G ǫ applies to functions depending on both x and x/ǫ). To simplify the notations, we introduce

y ǫ,i = x -x 0,i ǫ .
Then we get

T ǫ (x) = T 0 (x 0,i ) + ǫ ∇ x T 0 (x 0,i ) • y ǫ,i + T 1 (x 0,i , x ǫ ) + ǫ 2 T 2 (x 0,i , x ǫ ) + ∇ x T 1 (x 0,i , x ǫ ) • y ǫ,i + 1 2 ∇ x ∇ x T 0 (x 0,i )y ǫ,i • y ǫ,i + ǫ 3 T 3,ǫ (x) + O(ǫ 4 ) (36) 
and

φ ǫ (x) = φ 0 (x 0,i ) + ǫ ∇ x φ 0 (x 0,i ) • y ǫ,i + φ 1 (x 0,i , x ǫ ) + ǫ 2 φ 2 (x 0,i , x ǫ ) + ∇ x φ 1 (x 0,i , x ǫ ) • y ǫ,i + 1 2 ∇ x ∇ x φ 0 (x 0,i )y ǫ,i • y ǫ,i + ǫ 3 φ 3,ǫ (x) + O(ǫ 4 ) (37) 
where the precise form of the terms T 3,ǫ and φ 3,ǫ is not important since the O(ǫ 3 )-order terms will cancel by simplification as we shall soon see.

Recall from Lemma 2.1 that G ǫ is self-adjoint and ker(G ǫ ) = R. Thus, G ǫ (T 0 (x 0,i )) = G ǫ (φ 0 (x 0,i )) = 0 and it yields the following simplified expression

σ ǫ Γǫ,i G ǫ (T ǫ )φ ǫ dx = σǫ Γǫ,i G ǫ ∇ x T 0 (x 0,i ) • y ǫ,i + T 1 (x 0,i , x ǫ ) ∇ x φ 0 (x 0,i ) • y ǫ,i + φ 1 (x 0,i , x ǫ ) dx +σǫ 2 
Γǫ,i

G ǫ ∇ x T 0 (x 0,i ) • y ǫ,i + T 1 (x 0,i , x ǫ ) φ 2 (x 0,i , x ǫ ) +∇ x φ 1 (x 0,i , x ǫ ) • y ǫ,i + 1 2 ∇ x ∇ x φ 0 (x 0,i )y ǫ,i • y ǫ,i dx +σǫ 2 Γǫ,i G ǫ ∇ x φ 0 (x 0,i ) • y ǫ,i + φ 1 (x 0,i , x ǫ ) T 2 (x 0,i , x ǫ ) +∇ x T 1 (x 0,i , x ǫ ) • y ǫ,i + 1 2 ∇ x ∇ x T 0 (x 0,i )y ǫ,i • y ǫ,i dx +O(ǫ 4 ), (38) 
where we used |Γ ǫ,i | = ǫ|Γ| in the remainder term. We can now make the change of variables y -y 0 = (x -x 0,i )/ǫ in [START_REF] Tiihonen | Stefan-boltzman radiation on non-convex surfaces[END_REF], with y 0 the center of mass of Y , and apply Lemma 2.2 to get

σ ǫ Γǫ,i G ǫ (T ǫ )φ ǫ dx = σǫ 2 Γ G ∇ x T 0 (x 0,i ) • (y -y 0 ) + T 1 (x 0,i , y) φ 1 (x 0,i , y) +∇ x φ 0 (x 0,i ) • (y -y 0 ) dy +σǫ 3 Γ G ∇ x T 0 (x 0,i ) • (y -y 0 ) + T 1 (x 0,i , y) φ 2 (x 0,i , y) +∇ x φ 1 (x 0,i , y) • (y -y 0 ) + 1 2 ∇ x ∇ x φ 0 (x 0,i )(y -y 0 ) • (y -y 0 ) dy +σǫ 3 Γ G ∇ x φ 0 (x 0,i ) • (y -y 0 ) + φ 1 (x 0,i , y) T 2 (x 0,i , y) +∇ x T 1 (x 0,i , y) • (y -y 0 ) + 1 2 ∇ x ∇ x T 0 (x 0,i )(y -y 0 ) • (y -y 0 ) dy +O(ǫ 4 ). (39) 
Summing with respect to i and applying Lemma 3.1 shows that ( 39) is a Riemann sum approximating an integral over Ω, namely

a R ǫ = σ ǫ N (ǫ) i=1 Γǫ,i G ǫ (T ǫ )φ ǫ dx = a R 0 + ǫa R 1 + O(ǫ 2 ), with a R 0 = σ |Y | Ω Γ G ∇ x T 0 (x) • (y -y 0 ) + T 1 (x, y) φ 1 (x 0,i , y) +∇ x φ 0 (x 0,i ) • (y -y 0 ) dx dy (40) 
and

a R 1 = σ |Y | Ω Γ G ∇ x T 0 (x) • (y -y 0 ) + T 1 (x, y) φ 2 (x, y) +∇ x φ 1 (x, y) • (y -y 0 ) + 1 2 ∇ x ∇ x φ 0 (x)(y -y 0 ) • (y -y 0 ) dx dy + σ |Y | Ω Γ G ∇ x φ 0 (x) • (y -y 0 ) + φ 1 (x, y) T 2 (x, y) +∇ x T 1 (x, y) • (y -y 0 ) + 1 2 ∇ x ∇ x T 0 (x)(y -y 0 ) • (y -y 0 ) dx dy. (41) 
Step 3 : Identification of the limit variational formulations The zero-th order ǫ 0 -term of ( 33), namely a 0 (T 0 , T 1 , φ 0 , φ 1 ) = L 0 (φ 0 , φ 1 ) is equivalent to

Ω Y S K(x, y)(∇ x T 0 (x) + ∇ y T 1 (x, y) • (∇ x φ 0 (x) + ∇ y φ 1 (x, y))dx dy + Ω Γ h(x, y)(T 0 (x) -T gas (x))φ 0 (x)dx dy +σ Ω Γ G ∇ x T 0 (x) • (y -y 0 ) + T 1 (x, y) φ 1 (x, y) +∇ x φ 0 (x) • (y -y 0 ) dx dy = Ω Y S f (x, y)φ 0 (x)dx dy, (42) 
which is just the variational formulation of the so-called two-scale limit problem which is a combination of the homogenized and cell problems. Remark that, since ker(G) = R, the terms containing y 0 cancel in (42) which thus does not depend on the choice of reference point y 0 . We recover the cell problem (18) and formula [START_REF] Gérard-Varet | Homogenization and boundary layer[END_REF] for T 1 by taking φ 0 = 0 in (42). Then, to recover the homogenized problem [START_REF] Cioranescu | An introduction to homogenization[END_REF] we take φ 1 = 0 in (42). It yields the variational formulation of (15), as well as the formula for K * .

The first order ǫ-term of (33), namely a

1 (T 0 , T 1 , T 2 , φ 0 , φ 1 , φ 2 ) = L 1 (φ 0 , φ 1 , φ 2 )
is equivalent to

Ω Y S K (∇ x T 1 + ∇ y T 2 ) • (∇ x φ 0 + ∇ y φ 1 ) +(∇ x T 0 + ∇ y T 1 ) • (∇ x φ 1 + ∇ y φ 2 ) dy dx + Ω Γ h (T 0 -T gas )φ 1 + T 1 φ 0 dy dx + a R 1 = Ω Y S f φ 1 dy dx. (43) 
We recover the second order cell problem (20) for T 2 by choosing φ 0 = 0 and φ 2 = 0 in ( 43)

Ω Y S K (∇ x T 1 + ∇ y T 2 ) • ∇ y φ 1 + (∇ x T 0 + ∇ y T 1 ) • ∇ x φ 1 dx dy + Ω Γ h(T 0 -T gas )φ 1 dx dy +σ Ω Γ G ∇ x T 0 • (y -y 0 ) + T 1 ∇ x φ 1 • (y -y 0 )dx dy +σ Ω Γ φ 1 G T 2 + ∇ x T 1 • (y -y 0 ) + 1 2 ∇ x ∇ x T 0 (y -y 0 ) • (y -y 0 ) dx dy = Ω Y S f (x, y)φ 1 (x, y)dx dy. (44) 
Since φ 1 belongs to H 1 0 (Ω), we can perform an integration by part with respect to x in the third line of (44) and, using again ker(G) = R, we get

Ω Γ G ∇ x T 0 • (y -y 0 ) + T 1 ∇ x φ 1 • (y -y 0 )dx dy = - Ω Γ G ∇ x ∇ x T 0 • y + ∇ x T 1 • (y -y 0 )φ 1 dx dy.
Thus, all terms containing y 0 cancel in (44) and we exactly obtain the variational formulation of [START_REF] Griso | Interior error estimate for periodic homogenization[END_REF]. This finishes the proof of Proposition 3.1. Remark 3.6. In the proof of Proposition 3.1 we obtain the variational formulation (44) for T 2 by making a special choice, φ 0 = 0 and φ 2 = 0, in (43). One may wonder what could be deduced from (43) by another choice. It turns out that choosing φ 2 = 0 yields again the first-order cell problem for T 1 . On the contrary, choosing φ 0 = 0 leads to a new macroscopic equation for the non oscillating first-order corrector T1 (x) (see Remark 4.1 below).

On the other hand, the proof of Proposition 3.1 cannot possibly detect any boundary layers involved in the asymptotic behavior of T ǫ . The reason is that the test function is assumed to have compact support in Ω (a crucial assumption which is used in Lemma 3.1 below). In other words, the results of Proposition 3.1 holds true in the interior of the domain, not on its boundary.

We recall a classical lemma used in the proof of Proposition 3.1.

Lemma 3.1. Let g(x, y) be a Y -periodic function in L 1 # (Y ; C 2 (Ω)), with com- pact support in x ∈ Ω. It satisfies i. Ωǫ g(x, x ǫ )dx = 1 |Y | Ω Y S g(x, y)dydx + O(ǫ 2 ), ii. ǫ Γǫ g(x, x ǫ ) dx = 1 |Y | Ω Γ g(x, y) dx dy + O(ǫ 2 ), iii. ǫ 2 N (ǫ) i=1 Γ g(x 0,i , y) dy = 1 |Y | Ω Γ g(x, y) dx dy + O(ǫ 2 ).

Mathematical convergence

The mathematically rigorous justification of that part of Proposition 3.1 concerning the two first terms T 0 and ǫT 1 in the expansion ( 14) has been done in [START_REF] Allaire | Homogenization of a conductive and radiative heat transfer problem[END_REF] and [START_REF] Allaire | Homogenization of a conductive, convective and radiative heat transfer problem[END_REF] (with a slightly modified model) using the two scale convergence method [START_REF] Allaire | Homogenization and two-scale convergence[END_REF], [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF]. We shall not reproduce this argument and we content ourselves in recalling their main theorem.

Theorem 4.1 ([3], [START_REF] Allaire | Homogenization of a conductive, convective and radiative heat transfer problem[END_REF]). Let T ǫ ∈ H 1 (Ω ǫ ) ∩ H 1 0 (Ω) be the sequence of solutions of [START_REF] Bourgat | Numerical experiments of the homogenization method for operators with periodic coefficients[END_REF]. There exists a positive constant C, which does not depend on ǫ, such that

T ǫ H 1 (Ωǫ) ≤ C. ( 45 
)
Furthermore, T ǫ two-scale converges to T 0 (x) and ∇T ǫ two-scale converges to ∇ x T 0 (x) + ∇ y T 1 (x, y), where T 0 ∈ H 1 0 (Ω) is the solution of the homogenized problem (15) and T 1 (x, y) ∈ L 2 (Ω; H 1 # (Y S )) is the first order corrector defined by [START_REF] Gérard-Varet | Homogenization and boundary layer[END_REF].

The main novelty of the present work is the second-order corrector T 2 which improves the approximation by homogenization of problem [START_REF] Bourgat | Numerical experiments of the homogenization method for operators with periodic coefficients[END_REF] in the presence of an oscillating heat source. Unfortunately, the two-scale convergence method cannot justify it. The usual approach to justify T 2 is to write the equation satisfied by the remainder term

r ǫ = T ǫ -T 0 (x) + ǫT 1 (x, x ǫ ) + ǫ 2 T 2 (x, x ǫ ) + ǫ 3 T 3 (x, x ǫ ) (46) 
(note the necessary presence of the next order term T 3 ) and to get uniform a priori estimate showing that r ǫ is small in some norm [START_REF] Bakhvalov | Homogenisation: averaging processes in periodic media[END_REF], [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF]. Solving for T 3 requires a compatibility condition (see the Fredholm alternative in Remark 3.1) which delivers a macroscopic equation for the (so far unknown) non oscillating first-order corrector T1 (x) appearing in [START_REF] Gérard-Varet | Homogenization and boundary layer[END_REF] (for more details, see Remark 4.1). However, there is one (serious) additional hurdle in the justification of T 2 which is that ( 14) is not a correct ansatz for T ǫ (or equivalently (46) is not accurate) since it is missing boundary layers. The reason is that each corrector, T 1 , T 2 , T 3 , does not verify the Dirichlet boundary condition on ∂Ω. Because of this, it is impossible to prove that r ǫ , defined by ( 46), is small. To circumvent this difficulty, boundary layers have to be taken into account. It amounts to replace the former ansatz ( 14) by the new one

T ǫ (x) = T 0 (x) + ǫ T 1 (x, x ǫ ) + T bl,ǫ 1 (x) + ǫ 2 T 2 (x, x ǫ ) + T bl,ǫ 2 (x) + ..., (47) 
where each function T bl,ǫ i (x), called a boundary layer, satisfies

           -div(K ǫ ∇T bl,ǫ i ) = 0 in Ω, -K ǫ ∇T bl,ǫ i • n = ǫh ǫ T bl,ǫ i + σ ǫ G ǫ (T bl,ǫ i ) on Γ ǫ , T bl,ǫ i (x) = -T i (x, x ǫ ) on ∂Ω. ( 48 
)
The advantage of the new ansatz ( 47) is that each term T i + T bl,ǫ i satisfies a homogeneous Dirichlet boundary condition. On the other hand, it is clear that in (47) the first boundary layer T bl,ǫ 1 is more important than the second order corrector T 2 .

The asymptotic analysis of ( 48) is delicate since T bl,ǫ i (x) is not uniformly bounded in the usual energy spaces (the Dirichlet boundary data is not bounded in H 1/2 (∂Ω)). It has merely been carried out for rectangular domains having boundaries parallel to the unit cell axes. In such a case, it is proved that T bl,ǫ i (x) is of order 1 in the vicinity of the boundary ∂Ω and decays exponentially fast to 0 inside Ω (upon a suitable choice of the additive function Ti (x) in the definition of T i (x, y)) ; hence its name of boundary layers (see [START_REF] Allaire | Boundary layer tails in periodic homogenization[END_REF], [START_REF] Bakhvalov | Homogenisation: averaging processes in periodic media[END_REF], [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF], [START_REF] Casado-Daz | The asymptotic behaviour near the boundary of periodic homogenization problems via two-scale convergence[END_REF], [START_REF] Gérard-Varet | Homogenization in polygonal domains[END_REF], [START_REF] Gérard-Varet | Homogenization and boundary layer[END_REF], [START_REF] Griso | Interior error estimate for periodic homogenization[END_REF], [START_REF] Kenig | Convergence Rates in L 2 for Elliptic Homogenization Problems[END_REF], [START_REF] Lions | Some methods in the mathematical analysis of systems and their control[END_REF], [START_REF] Moskow | First-order corrections to the homogenised eigenvalues of a periodic composite medium. A convergence proof[END_REF], [START_REF] Onofrei | Error estimates for periodic homogenization with non-smooth coefficients[END_REF] for more details in the case of a pure conduction problem). In general, boundary layers should satisfy the following a priori estimates 1) for all ω ⊂⊂ Ω.

T bl i H 1 (Ω) = O( 1 √ ǫ ), T bl i L 2 (Ω) = O(1), T bl i H 1 (ω) = O(
Remark 4.1. The non oscillating first-order corrector T1 , introduced in ( 19), is determined by the compatibility condition of the equation for T 3 (x, y) in the unit cell: this is a standard computation (see [START_REF] Allaire | Boundary layer tails in periodic homogenization[END_REF], [START_REF] Bakhvalov | Homogenisation: averaging processes in periodic media[END_REF] [7], [START_REF] Cherednichenko | On full two-scale expansion of the solutions of nonlinear periodic rapidly oscillating problems and higher-order homogenised variational problems[END_REF] for simpler models). It can also be obtained by taking a test function φ 0 = 0 in (43), at the end of the proof of Proposition 3.1 (see Remark 3.6). More precisely, we obtain

-div K * (x)∇ T1 (x) = 2 i,j,k=1 c ijk ∂ 3 T 0 (x) ∂x i ∂x j ∂x k + 2 i=1 m i ∂T 0 (x) ∂x i + d i ∂F (x) ∂x i + g i ∂H(x)(T 0 (x) -T gas (x)) ∂x i (49) with c ijk = Y S 2 l=1 K kl (y) ∂θ ij ∂y l (y) -K ij (y)ω k (y) dy - Γ G(y k ) θ i,j + ω i y j dy, m i = Γ h(y)ω i (y)dy, d i = Y S 2 j=1 K ij (y) ∂T F 2 ∂y j (y)dy - Γ G(y i )T F 2 dy, g i = Y S 2 j=1 K ij (y) ∂T H 2 ∂y j (y)dy - Γ G(y i )T H 2 dy.
The function T1 is not yet uniquely defined since we do not have any boundary condition for equation (49). It is customary to impose the same boundary conditions for T1 as for the homogenized solution T 0 . However, we clearly see from the definition (48) of the boundary layer problem that changing the boundary condition for T1 is equivalent to changing the boundary condition for T bl,ǫ i . For the numerical computations concerning our industrial application, we shall simply ignore T1 and T bl,ǫ i , namely take them equal to 0. On the other hand we choose T 1 (x, y) being of zero average with respect to y. Note that, T1 ≡ 0 is a consequence of cubic symmetry assumptions for the coefficients in the periodicity cell Y (which imply that all parameters c i,jk , m i , g i and d i vanish). We do not have cubic symmetry of our reference cell (see Figure 2) but our numerical computations indicated that all values of these parameter are almost zero.

Based on the study of the first order boundary layer it was proved [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF] for a pure conduction problem that one can get explicit convergence errors for the first order approximation of T ǫ . It is thus reasonable to conjecture that the same holds true in our context. Conjecture 4.1. The first order approximation of the solution T ǫ of (8) satisfies

T ǫ -(T 0 + ǫT 1 ) L 2 (Ωǫ) ≤ Cǫ, T ǫ -(T 0 + ǫT 1 ) H 1 (Ωǫ) ≤ C √ ǫ,
where the constant C does not depend on ǫ.

Note that, because of boundary layers, the convergence speed in Conjecture 4.1 is not ǫ 2 and ǫ, respectively, as could be expected from the (wrong) ansatz [START_REF] Cherednichenko | On full two-scale expansion of the solutions of nonlinear periodic rapidly oscillating problems and higher-order homogenised variational problems[END_REF]. On the same token, the convergence speed in Conjecture 4.1 is independent of the choice of the additive function T1 (x) in [START_REF] Gérard-Varet | Homogenization and boundary layer[END_REF]. Remark 4.2. Conjecture 4.1 is most probably valid for any geometry of the domain Ω which may yield non trivial boundary layers. For the specific rectangular geometry under study, we are going to obtain in Section 6 a much better numerical convergence, typically

T ǫ -(T 0 + ǫT 1 ) L 2 (Ωǫ) = O(ǫ 2 ),
which means that the boundary layer T bl,ǫ 1 is negligible. Because of this actual fact, it makes sense to look at the next term in the ansatz and to consider the second order corrector.

As we shall see in Section 6, introducing T 2 improves the qualitative behavior of the approximation but does not change the speed of convergence which is still

T ǫ -(T 0 + ǫT 1 + ǫ 2 )T 2 L 2 (Ωǫ) = O(ǫ 2 ).
In any case, it is clear that any mathematical justification of T 2 , based on an error estimate similar to that in Conjecture 4.1, must rely on a preliminary asymptotic analysis of the non-oscillating first order corrector T1 and of the first order boundary layer T bl,ǫ 1 (x), a formidable task in which we do not want to endeavour. Therefore, we will merely numerically check that adding the second order corrector decreases significantly the error but not that the convergence speed is improved.

Non-linear case

As already discussed in Remark 2.2, the true physical problem involves a nonlinear radiation operator, defined by formula (13) instead of (4). The study of the linear case was a simplifying assumption. However, the formal method of two-scale asymptotic expansion is perfectly valid in the non-linear case too (see [START_REF] Allaire | Homogenization of a conductive and radiative heat transfer problem[END_REF]). In this section we give, without proof, the homogenization result in the nonlinear case when Stefan-Boltzmann law applies, namely the emitted radiations are proportional to the 4th power of the temperature. More precisely, instead of using the linear formula (4) for G ǫ we use rather [START_REF] Chandrasekhar | Radiative transfer[END_REF] with the emissivity e = 1, i.e.,

G ǫ (T ǫ )(s) = T 4 ǫ (s) - Γǫ,i T 4 ǫ (x)F (s, x)dx ∀ s ∈ Γ ǫ,i .
The non-linear equivalent of Proposition 3.1 is the following.

Proposition 5.1. Under assumption ( 14), the zero-order term T 0 of the expansion for the solution T ǫ of ( 8) is the solution of the nonlinear homogenized problem

-div K * (T 3 0 )∇T 0 (x) + h * (x)(T 0 (x) -T gas (x)) = f * (x) in Ω, T 0 (x) = 0 on ∂Ω, (50) 
with the homogenized source f * and exchange coefficient h * given by ( 16). The homogenized conductivity tensor K * depends on (T 0 ) 3 and is given by its entries, for j, k = 1, 2,

K * j,k = 1 |Y | Y S K(e j + ∇ y ω j ) • (e k + ∇ y ω k )dy + 4σT 3 0 Γ G(ω k + y k )(ω j + y j )dy ,
where G is the linear radiative operator defined by ( 12) and (ω k (x, y)) 1≤k≤2 are the solutions of the (linear) cell problems

         -div y K(x, y)(e j + ∇ y ω j ) = 0 in Y S , K(x, y)(e j + ∇ y ω j ) • n = 4σT 0 (x) 3 G(ω j + y j ) on Γ, y → ω j (x, y) is Y -periodic. (51) 
Furthermore, the first order corrector T 1 (x, y) is still given by ( 19) and the second order corrector T 2 (x, y) is the solution of

                                 -div y K(x, y) [∇ y T 2 (x, y) + ∇ x T 1 (x, y)] = f (x, y) +div x K(x, y) [∇ x T 0 (x) + ∇ y T 1 (x, y)] in Y S , -K(x, y) [∇ y T 2 (x, y) + ∇ x T 1 (x, y)] • n = h(x, y) T 0 (x) -T gas (x) +4σT 0 (x) 3 G T 2 + ∇ x T 1 • y + 1 2 ∇ x ∇ x T 0 y • y -4σT 0 (x) 3 G ∇ x T 1 + ∇ x ∇ x T 0 y • y on Γ, y → T 2 (x, y) is Y -periodic.
Corollary 3.1 becomes, in the non-linear case :

Corollary 5.1. If we assume that the functions f and h satisfy [START_REF] Heckbert | Simulating global illumination using Adaptive Meshing[END_REF] and that the conductivity tensor depends only on the microscopic variable, i.e., K(x, y) ≡ K(y), then, defining F * and H * by (24), T 2 (x, y) can be written

T 2 (x, y) = T F 2 (x, y)F (x) + T H 2 (x, y)H(x)(T 0 (x) -T gas (x)) + 2 i,j=1 ∂ 2 T 0 ∂x i ∂x j (x) θ i,j (x, y) + T2 (x),
where T F 2 , T H 2 and θ i,j depend on x only through the value of T 0 (x) 3 and are solutions of the cell problems

         -div y (K(y)∇ y T F 2 (y)) = f # (y) in Y S , -K(y)∇ y T F 2 (y) • n = |Y | |Γ| F * + 4σT 0 (x) 3 G(T F 2 (y)) on Γ, T F 2 (y) is Y -periodic, (52) 
         -div y (K(y)∇ y T H 2 (y)) = 0 in Y S , -K(y)∇ y T H 2 (y) • n = (h(y) - |Y | |Γ| H * ) + 4σT 0 (x) 3 G(T H 2 (y)) on Γ, T H 2 (y) is Y -periodic, (53) and  
                -div y (K(y) [∇ y θ i,j (y) + e j ω i (y)]) = K i,j (y) + K(y)∇ y ω i (y) • e j in Y S , -K(y) [∇ y θ i,j (y) + e j ω i (y)] • n = |Y | |Γ| K * i,j +4σT 0 (x) 3 G θ i,j (y) + ω i (y)y j + 1 2 y i y j -4σT 0 (x) 3 G ω i (y) + y i y j on Γ, θ i,j (y) is Y -periodic. (54) 
Concerning the cell problems (of first or second order) the only difference with the linear case is that the constant σ, appearing in front of the linear radiative operator G, is replaced by 4σT 0 (x) 3 which arises from the linearization of the nonlinear operator. Concerning the homogenized problem (50), the only nonlinearity appears in the homogenized diffusion tensor K * which depends on T 3 0 .

Numerical results

In this section we describe some numerical experiments to study the asymptotic behaviour of the heat transfer model [START_REF] Bourgat | Numerical experiments of the homogenization method for operators with periodic coefficients[END_REF] in the non-linear case, i.e., when the radiation operator is defined as in Remark 2.2. Our goal is to show the efficiency of the proposed homogenization procedure, to validate it by comparing the reconstructed solution of the homogenized model with the numerical solution of the exact model ( 8) for smaller and smaller values of ǫ and to exhibit a numerical rate of convergence in terms of ǫ. Our computations do not take into account boundary layers nor the non oscillating part of the first-order corrector.

All computations have been done with the finite element code CAST3M [START_REF]Cast3M[END_REF] developed at the French Atomic and Alternative Energy Commission (CEA).

Changing variables for the numerical simulation

Usually, in homogenization theory, a problem is homogenized in a fixed domain Ω with cells of size ǫ which tends to 0. However, in many practical applications (including ours for nuclear reactor physics), the size of the period is fixed (for physical reasons or manufacturing constraints) and it is rather the total number of cells, or equivalently the size of the domain, which is increasing. Therefore, following [START_REF] Allaire | Homogenization of a conductive and radiative heat transfer problem[END_REF] and [START_REF] Allaire | Homogenization of a conductive, convective and radiative heat transfer problem[END_REF], we proceed differently: we fix the size of the periodicity cell (independent of ǫ) and we increase the total number of cells, i.e., the size of the global domain Ω = ǫ -1 Ω = 2 j=1 (0, L j /ǫ) which is of order ǫ -1 . In other words, instead of using the macroscopic space variable x ∈ Ω, we use the microscopic space variable y = x/ǫ ∈ Ω. For any function u(x) defined on Ω, we introduce the rescaled function u(y), defined on Ω by

u(y) = u(ǫy) = u(x), (55) 
which satisfies ∇ y u(y) = ǫ(∇ x u)(ǫy) = ǫ∇ x u(x). All quantities defined in Ω are denoted with a hat and, for simplicity, we drop the dependence on ǫ. In this new frame of reference, the problem (8) becomes

       -div( K∇ T ǫ ) = ǫ 2 f ǫ in Ω S , -K∇ T ǫ • n S = ǫ 2 h T ǫ -T gas + σG ǫ ( T ǫ ) on Γ, T ǫ = 0 on ∂ Ω, (56) 
where Ω S , Γ and ∂ Ω are defined by the same change of variables relating Ω and Ω. The homogenized problem (50) becomes

-div( K * ( T 0 3 )∇ T 0 ) + ǫ 2 h * T 0 -T gas = ǫ 2 f * in Ω, T 0 = 0 on ∂ Ω. ( 57 
)
The first order corrector T 1 (y) is

T 1 (y) = ǫT 1 (ǫy, y) = 2 i=1 ∂ T 0 ∂y i (y)ω i (y) + T1 (y), (58) 
and the second order corrector T 2 (y) is

T 2 (y) = ǫ 2 T 2 (ǫy, y) = ǫ 2 T F 2 (y) F (y) + ǫ 2 T H 2 ( 
y) H(y) T 0 (y) -T gas (y) + i,j ∂ 2 T 0 ∂y i ∂y j (y)θ i,j (y) + T2 (y).

(59)

Finally, the homogenization approximation T ǫ (x) ≃ T 0 (x) + ǫT 1 (x, x/ǫ) + ǫ 2 T 2 (x, x/ǫ) becomes T ǫ (y) ≃ T 0 (y) + T 1 (y) + T 2 (y).

(60)

Algorithm and computational parameters

Our proposed algorithm for the homogenization process is the following. ∂ 2 T 0 ∂y i ∂y j (y)θ i,j (y).

Although we did not write it explicitly, all correctors depend on T 0 3 .

7. Reconstruct an approximate solution: T 0 (y) + T 1 (y) + T 2 (y).

We now give our computational parameters for a reference computation corresponding to ǫ = ǫ 0 = 1 4 . The geometry corresponds to a cross-section of a typical fuel assembly for a gas-cooled nuclear reactor (see [START_REF] Habibi | Homogénéisation et convergence à deux échelles lors d'échanges thermiques stationnaires et transitoires dans un coeur de réacteur à caloporteur gaz[END_REF] for further references). The domain is Ω = ǫ -1 Ω = 2 j=1 (0, L j /ǫ), with, for j = 1, 2, L j /ǫ = N j ℓ j where N 1 = 3, N 2 = 4 and ℓ 1 = 0.04m, ℓ 2 = 0.07m. Each periodicity cell contains 2 holes (see Figure 2), the radius of which is equal to 0.0035m. Note that the unit cell is not a square but a rectangle of aspect ratio 4/7. The emissivity of the holes boundaries is equal to e = 1. We enforce periodic boundary conditions in the x 1 direction and Dirichlet boundary conditions in the other direction which are given by T ǫ (y) = 800K on y 2 = 0m and T ǫ (y) = 1200K on y 2 = L 2 /ǫ = 0.28m. Although the reference cell is heterogeneous in the sense that it is made of at least two materials (graphite and the nuclear fuel), for simplicity we assume that the conductivity tensor K is constant and isotropic: its value is 30W m -1 K -1 . Similarly, the thermal exchange coefficient h is also constant throughout the domain. The physical value of the thermal exchange coefficient is ǫ 2 0 h = 500 W.m -2 .K -1 , which takes into account the rescaling process adopted in Subsection 6.1. Hence h = 8000 W.m -2 .K -1 .

The oscillating thermal source is given by f # (y) = 7M W/m 3 in disks strictly included in Y S (with the same size as the holes) such that we have a source between each two fluid holes (in a checkerboard pattern, see Figure 3). The source is set to zero elsewhere. There is no macroscopic variation of the thermal source. In other words, from definition [START_REF] Heckbert | Simulating global illumination using Adaptive Meshing[END_REF] we assume F (x) = 1 in Ω. The physical value of the thermal source is ǫ 2 0 f # = 7M W/m 3 . Hence f # = 112M W/m 3 . Remark that it is only for the reference computation ǫ 0 = 1/4 that f # and h are equal to their physical values. While the rescaled coefficients f # and h are varying with ǫ, the original coefficients f # and h are independent of ǫ. The fact that the numerical values of ǫ 2 f # and ǫ 2 h are not the physical ones for ǫ = ǫ 0 = 1/4 is not a problem, since our convergence study (as ǫ goes to 0) is purely a numerical verification of our mathematical result.

All computations are performed with rectangular Q 1 finite elements (4 nodes in 2D). A boundary integral method is used for the radiative term (which involves a dense matrix coupling all nodes on the surface enclosing the holes). The typical number of nodes for the 2D cell problem is 1 061 (from which 72 are on the radiative boundary γ); it is 656 for the homogenized problem (which has no radiative term); it is 12 249 for the original problem (8) with ǫ = ǫ 0 = 1 4 (from which 864 are on the radiative boundary Γ ǫ ). Remark 6.1. Since the thermal exchange coefficient h is constant the secondorder corrector T H 2 vanishes. The other second-order corrector ∂ 2 T0 ∂yi∂yj (y)θ i,j (y) is small since the homogenized solution T 0 is slowly varying and its second-order derivatives is of order ǫ 2 . The only term which is not negligible is ǫ 2 T F 2 (y) F (y) if the source term is large (this is the only corrector term depending on the source term as already said in Remark 3.4). The importance of ǫ 2 T F 2 (y) F (y) can be checked on Figures 15, 16 and 17 which are plotted for three different orders of magnitude of the source term.

Simulation results

We start this section by comparing, in the reference configuration ǫ = ǫ 0 = 1/4, the direct solution of the problem (8) in the non-linear case, with the solution of the homogenized problem (50) plus the correctors T 1 and T 2 . The homogenized problem parameters are 

f * (x) = F * = 1 |Y | Y S f # (y)dy = 17, 8174 M W/m 3 ,
* (x) = H * = |Γ| |Y | h = 0, 319383 M W.m -2 .K -1 .
To compute the homogenized conductivity, we compute the solutions of the cell problems (51) what we plot in Figure 4 for an homogenized temperature T 0 = 800K. Recall that, in the non linear case, the solutions of the cell problems depend on the macroscopic temperature. These solutions of (51) are uniquely determined because we choose them being of zero average in the cell.

The cell solutions allow us to evaluate the homogenized conductivity which turns out to numerically be a diagonal tensor (at least for temperatures T 0 ≤ 1E + 05K with a precision on 14 digits). However, for larger (extreme) temperatures, K * is not any longer a diagonal tensor [START_REF] Allaire | Homogenization of a conductive and radiative heat transfer problem[END_REF] since the unit cell is not a square but a rectangle of aspect ratio 4/7. The diagonal entries of K * are plotted on Figure 5 By a fixed point algorithm (the homogenized conductivity K * is evaluated with the previous iterate for the temperature), we solve the homogenized problem (it requires of the order of 5 iterates). By a Newton method we solve also the direct model (56) (it requires of the order of 15 iterates). The solutions of the second order cell problems (52) and (54) are displayed on Figures 6 and7. We choose the unknown additive constant for these solutions in such a way that they are almost equal to zero on the holes' boundaries. Since the exchange coefficient h is constant, the other second order cell problem (53) does not need to be solved: its solution is always zero.

In Figure 8 we plot the direct, homogenized and reconstructed solutions computed for a value of ǫ = ǫ 0 = 1/4. The reconstructed solution T 0 + T 1 is a better approximation of the true solution T ǫ than the mere homogenized Figure 7: Solutions θ i,j , i, j = 1, 2, of the second order cell problem (54). solution T 0 . Clearly the reconstructed solution T 0 + T 1 + T 2 is a much better approximation than T 0 + T 1 , especially in the region between holes where large temperature gradients occur from the source supports to the holes. Even more convincingly, we display the modules of the temperature gradients in Figure 9 and the modules of the gradient error approximations in Figure 10. Together with a homogeneous Dirichlet boundary condition, it implies that T1 , solution of (49), is approximately zero.

In order to better show the influence of the second order corrector T 2 we plot the different solutions, exact T ǫ , homogenized T 0 , first order approximation ( T 0 + T 1 ) and second order approximation ( T 0 + T 1 + T 2 ) on various line segments for ǫ = 1/4. On Figure 11 we plot the profile segments: D 1 = (a 1 ; a 2 ) with a 1 = (L 1 /2, 0) and a 2 = (L 1 /2, L2/ǫ), D ′ 1 = (a ′ 1 ; a ′ 2 ) with a ′ 1 = a 1 and a ′ 2 = (L 1 /2, 3L 2 /5ǫ), D ′′ 1 = (a ′′ 1 ; a ′′ 2 ) with a ′′ 1 = (L 1 /2, 7L/16ǫ) and a ) there is no source term: thus the influence of T 2 is almost negligible (see Figure 12). Along P 1 the source term is oscillating from 0 to its nominal value: the influence of T 2 is dramatic (see Figure 15). Since there are not much variations between the different solutions in Figure 12, we display two different zooms in Figures 13 and14. On the sub-segment D ′′ 1 (in the middle of the domain Ω) the second order approximation is better than the first order one, as we could expect (see Figure 14). However, on the sub-segment D ′ 1 (close to the boundary of Ω) the second order corrector T 2 adds an additional error close the boundary y 2 = 0 since it does not satisfy a homogeneous Dirichlet boundary condition (see Figure 13). To check that the importance of the second order corrector is directly linked to the amplitude of the source term (as is obvious in view of the cell problem (52) for T F

2 ), we re-do the same plot of Figure 15 with a different magnitude of the source term. Not surprisingly, when f ǫ = 0 M W/m 3 there are almost no differences between the different approximations (see Figure 16), while for f ǫ = 16000 M W/m 3 , the second order approximation is the only one to follow closely the true solution (see Figure 17). For more numerical results (different values of ǫ, different values of h ǫ , etc.), we refer the interested reader to [START_REF] Habibi | Homogénéisation et convergence à deux échelles lors d'échanges thermiques stationnaires et transitoires dans un coeur de réacteur à caloporteur gaz[END_REF].

Eventually, to check the convergence of the homogenization process and to obtain a numerical speed of convergence as the small parameter ǫ goes to 0, we display in Figure 18 the relative errors (61) on the temperature, as functions of ǫ on a log-log scale. In practice, the limit as ǫ goes to 0 is obtained by increasing the number of cells and we obtain the following sequence of values: ǫ = 1/4, 1/8, 1/12, 1/16, 1/20, 1/24, 1/28, 1/32, 1/36. T ǫ (y)

L 2 ( Ω) , (61) 
Once again we recall that our reconstructions ( T 0 + T 1 ) and ( T 0 + T 1 + T 2 ) do not feature any boundary layers nor non-oscillating corrector terms. The error ERR(T ) 0 behaves like ǫ as we can expect. Although, we could not prove rigorously anything about ERR(T ) 1 and ERR(T ) 2 , we check on Figure 18 that they both behave as ǫ 2 . This implicitly implies that the first order boundary layer is indeed negligible. Although ERR(T ) 2 has the same slope as ERR(T ) 1 on Figure 18, it is much smaller. As a conclusion of our numerical analysis, we claim that, even if the second order corrector T 2 does not improve the convergence order of the homogenization process, for a fixed value of ǫ it improves the qualitative behavior of the reconstructed solution and it decreases the relative error all the more when the source term is locally varying with a large amplitude. In industrial practice, ǫ is never going to zero, so these two achievements are more than enough to justify the use of the second order corrector in the numerical homogenization of the heat transfer problem [START_REF] Bourgat | Numerical experiments of the homogenization method for operators with periodic coefficients[END_REF]. Recall that computing a first-order, or even secondorder, reconstructed homogenized solution is much cheaper than computing a direct solution of the original problem since the latter one requires a very fine mesh of size smaller than ǫ.
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 4 Figure 4: Solutions of the first order cell problems (51) for T 0 = 800K: ω 1 (left), ω 2 (right).
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 5 Figure 5: Homogenized conductivity as a function of the macroscopic temperature T 0 : K * 11 (left), K * 22 (right).
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 6 Figure 6: Solution T F 2 of the second order cell problem (52).
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 8 Figure 8: Direct solution T ǫ (top left), homogenized solution T 0 (top right ), T 0 + T 1 (bottom left) and T 0 + T 1 + T 2 (bottom right).
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 10 Figure 10: Modules of the solution gradients error in Ω: |∇ T ǫ -∇( T 0 + T 1 )| (left) and |∇ T ǫ -∇( T 0 + T 1 + T 2 )| (right).
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 21211 Figure 11: From left to right, the line segments D 1 , D ′ 1 , D ′′ 1 and P 1 for ǫ = 1/4.
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 14 Figure 14: Different solutions along the line segment D ′′ 1 .
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 15 Figure 15: Different solutions along the line segment P 1 for f ǫ = 112 M W/m 3 .
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 16 Figure 16: Different solutions along P 1 for f ǫ = 0 M W/m 3 .
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 17 Figure 17: Different solutions along P 1 for f ǫ = 16000 M W/m 3 .
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 18 Figure 18: Relative temperature errors as a function of ǫ.
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