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Information fusion and evidential grammars for object class

segmentation

Jean-Baptiste Bordes1 Philippe Xu1,2 Franck Davoine2 Huijing Zhao2 Thierry Denœux1

Abstract— In this paper, an original method for traffic scene
images understanding based on the theory of belief functions is
presented. Our approach takes place in a multi-sensors context
and decomposes a scene into objects through the following
steps: at first, an over-segmentation of the image is performed
and a set of detection modules provides for each segment a
belief function defined on the set of the classes. Then, these
belief functions are combined and the segments are clustered
into objects using an evidential grammar framework. The
tasks of image segmentation and object identification are then
formulated as the research of the best parse graph of the
image, which is its hierarchical decomposition from the scene,
to objects and segments while taking into account the spatial
layout. A consistency criterion is defined for any parse tree, and
the search of the optimal interpretation of an image formulated
as an optimization problem. We show that our framework is
flexible enough to include new sensors as well as new classes
of object. The work is validated on real and publicly available
urban driving scene data.

I. INTRODUCTION

Automatic understanding of the scene in front of a car

is an essential task for advanced driver assistance or safety

systems. Automatic understanding denotes generally a seg-

mentation of the image scene into its constituting objects,

augmented eventually with spatial or functional relationships.

However, there are many classes of objects which can be

found in traffic scenes, and for most of them, their level

of variability is very high. Indeed, detecting even a single

kind of object can be very challenging since the highly

cluttered environment as well as the dynamically changing

backgrounds, among others, contribute to the difficulty of

such a task. Many approaches have been proposed recently

to tackle individual problems such as road detection or

pedestrian detection, and they can use different kinds of

sensors.

A. Related Work

In the last decade, the accuracy of object detection meth-

ods has increased substantially thanks to the appearance of

efficient visual descriptors in images such as SIFT as well as

the success of computer vision challenges such as PASCAL.

In the field of intelligent vehicles, they are mainly applied to

pedestrian detection which is the most studied case [7], even

if more classes have also been considered [8]. However, to

reach better performances, more sensors are generally used:
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Fig. 1. Overview of the system. The scene is perceived by several
sensors among which a camera provides an over-segmented image. A set
of independent classification modules then gives some partial information
which are finally combined through a global optimization scheme.

LIDAR sensors are widely used to detect static structures but

also moving objects [14]. Depth information from stereo

camera systems has also been used by Ess et al. [8] as

well as Gavrila et al. [10] for pedestrian detection, it has

also proven to be efficient to detect obstacles and navigable

space [2]. Most of these methods are based on local visual

clues, but some other approaches add to this local step a

post-processing to take advantage of some consistency clues.

Wojek et al. [15] perform joint object detection to take into

account the spatial relationships between objects. Brehar [4]

uses openCyc ontology to exploit inter-class relationships

between classes in traffic scenes. Impressive results have

also been obtained in [17] on a great variety of databases

including traffic scenes using visual grammars, which is an

adaptation of formal grammars for visual data. The objects

and their components are first defined in the model and then,

given a new image, a parse graph is computed, which is the

decomposition of the scene into objects and parts of objects,

down to the image primitives. Visual grammars have shown

generalization capabilities and provide efficient way to face

problems such as occlusion and scale.

B. Contribution

In this work, instead of presenting new efficient descriptors

which are already numerous in the literature, we present a

method to make the most of the existing works. For this

purpose, the Dempster Shafer theory on belief functions is



used to properly fuse a set of relevant sources of information,

that we call in this article ”modules”, even when each one of

them is reasoning independently in its own decision space.

This framework has several strong advantages. First of all, it

provides a high level of flexibility to the system: new sensors

and modules can be added easily, and their output will

be fused in a common space. Reversely, the independence

of the modules before fusion makes our system robust to

sensor failure. Moreover, we will show that new classes

can be added easily as well, since belief functions make it

possible to work on sets of classes and not only on individual

classes. Some expert information on the relative position of

the objects in a scene is also taken into account as an other

source of information by the use of an innovative framework

called “evidential grammar”.

C. Overview

The architecture of the system we consider, illustrated

on Fig. 1, consists of a set of sensors including a camera.

The image provided by the camera is over-segmented as

a first step of image processing. We also consider a set

of independent modules (road detection module, pedestrian

detection module, etc.) receiving data from the sensors, the

output of which is transformed into belief function before

being fused at the segment level. Finally, the evidential gram-

mars provide some kind of “global fusion” to this segment

level information and strengthen weak detections as well as

prune misdetections. We will show how this framework can

be applied in practice by considering a monocular camera,

stereo camera and a LIDAR. Our system is validated on the

KITTI Vision Benchmark Suite [9].

II. MULTI-MODAL AND MULTI-CLASS FUSION

When working in a multi-modal context, several chal-

lenges arise. First of all, the sources of information may

be of very different nature, they may come from several

types of sensors or even from prior knowledge. Each source

having its own specificity, complementary information can

be fetched from them. For example, 3D information from a

stereo camera or a LIDAR can be used to detect obstacles

while texture and color, from a monocular camera, can be

used to detect vegetation or the sky. The second challenge is

now to properly combine information about different classes

of objects.

We follow the framework proposed in [16] which can

deal with those two issues. The information from all the

sources are projected onto the image space and formulated

as an image labeling problem. Meaning that each pixel of

the image has to be classified. A first over-segmentation is

however done so that the classification do not have to be done

at the pixel level which is often too local. The combination

over different sets of classes is handled using the theory of

belief functions.

A. Dempster Shafer’s theory of belief functions

1) Reasoning on sets with belief functions: The belief

functions theory is an extension of classical probability

which is especially well adapted for reasoning on sets. Given

a set of classes Ω = {ω1, . . . ,ωK}, a mass function, or

basic belief assignment (BBA), is a function m : 2Ω → [0,1]
verifying:

m( /0) = 0, ∑
A⊆Ω

m(A) = 1. (1)

Contrary to a probability distribution which assigns a prob-

ability to every class, a mass function can assign a mass on

any set of classes. Let us notice that a mass function whose

non-zero values are only on singletons is equivalent to a

Bayesian probability.

The plausibility is another measure often used to manip-

ulate mass functions, it is defined as:

pl(A) = ∑
B∩A 6= /0

m(B), ∀A ⊆ Ω. (2)

When a decision has to be made, the singleton with maxi-

mum plausibility is usually a good choice.

Given two mass functions m1 and m2, they can be com-

bined by using the Dempster’s rule of combination to give a

new mass m1,2 = m1 ⊕m2 defined as:

m1,2( /0) = 0,

m1,2(A) =
1

1−κ
∑

B∩C=A

m1(B)m2(C), (3)

where κ = ∑B∩C= /0 m1(B)m2(C) measures the amount of

conflict between the two mass functions.

2) Reasoning in the product space: In the method de-

scribed in this paper, it will be necessary to introduce a set

of evidential variables, and thus mass functions have to be

manipulated on product spaces. Some well known operations

that are used for Bayesian functions have to be introduced for

mass functions. In all this section, two evidential variables

X and Y are defined respectively on ΩX and ΩY .

a) Marginalization: In this problem, the joint mass

function mXY is assumed to be known, the operation of

marginalization can be used to get mX :

mXY↓X (B) = ∑
A⊆ΩXY |A↓ΩX=B

mXY (A), ∀B ⊆ ΩX . (4)

b) Vacuous extension: In this problem, the belief mass

mX is assumed to be known and we wish to extend it to the

product space. The belief function theory suggests to choose

the least informative mass function which provides mX after

it marginalization:

mX↑XY (A) =

{

mX (B) if A = B×ΩY ,

0 otherwise.
(5)

c) Conditioning: In this problem, the joint mass func-

tion mXY is assumed to be known and X is supposed

to belong to B, we denote: mB
X (B) = 1. The conditioning

operation is defined by:

mY |X (.|B) = (mB
X↑XY ⊕mXY )XY↓Y . (6)

The mass function mY |X (.|B) is called conditional mass

function knowing that B ⊆ ΩX .



d) Deconditioning: In this problem, the conditional

mass function mY |X (.|B) and we wish to evaluate mXY .

The belief function theory suggests to choose the least

informative mass function which provides mY |X (.|B) after

conditioning:

mXY (C) =

{

mY |X (A|B) if C = (B×A)∪ (B×ΩY ),
0 if different for all C ⊆ ΩXY .

(7)

B. Constructing belief functions

There are different ways to construct a belief function

from data. Several classifiers such as the evidential k-nearest

neighbors and neural network from Denoeux [5], [6] directly

give a mass function as output.

For binary classification problem (Ω = {C,C}), the gen-

eral formulation proposed by Xu et al. [16] is used to

transform the classifier output into a mass function. In this

paper, our method is also enriched by taking into account

the outputs of classical multiclass classifiers such as SVM or

boosting which provide a set of score measures for each class

which is denoted here (s1,s2, . . . ,sK). To extract from this

output a mass function, the following steps are processed,

similarly to [1]:

• The scores are transformed into a probability distribu-

tion using a softmax function:

p(ωk) =
exp(sk)

∑
K
j=1 exp(s j)

. (8)

• The probability are then transformed into a possibility:

poss({ωk}) = ∑
ω j∈{ω1,...,ωK}

min(p(ωk), p(ω j)). (9)

• The possibilities πk = poss({ωk}) are sorted so that:

π1 ≥ π2 ≥ . . .≥ πK . (10)

• The possibility is finally transformed into a consonant

mass function:

m(A) =







πk −πk+1 if A = {ω1, . . . ,ωk},
πK if A = Ω,

0 otherwise.

(11)

III. GLOBAL FUSION PROCESS USING EVIDENTIAL

GRAMMARS

The previous step is local since for every segment, the

belief function describing its class is computed only with

the information lying inside the segment. In this section,

a global fusion process on the top of this local fusion

step will be presented using evidential grammars. Thus, the

mass functions of the segments will be combined, and prior

information provided by experts about the possible relative

positions of objects in a traffic scene will be added as

well. The goals which are expected from this stage are:

segmentation of the scene into objects by grouping the

segments corresponding to a single instance of a class and

disambiguation of the belief functions at the local level as

well as reduction of false positives.

A. Evidential Grammars

A grammar is defined as a 4-tuple {VN ,VT ,S,Γ} where

VN is a finite set of non-terminal nodes, VT a finite set of

terminal nodes, S a start symbol at the root, and Γ is a

set of production (or derivation) rules. A production rule

γ ∈ Γ changes a string of symbols (containing at least one

non-terminal symbol) into another string of symbols. The

production process starts with the S symbol and stops when

the string is composed only of terminal symbols. The set of

all the possible strings which can be produced by a grammar

is called a language. The strength of grammars lies in the

fact the language generated by a grammar can be large even

when the vocabulary, that is to say VT and VN contain few

elements.

To deal with image grammars, the natural left-to-right or-

dering is replaced with spatial relationships such as “hinge”,

“border”, or “occlude”, which are used to combine segments

into complex and structured objects. Moreover, to rank

alternative interpretations and take into account uncertainty

(on the class of the objects, on their relationships and on the

derivation process), the grammar is augmented to a 5-tuple

{VN ,VT ,S,Γ,µ} by adding a fifth component µ containing a

set of conditional mass functions expressing our knowledge

about the decomposition of the scene and the objects. This

5-tuple is called “evidential grammar”, the global framework

of which has been detailed in [3], we thus expose here briefly

the main aspects of this method.

B. Model of an image interpretation

The image interpretation is represented by a parse hy-

pergraph. A parse tree is a decomposition of a scene into

its components. For this purpose, several partitions of the

image into regions are considered, each one corresponding

to a level of description: objects, parts-of-objects, segments

etc. An evidential variable Xi is set for every region Ri to

describe its class, and every region is assumed to contain one

single instance of an object: let us emphasize that uncertainty

on the value of Xi doesn’t mean than several classes might

be mixed in Ri. To group them into a single entity, the pair

(Ri,Xi) is called a “node” denoted Ni. Except in the case

when Xi is associated to a region at the segment level, Ri

is partitioned into regions of the lower level of description

the corresponding nodes of which will be called “children

nodes” of Ni. To get a parse hypergraph, the parse tree is

augmented with spatial and contextual relationships between

the children of a given node. These relationships depend

of the level of interpretation where the nodes are lying,

relationships such as ”aligned” or ”borders” can be used at

a part-of-object level, ”occludes” or ”supports” at an object

level. These relationships are taken into account by adding

an evidential variable Ξi in the graph taking its value in the

discernment frame composed of the set of relationships for

the corresponding level of description. This makes it possible

for instance to model a pedestrian as a head “over a” body.

In [3], it is shown that a parse hypergraph can be set

in relationship with an evidential network by assuming that

the joint belief function of a node and its children can be



Fig. 2. Correspondence between a partition of an object into p components
and the graphical dependency of the related variables. The variable Ξ

describes the spatiale relationships between the regions R1, R2 . . . Rp.

expressed independently of the other nodes of the graph. The

evidential variables describing the content of the segments

are provided as the output of the local fusion step. Given an

evidential network, the belief is propagated from the leave

nodes to the other nodes of the network up to the scene

level through a bottom-up inference stage. This is performed

through a succession of classical operations of belief func-

tions: deconditioning, vacuous extension, Dempster’s com-

bination in the production space, and marginalization on the

variable of the father’s node. More precisely, if Y is a node

the children nodes of which are denoted X1,X2, . . .Xp and

the spatial relationship between those latter nodes is denoted

as an evidential variable Ξ as illustrated on Fig. 2. In a first

step, the vacuous extension is applied to the functions mX1
,

mX2
, . . . , mXp and mΞ. The resulting functions are denoted

mX1↑X1,X2,...,Xp,Ξ,Y , mX2↑X1,X2,...,Xp,Ξ,Y , . . . , mXp↑X1,X2,...,Xp,Ξ,Y ,

and mΞ↑X1,X2,...,Xp,Ξ,Y . These belief functions characterize the

contents of disjoint regions and are thus supposed to be

independent pieces of evidence. These belief functions are

then combined using Dempster’s rule:

m1
X1,X2,...,Xp,Ξ,Y

=

(

p
⊕

i=1

mXi↑X1,X2,...,Xp,Ξ,Y

)

. . .

⊕

mΞ↑X1,X2,...,Xp,Ξ,Y . (12)

In a second step, all the N conditional belief functions

corresponding to grammar rules involving the rewriting of

a symbol into p symbols are deconditioned into a set

of N functions denoted here mk defined on the product

space {X1, . . . ,Xp,Ξ,Y}. These belief functions correspond to

distinct production rules which themselves encode different

semantic information about the decomposition of the objects

and the scene. They are thus supposed to be independent

pieces of information and Dempster’s rule of combination is

consequently applied. We have:

m2
X1,X2,...,Xp,Ξ,Y

=
N
⊕

k=1

mk
X1,X2,...,Xp,Ξ,Y

. (13)

where Ξ is the observable variable defining the spatial

relation between the regions. m2 is then combined with m1,

and a belief function taking into account all the available

information is thus obtained:

mX1,X2,...,Xp,Ξ,Y = m1
X1,X2,...,Xp,Ξ,Y

⊕m2
X1,X2,...,Xp,Ξ,Y

. (14)

The joint mass mX1,X2,...,Xp,Ξ,Y is finally marginalized to

extract mY :

mY = mX1,X2,...,Xp,Ξ,Y↓Y . (15)

C. Search for the optimal interpretation

By using the scheme detailed in the previous section, the

belief is propagated from the segments up to the root to get

an interpretation of an image. However, a large number of

possible parse trees can be considered and consequently as

many possible interpretations of a same image. We choose

here to define the optimal parse tree as the one minimizing

the conflict on the root node. Since, the non-normalized

Dempster combination is applied, the root node aggregates

all the conflict contained in the evidential network and thus

gives a measure of the quality of the hierarchy.

A greedy algorithm is finally used to search for the optimal

parse hypergraph in reasonable computation time. The main

idea of this algorithm is to initiate a complex configuration

which is simplified step by step as long as the consistency

measure of the parse tree decreases:

• A parse tree is first initialized by linking all the nodes

corresponding to the segments of the image directly to

the root node. This is equivalent to considering that

every segment is interpreted as one object.

• As long as the consistency measure of the parse tree

decreases:

– The consistency measure is computed for a set of

alternative hypergraphs, each one being obtained by

applying one single elementary modification to the

current parse hypergraph. The elementary modifi-

cations that we consider are the merging of every

pair of nodes of the same level of the hierarchy of

the parse graph. If the nodes are terminal nodes, a

new node is created which is linked with this pair

of nodes. If the nodes are not terminal nodes, a

new node is created which is composed of all the

children of this pair of nodes.

– The parse hypergraph minimizing the consistency

measure is kept for the next iteration.

• The last parse hypergraph is kept as the output of the

method.

IV. EXPERIMENTS

The KITTI Benchmark Suite [9] was used to validate our

approach. A set of 140 images has been annotated manually

with a total of 14 classes as listed in Tab. I. Several modules

were trained on 100 images and tested on the 40 others.

A. Sensors and modules

We used a monocular camera, a stereo camera and a LIDAR

as sensors. The principal monocular classification module

is the Automatic Labeling Environment (ALE) proposed by

Ladický et al. [12], which can be directly learned over all the

previously defined classes. The second monocular module,

from the works of Hoiem et al. [11], estimates the scene

geometry from one single image. The classification output
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TABLE I

CLASSES OF OBJECTS CONSIDERED IN OUR EXPERIMENTS. THERE ARE

14 CLASSES IN TOTAL, SOME OF THEM CAN BE GROUPED INTO SETS.

is limited to the three classes: ground, obstacles and sky. In

our case, the ground class is the union of road, sidewalk,

lane marking and grass, while the obstacles class includes

everything else except the sky. The class membership scores

from those two modules are transformed into a mass function

following the steps (8-11).

Then the 3D information from the stereo camera and the

LIDAR are used to detect the ground as in [16], by assuming

that the ground is planar. Again, the classes ground and non-

ground are actually sets of other classes. We clearly see the

interest of working with sets of classes.

B. Grammar model

A three levels grammar model was considered: scene,

objects, and segments. No parts of objects (such as “wheel”

or “head”) were considered in these experiments, and the

objects are supposed to be derived directly into the set

of their constituting segments which can be considered as

elementary pieces of the objects. Consequently, the size of

the discernment space at the segment level is the same as

the one at the object level. The pairwise links “occlude”,

“is occluded by”, “bordering” and “disjoint” were used to

describe spatial relationships between the objects. The root

node can produce any arbitrary combination of instances of

the 14 types of objects we consider under a set of 30 spatial

constraints. These constraints correspond to the derivation

rules which are formulated as a set of prohibited configura-

tions between pairs of objects, for example: “The sky cannot

occlude an other object”, “ A car cannot border a building”,

“The road cannot occlude an other object”, etc. Each object

can be decomposed in an arbitrary combination of patches

of the corresponding object under a spatial constraint of

neighborhood. It should be noticed that this model takes little

advantage of the potential of the grammars to decompose

complex objects in structured reusable components. Indeed,

no database annotated with parts of objects were available

for that purpose.

C. Results

The inputs and outputs of our system are illustrated on

Fig. 3. The average precision of the multi-class classification

is showed on Tab. II. We can see that using more information

often improve the results, and it never significantly degrades

them. At the local level, no notion of object is handled. After

using the global approach, different cars can be separated and

segmented using geometric constraints.

V. CONCLUSIONS

We have showed an information fusion based system

which is flexible to include many sensors and modules

defined over different sets of classes. It is based on the

framework proposed in [16] and has been augmented by a

global grammar-based reasoning [3]. Fusion at the segments

level improves local accuracy and global fusion enables to

have object level reasoning.

Future works will enhance object classification by intro-

ducing sliding windows based approaches as well as part-

based object detections so as to use the full potential of visual

grammars. New sources of information such maps will also

be considered.
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TABLE II

AVERAGE PRECISION (IN PERCENTAGE) OF THE MULTI-CLASS CLASSIFICATION. ALE IS THE MONOCULAR MULTI-CLASS MODULE FROM [12]. GEO

REFERS TO THE MONOCULAR GEOMETRIC CONTEXT FROM [11]. 3D IS TO THE GROUND DETECTION MODULE USING STEREO AND LIDAR AS IN [16].

(a) (f)

(b) (g)

(c) (h)

(d) (i)

(e) (j)

Fig. 3. Input data and results from the different modules. (a) Raw image from the left camera. (b) Over-segmented image. (c) Disparity computed from
the stereo camera. (d) Lidar impact points. (e) Ground truth with 14 classes. (f) Output from ALE, the color of each pixel is the class with highest score.
(g) Classification probability from the geometric context, the red, green and blue intensities represent the probability of having an obstacle, the ground
and the sky respectively. (h-i) Ground/Non-ground classification using 3D information, the green color represents the mass put on the class “ground” and
the red the one on “non-ground”, the black color represents the ignorance. The results are from the data (c-d) respectively. (j) Final combined information
and segmentation from the evidential grammar.
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