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Abstract

Estimation of extreme sea levels for high return periods is of prime impor-
tance in hydrological design and flood risk assessment. Common practice
consists of inferring design levels from historical observations and assum-
ing the distribution of extreme values to be stationary. However, in recent
years, there has been a growing awareness of the necessity to integrate the
effects of climate change in environmental analysis. In this paper, we present
a methodology based on belief functions to combine statistical judgements
with expert evidence in order to predict the future centennial sea level at
a particular location, taking into account climate change. Likelihood-based
belief functions derived from statistical observations are combined with ran-
dom intervals encoding expert assessments of the 21st century sea level rise.
Monte Carlo simulations allow us to compute belief and plausibility degrees
for various hypotheses about the design parameter.

Keywords: Sea level rise, structural design, coastal defense,
Dempster-Shafer theory, Evidence theory, random intervals, experts
opinions, statistical inference, likelihood-based belief functions.

1. Introduction

In design and safety assessment procedures, comprehensive uncertainty
analysis is essential to reach reliable results and rational decisions. In the
hydrological field, communicating uncertainty about future flood risk to the
decision makers has become common practice [2, 27]. Whereas there is a
general consensus about the main sources of uncertainty in environmen-
tal risk analysis, there is an increasing debate among risk analysts about
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the framework to use for quantifying it. The commonly used probabilis-
tic framework has been strongly criticized for treating in the same way
aleatory uncertainty, which arises from variability of phenomena and epis-
temic uncertainty resulting from lack of knowledge [2, 4]. As both sources of
uncertainty coexist in environmental risk analysis, the need for alternative
frameworks for representing and propagating uncertainty has emerged. In
the past two decades, intensive research work has been devoted to the study
of new approaches to uncertainty modeling such as Possibility [45, 18, 15],
Imprecise Probability [41, 42] or Dempster-Shafer (DS) [8, 32] theories and
their application to reliability and risk analysis.

In recent years, the need to model explicitly epistemic uncertainty in en-
vironmental risk analyses has become even more important due to a growing
awareness of climate change [24]. Whereas traditional engineering design
processes and standards are mainly based on the analysis of historical cli-
mate data using, e.g., Extreme Value Theory [21], the underlying assumption
of a stable climate is no longer valid in the 21st century [24]. We thus have
to develop new design methodologies for combining statistical analysis of
past data with expert assessments of expected changes in climate conditions
for the next decades.

In this paper, we consider the particular case of coastal defense struc-
tural design in the context of expected sea level rise in the next century1.
Our approach will be based on the DS theory of belief functions, which con-
stitutes a unified framework allowing for the representation and combination
of expert judgements and statistical evidence. Previous work using DS the-
ory to model uncertainty on climate change has been reported in [26] and
[22] focussing, respectively, on uncertainty propagation in numerical models
and on expert opinion elicitation. In [26], the authors study the influence
of parameter uncertainty in energy balance and radiative forcing models on
the estimation of global mean temperature increase. Knowledge about each
parameter is represented by a pair of cumulative probability distributions
called p-box, which is shown to be equivalent to a special kind of belief
functions. These belief functions are then propagated through dynamical
models using different dependence assumptions. In [22], Ha-Duong models
expert opinions on climate sensitivity, a key parameter in climate change
predictions, using belief functions. He shows that expert opinions can be
clustered according to “schools of thought”. He then proposes to use differ-
ent combination rules for within-group and between-group combination.

1A preliminary version of this work appeared in [5].
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In contrast to the two previous pieces of work, the study reported here
focuses on the representation of statistical evidence in the belief function
framework, and its combination with expert opinion. This approach is con-
sidered as a preliminary step towards an integrated approach to uncertainty
modeling in environmental risk analysis, taking into account climate change.
The rest of the paper is organized as follows. In Sections 2 and 3 we lay down
the theoretical foundations of this work by recalling basic definitions of DS
theory and discussing in some detail its application to statistical inference
using the notion of likelihood-based belief functions. In Section 4, we show
how this theoretical approach can be applied to the estimation of centennial
sea level at a particular location taking into account sea level rise due to
climate change. Numerical results are reported in Section 5 and Section 6
concludes the paper.

2. Belief functions

This section recalls the necessary background notions related to DS the-
ory. Belief functions on finite domains and Dempster’s rule of combination
are first presented in Subsections 2.1 and 2.2, respectively. Some notions
about random intervals are then recalled in Subsection 2.3.

2.1. Belief functions on finite domains

Let θ be a variable2 taking values in a finite domain Θ, called the frame
of discernment. Uncertain evidence about θ may be represented by a (nor-
malized) mass function m on Θ, defined as a function from the powerset of
Θ, denoted as 2Θ, to the interval [0, 1], such that m(∅) = 0 and

∑

A⊆Θ

m(A) = 1. (1)

Any subset A of Θ such that m(A) > 0 is called a focal set of m. A logical
mass function has only one focal set (it is thus equivalent to a set), while
a Bayesian mass function has only focal sets of cardinality one and is thus
equivalent to a probability distribution. The mass function m such that
m(Θ) = 1 is said to be vacuous.

Each number m(A) is interpreted as a degree of belief attached to the
proposition θ ∈ A and to no more specific proposition, based on some evi-
dence. As argued by Shafer [34], the meaning of such degrees of belief can

2In the rest of this paper, we use the notation θ to denote the variable of interest and
θ to denote an arbitrary value in Θ.
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be better understood by assuming that we have compared our evidence to
a canonical chance set-up. The set-up proposed by Shafer consists of an
encoded message and a set of codes Ω = {ω1, . . . , ωn}, exactly one of which
is selected at random. We know the list of codes as well as the chance pi of
each code ωi being selected. Decoding the encoded message using code ωi

produces a message of the form “θ ∈ Ai” for some Ai ⊆ Θ. Then

m(A) =
∑

{1≤i≤n:Ai=A}

pi (2)

is the chance that the original message was “θ ∈ A”. Stated differently, it is
the probability of knowing that θ ∈ A. In particular, m(Θ) is, in this setting,
the probability that the original message was vacuous, i.e., the probability
of knowing nothing.

The above setting thus consists of a set Ω, a probability measure P on Ω
and a multi-valued mapping Γ : Ω → 2Θ \ {∅} such that Ai = Γ(ωi) for each
ωi ∈ Ω. This is the framework initially considered by Dempster in [8]. The
triple (Ω, P,Γ) formally defines a finite random set [28]: mass functions are
thus exactly equivalent to random sets from a mathematical point of view.
However, the meaning of mass functions differs from the usual interpretation
of a random set as the outcome of a random experiment: here, m(A) is not
the chance that A was selected, but it can be viewed as the chance of the
evidence meaning that θ is in A [34].

To each normalized mass function m, we may associate belief and plau-
sibility functions from 2Θ to [0, 1] defined as follows:

Bel(A) = P ({ω ∈ Ω|Γ(ω) ⊆ A}) =
∑

B⊆A

m(B) (3a)

Pl(A) = P ({ω ∈ Ω|Γ(ω) ∩A 6= ∅}) =
∑

B∩A 6=∅

m(B), (3b)

for all A ⊆ Θ. These two functions are linked by the relation Pl(A) =
1−Bel(A), for all A ⊆ Θ. Each quantity Bel(A) may be interpreted as the
degree to which the evidence supports A, while Pl(A) can be interpreted as
the degree to which the evidence is not contradictory to A. The following
inequalities always hold: Bel(A) ≤ Pl(A), for all A ⊆ Θ. The function
pl : Θ → [0, 1] such that pl(θ) = Pl({θ}) for all θ ∈ Θ is called the contour
function associated to m.

If m is Bayesian, then function Bel is equal to Pl and it is a probability
measure; pl is then the corresponding probability mass function. Another
special case of interest is that where m is consonant, i.e., its focal elements
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are nested. The plausibility function is then a possibility measure [45, 18]
with possibility distribution pl, i.e., the plausibility function can be recovered
from the contour function as follows [32]:

Pl(A) = max
θ∈A

pl(θ), (4)

for all A ⊆ Θ.
Given two mass functions m1 and m2, m1 is said to be less specific than

m2 if it can be obtained from m2 by transferring belief masses m2(A) to
supersets B ⊇ A [44, 17]. In this case, m1 can be considered as less informa-
tive, or less committed3 than m2. The Least Commitment Principle (LCP)
[37] states that, given some constraints on an unknown mass function, the
least committed should be selected. This principle provides a justification
of consonant mass functions: given a function π : Θ → [0, 1] such that
maxπ = 1, the least specific mass function m with contour function pl, such
that pl = π, is consonant.

2.2. Dempster’s rule

A key idea in DS theory is that beliefs are elaborated by aggregating
different items of evidence. The basic mechanism for evidence combination
is Dempster’s rule of combination, which can be naturally derived using the
random code metaphor as follows.

Let m1 and m2 be two mass functions induced by triples (Ω1, P1,Γ1) and
(Ω2, P2,Γ2) interpreted under the random code framework as before. Let us
further assume that the codes are selected independently. For any two codes
ω1 ∈ Ω1 and ω2 ∈ Ω2, the probability that they both are selected is then
P1({ω1})P2({ω2}), in which case we can conclude that θ ∈ Γ1(ω1)∩Γ2(ω2).
If Γ1(ω1)∩Γ2(ω2) = ∅, we know that the pair of codes (ω1, ω2) could not have
been selected: consequently, the joint probability distribution on Ω1 × Ω2

must be conditioned, eliminating such pairs [34]. This line of reasoning
yields the following combination rule, referred to as Dempster’s rule [32]:

(m1 ⊕m2)(A) =
1

1− κ

∑

B∩C=A

m1(B)m2(C) (5)

for all A ⊆ Θ, A 6= ∅ and (m1 ⊕m2)(∅) = 0, where

κ =
∑

B∩C=∅

m1(B)m2(C) (6)

3Alternative comparative orderings between belief functions have been proposed, see,
e.g., [17].
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is the degree of conflict between m1 and m2. If κ = 1, there is a logical
contradiction between the two pieces of evidence and they cannot be com-
bined. Dempster’s rule is commutative, associative, and it admits as neutral
element the vacuous mass function defined as m(Θ) = 1.

2.3. Random real intervals

The definition of belief functions and random sets in infinite spaces
implies greater mathematical sophistication than it does in finite spaces
[33, 28]. Here, we will restrict our discussion to random closed intervals on
the real line (see, e.g., [10, 38, 12]), which constitute a simple yet sufficiently
general framework for expressing beliefs on a real variable.

Let (Ω,A, P ) be a probability space and (U, V ) : Ω → R
2 a two-

dimensional real random vector such that P ({ω ∈ Ω|U(ω) ≤ V (ω)}) = 1.
Let Γ be the multi-valued mapping that maps each ω ∈ Ω to the closed in-
terval [U(ω), V (ω)]. This setting defines a random interval, as well as belief
and plausibility functions on R defined, respectively, by

Bel(A) = P ({ω ∈ Ω|[U(ω), V (ω)] ⊆ A}) (7)

Pl(A) = P ({ω ∈ Ω|[U(ω), V (ω)] ∩A 6= ∅}) (8)

for all elements A of the Borel sigma-algebra B(R) on the real line [10]. The
intervals [U(ω), V (ω)] are referred to as the focal intervals of [U, V ]. We note
that, when U and V are continuous, the notion of mass function should be
replaced by that of mass density function defined by m([u, v]) = p(u, v),
where p(u, v) denotes the joint probability density function (pdf) of (U, V ).

A special case of interest is that of consonant random closed intervals
defined as follows. Let Ω = [0, 1], π : R → [0, 1] a function such that for
each ω ∈ Ω,

Γ(ω) = {x ∈ R|π(x) ≥ ω}
is a closed interval [U(ω), V (ω)], called the ω-level cut of π (see Figure 1(a))
and let P denote the Lebesgue measure on Ω. Then, [U, V ] is a random
closed interval and π is its contour function, i.e., pl(x) = Pl({x}) = π(x)
for all x ∈ R. Such a random interval is said to be consonant because its
focal intervals Γ(ω) are nested. The intervals Γ(1) and {x ∈ R|π(x) > 0}
are called, respectively, the core and the support of π.

P-boxes are another special class of closed random intervals that has
proved quite useful in practice [20, 26, 14]. Let (F∗, F

∗) be a pair of functions
from R to [0, 1] such that

1. F∗ is nondecreasing and right-continuous;
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Figure 1: Random closed intervals induced by a possibility distribution (a) and a p-box
(b).

2. F ∗ is nondecreasing and left-continuous;

3. F∗ ≤ F ∗.

For each ω ∈ Ω = [0, 1], the set

Γ(ω) = {x ∈ R|F ∗(x) ≥ ω and F∗(x) ≤ ω}

is a closed interval [U(ω), V (ω)] (see Figure 1(b)). If, as before, we consider
the Lebesgue measure on Ω, we get a random interval [U, V ] called a p-box.
Functions F∗ and F ∗ can be seen as lower and upper envelopes of a family
of cumulative distribution functions [20, 26].

Dempster’s rule can be defined for random intervals as follows. Let us
assume that we have two random intervals (Ωi,Ai, Pi,Γi) with i = 1, 2 and
[Ui(ω), Vi(ω)] = Γi(ω). Let Γ12 be the mapping from Ω1 × Ω2 to the set of
closed real intervals defined by

Γ12(ω1, ω2) = Γ1(ω1) ∩ Γ2(ω2), ∀(ω1, ω2) ∈ Ω1 × Ω2

and let P12 be the product measure P1×P2 conditioned on the set {(ω1, ω2) ∈
Ω1×Ω2|Γ12(ω1, ω2) 6= ∅}. Then, (Ω1×Ω2,A1×A2, P12,Γ12) define a random
interval [U12, V12] = [U1, V1]⊕ [U2, V2].

3. Likelihood-based belief functions

Let us now turn our attention to the representation of statistical evi-
dence. Assume that we have observed a realization x of a random vector
X with pdf p(x;θ), where θ ∈ Θ is an unknown parameter. What does
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this item of evidence tell us about θ? This problem was initially stud-
ied by Dempster [7, 8, 11], who proposed an approach based on a pivotal
quantity, which induces a multi-valued mapping from a probability space
to the parameter space once observations have been collected. An alterna-
tive approach, proposed by Shafer [32], can be derived from the Likelihood
and Least Commitment principles. In this paper, we will focus on the lat-
ter approach, which is practically much simpler to implement while having
interesting connections with Bayesian and likelihood-based approaches to
statistical inference. This approach will first be recalled in Subsection 3.1.
Arguments for and against this solution will then be discussed in Subsection
3.2.

3.1. Least committed belief function based on likelihoods

In the standard statistical framework, information about θ is typically
assumed to be represented by the likelihood function, defined by L(θ;x) =
p(x; θ) for all θ ∈ Θ. More precisely, the likelihood principle [3] [6] [19,
chapter 3] states that “Within the framework of a statistical model, all the
information which the data provide concerning the relative merits of two
hypotheses is contained in the likelihood ratio of these hypotheses on the
data”. In statistical parlance, the likelihood ratio is often referred to as the
“relative plausibility”, which suggests translating the likelihood ratio in the
belief function framework as follows:

pl(θ1;x)

pl(θ2;x)
=

L(θ1;x)

L(θ2;x)
,

for all (θ1, θ2) ∈ Θ2 or, equivalently,

pl(θ;x) = cL(θ;x)

for all θ ∈ Θ and some positive constant c. The LCP then leads us to giving
the highest possible value to constant c, i.e., defining pl as the relative
likelihood :

pl(θ;x) =
L(θ;x)

supθ∈Θ L(θ;x)
(9)

and representing evidence about θ by the least committed plausibility func-
tion induced by pl, i.e.,

Pl(A;x) = sup
θ∈A

pl(θ;x) =
supθ∈A L(θ;x)

supθ∈Θ L(θ;x)
, (10)
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for all A ⊆ Θ. The corresponding belief function is usually referred to as
the likelihood-based belief function [43].

It must be noted that, in (9) and (10), the likelihood function is assumed
to be bounded, which is the case for most parametric models considered in
practice. For a discussion on this and other technical issues related to the
use of the likelihood function, see [19, Chapter 8].

3.2. Discussion

Equation (10) was first proposed by Shafer in [32, chapter 11] who, how-
ever, did not justify it by the LCP, but by the more questionable requirement
that the belief function on Θ has to be consonant. In the special case where
Θ = {θ1, θ2} has only two points, Wasserman [43] showed that the plausibil-
ity function (10) corresponds to the unique belief function Bel(·;x) verifying
the following requirements:

1. If L(θ1;x) = L(θ2;x), then Bel(·;x) should be vacuous;

2. Bel({θ};x) should be nondecreasing in L(θ;x);

3. If Bel = Bel(·;x) ⊕ P0 and P0 is a probability measure, then Bel
should be equal to the Bayesian posterior.

This argument can be extended to the case where Θ is a complete, separable
metric space [43].

In [13], it was shown that (10) can be derived from three basic princi-
ples: the likelihood principle, compatibility with Bayes’ rule (requirement
3 above) and the LCP. From a non Bayesian perspective, the likelihood
principle was placed on firm ground by Birnbaum [6], who showed that it
can be derived from the intuitively appealing principles of sufficiency and
conditionality (see [13] for further discussion on this topic).

One of the main criticisms against the use of the likelihood-based plausi-
bility function (10) for represented statistical evidence is its incompatibility
with Dempster’s rule in the case of independent observations [35]. More
precisely, assume that X is an independent sample (X1, . . . , Xn) and each
observation Xi has a marginal pdf p(xi;θ) depending on θ. We could com-
bine the n observations at the “aleatory level” by computing Pl(·;x) using
(10), or we could combine them at the “epistemic level” by first computing
the consonant plausibility functions Pl(·;xi) induced by each of the inde-
pendent observations and applying Dempster’s rule. Obviously, these two
procedures yield different results in general, as consonance is not preserved
by Dempster’s rule.

In [35], Shafer regards the above argument as strong enough to reject (10)
as a reasonable method to represent statistical evidence. However, Aickin
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[1] proposed to keep (10) but questioned Dempster’s rule as a mechanism
for combining statistical evidence, based on the notion of commitment to the
model. Let (Ω, P,Γ) be random set corresponding to Pl. As stated above,
each ω ∈ Ω can be regarded as an interpretation of a given piece of evidence.
These interpretations are consistent, or “committed to the model”, if

⋂

ω∈Ω

Γ(ω) 6= ∅,

which is equivalent to the condition that pl(θ0) = 1 for some θ0 ∈ Θ. Aickin
[1] argued that, in the context of statistical inference, one should be fully
committed to the idea that the model actually generated the observations,
which entails that plausibility functions used to represent statistical evidence
should be generated by a random set that is committed to the model.

Aickin went on by defining the notion of commitment to a submodel as
follows. Let A ⊂ Θ be a “submodel”. A random set (Ω, P,Γ) is committed
to A if all those Γ(ω) that intersect A have a nonvoid intersection. This
property means that, after combining the random set with information stat-
ing that θ ∈ A for sure using Demspter’s rule, our random set should be
committed to the new model A ⊂ Ω now considered as certain.

Let Pl be an arbitrary plausibility function on Θ, pl the corresponding
contour function, c = sup pl, and Pl∗ the consonant plausibility function
defined by Pl∗(A) = c−1 supθ∈A pl(θ). Aickin [1, Proposition 1] showed
that, if Pl is committed to A, then Pl(A)/c = Pl∗(A), and the converse
is true if A is compact and Pl is upper semicontinuous. A consequence of
this result is that, assuming commitment to the model, i.e., c = 1, the two
plausibility functions Pl and Pl∗ coincide on all “interesting” submodels A,
and nothing is lost by replacing the former by the latter.

Let us now assume that Pl(·;x1) and Pl(·;x2) are plausibility functions
on Θ induced by two independent observations x1 and x2. After combination
by Dempster’s rule, the resulting plausibility function Pl(·;x1) ⊕ Pl(·;x2)
need not be committed to the model even though Pl(·;x1) and Pl(·;x2)
are, which can be considered as an argument against the use of Dempster’s
rule for combining evidence from independent observations in the context of
parametric statistical model. However, commitment to the model may be
restored by considering the contour function pl(·;x1;x2) = pl(·;x1)pl(·;x1)
corresponding to Pl(·;x1)⊕Pl(·;x2), rescaling it so that its supremum equals
1, and computing the consonant plausibility function.We thus get

pl(θ;x1,x2) =
pl(θ;x1)pl(θ;x2)

supθ∈Θ pl(θ;x1)pl(θ;x2)
=

L(θ;x1,x2)

supθ∈Θ L(θ;x1,x2)
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for all θ ∈ Θ and

Pl(A;x1,x2) = sup
θ∈A

pl(θ;x1,x2) =
supθ∈A L(θ;x1,x2)

supθ∈Θ L(θ;x1,x2)

for all A ⊆ Θ. This way of combining independent statistical evidence, which
Aickin called the DS∗ rule, restores the equivalent between combination at
the aleatory and epistemic levels and reconciles likelihood inference with DS
theory. Further arguments against the use of Dempster’s rule for combining
evidence from independent observations can be found in [40].

Based on the above discussion, we propose to adopt (9) and (10), to-
gether as the DS∗ rule, as models of statistical evidence. Further arguments
in favor of this approach are summarized below:

1. This method of inference is considerably simpler than other methods
such as Dempster’s initial proposal [9] and other methods discussed
in [35], while being more widely applicable than Smets’ Generalized
Bayesian Theorem [36, 16].

2. Combining Pl(·;x) given by (10) with a Bayesian prior P0 on Θ using
Dempster’s rule yields a Bayesian plausibility function Pl(·;x) ⊕ P0

which is identical to the posterior probability obtained using Bayes’
rule: consequently, the proposed method of inference boils down to
Bayesian inference when a Bayesian prior is available.

3. Finally, viewing the relative likelihood function as a possibility distri-
bution seems to be consistent with statistical practice, although this
point of view has not been adopted explicitly in the statistical lit-
erature. For instance, likelihood intervals [23, 39] are focal intervals
of the relative likelihood viewed as a possibility distribution. In the
case where θ = (θ1, θ2) ∈ Θ1 × Θ2 and θ2 is considered as a nuisance
parameter, the relative profile likelihood function can be written

pl(θ1;x) = sup
θ2∈Θ2

pl(θ1, θ2;x), (11)

which is the marginal possibility distribution on Θ1. Eventually, we
can remark that the usual likelihood ratio statistics Λ(x) for a com-
posite hypothesis H0 ⊂ Θ can be seen as the plausibility of H0, as

Λ(x) =
supθ∈H0

L(θ;x)

supθ∈θ L(θ;x)
= sup

θ∈H0

pl(θ;x) = Pl(H0;x).
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4. Application to centennial sea level estimation

4.1. Model and assumptions

Flood structures have to withstand exceptional sea events and their de-
sign has thus to be based on extreme sea level and waves. The main tool
for modeling extreme events in environmental applications such as floods,
droughts or rainfalls is Extreme Value Theory (EVT), which has emerged
giving the limit of the conventional frequency analysis in fitting the tails of
probability distributions. The block maxima approach is the original and
best known method in EVT. It is based on the assumption that the max-
imum Z of an independent and identically distributed (i.i.d.) sample has
asymptotically a generalized extreme value (GEV) distribution [25] with
cumulative distribution function given by:

FZ(z, µ, σ, ξ) =

{
exp

(
−[1− ξ z−µ

σ
]
1

ξ

)
if ξ 6= 0

exp
(
−(exp[− z−µ

σ
])
)

if ξ = 0,
(12)

where µ, σ > 0 and ξ are, respectively, location, scale and shape parameters.
According to the sign of ξ, the distribution is called Fréchet (ξ > 0), Weibull
(ξ < 0) or Gumbel (ξ = 0). In the following, Z will be defined as the
maximum annual sea level at a particular location.

A key parameter in engineering design procedure is the return period,
defined as the average number of years between two consecutive events of a
given intensity. Here, the return period T is defined as the average number
of years between two successive exceedances of a corresponding return level
zT or, equivalently, the inverse of the probability that Z exceeds zT . The
return level zT is thus the quantile of the distribution of Z, at level 1−1/T .
If Z has the GEV distribution (12), zT has the following expression:

zT =

{
µ− σ

ξ

[
1− (− log(1− 1

T
))−ξ

]
if ξ 6= 0

µ− σ log
(
− log(1− 1

T
)
)

if ξ = 0.
(13)

Commonly, flood defense structures in coastal areas are designed to with-
stand events with a return period of at least 100 years. However, due to
climate change, they will be subject during their life time to higher loads
than predicted by design estimations. The main impact is related to the
increase of the mean sea level which affects the frequency and intensity of
surges. For adaptation purposes, the current statistics of extreme sea levels
derived from statistical observations should be combined with predictions of
sea level rise (SLR).
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Here, it will be assumed that, because of climate change, the distribution
of annual maximum sea level at a given time in the future will be shifted to
the right, with shift equal to the SLR. We thus assume the future T -return
level z′T to be related to the current return level zT and the sea level rise
SLR by the following equation:

z′T = zT + SLR. (14)

Evidence on zT comes from past sea level measurements, while evidence
on SLR can be obtained from expert judgements expressed in the recent
literature on climate change. Our approach will thus be based on (1) the
representation of evidence on zT by a likelihood-based belief function; (2)
the representation of evidence on SLR by a belief function summarizing
expert opinions and (3) the combination of these two items of evidence
to get a belief function on z′T . These steps are described in the following
subsections.

4.2. Statistical evidence on zT
Let us assume that we have observed the annual maxima z = (z1, . . . , zn)

of sea level at a particular location over n years. These observations will be
assumed to be a realization of an i.i.d. random sample Z1, . . . , Zn from a
Gumbel distribution. From (12), the pdf of each Zi is

f(zi;µ, σ) =
1

σ
exp

(
−zi − µ

σ

)
exp

[
− exp

(
−zi − µ

σ

)]
. (15)

As the parameter of interest is zT , the pdf of Zi can be reparametrized as a
function of µ and zT . Using (13) we get σ = (µ− zT )/c with

c = log

[
− log

(
1− 1

T

)]
, (16)

from which we obtain

f(zi;µ, zT ) =
c

µ− zT
exp

(
c
zi − µ

zT − µ

)
exp

[
− exp

(
c
zi − µ

zT − µ

)]
. (17)

The likelihood function is thus

L(µ, zT ; z) =

n∏

i=1

f(zi;µ, zT ) =

(
c

µ− zT

)n

exp

(
c

zT − µ

n∑

i=1

(zi − µ)

)
exp

[
−

n∑

i=1

exp

(
c
zi − µ

zT − µ

)]
. (18)
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Using (9), the corresponding contour function is the normalized likeli-
hood function:

pl(µ, zT ; z) =
L(µ, zT ; z)

sup
µ,zT

L(µ, zT ; z)
. (19)

Here, the parameter of interest is zT and µ is a nuisance parameter, which
can be marginalized out by considering the normalized profile likelihood
(11). We finally get

pl(zT ; z) = sup
µ

pl(µ, zT ; z). (20)

4.3. Expert evidence on SLR

Future SLR projections as reported by the International Panel on Cli-
mate Change Experts (IPCC) in its last Assessment Report [24] are obtained
using climate models depending on many ill-known parameters. A principled
approach would be to quantify available knowledge about these parameters
by belief functions constructed using elicitation methods as described in [22]
and to propagate these belief functions in numerical models as done in [26].
An alternative approach is to directly represent final conclusions on the SLR
parameter, as reported in the recent literature, in the form of a belief func-
tion. Although the former approach is more objective and may be deemed
preferable, the latter approach is much simpler and it will be used here as a
preliminary step.

Projections provided by the IPCC [24] assess the likely range of values
for SLR over the 1990-2095 period as 0.18 to 0.79 meters, not excluding
higher values. This range takes into account uncertainties associated to
future emissions of greenhouse gases under different scenarios covering a
wide range of possible economic, technological and energetic states of the
world in the 21st century. They are based on global circulation models
as well as impacts models taking into account various phenomena such as
melting of the Antarctic and Greenland, ocean expansion, etc.

Since the release of the last IPCC report, other SLR assessments based
on semi-empirical models have been undertaken, proposing more pessimistic
scenarios for 2100. For example, based on a simple statistical model, Rahm-
storf [31] suggests [0.5, 1.4] as a likely range of values (in meters) for SLR at
the end of this century. Recent studies suggest that the threshold of 2 meters
will not be exceeded by the end of this century due to physical limitations
[29].

Current methods for integrating SLR in flood risk or design analysis
usually consider a particular deterministic scenario, since there is no infor-
mation to quantify the probability of any given sea level magnitude within
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the IPCC range. However, as shown by Purvis [30], who undertook a flood
risk analysis under climate change, using only the most plausible SLR value
may significantly underestimate expected consequences and lead to erro-
neous decisions. Here, we propose to represent the current state of knowl-
edge about SLR during the 21st century, as reflected by the previous studies,
by a random interval.

According to the three studies cited above, the interval [0.5, 0.79] =
[0.18, 0.79]∩[0.5, 1.4] seems to be fully supported by the available evidence, as
it is considered highly plausible by all three sources, while values outside the
interval [0, 2] are considered as impossible. This information may be repre-
sented by any belief function verifying Bel([0, 2]) = 1 and Pl([0.5, 0.79]) = 1.
In the absence of more precise information, the most reasonable approach is
to carry out some form of sensitivity analysis by considering different belief
functions verifying these two constraints. Here, we will consider three kinds
of random intervals:

1. Consonant random intervals with core [0.5, 0.79], support [0, 2] and
contour function π defined by

π(x) =





φ(x/0.5) 0 < x ≤ 0.5

1 0.5 ≤ x ≤ 0.79

φ

(
2− x

2− 0.79

)
0.79 < x ≤ 2

0 otherwise,

(21)

where φ is a continuous, non-decreasing function from [0, 1] to [0, 1]
such that φ(0) = 0 and φ(0) = 1 (see Figure 2(a));

2. P-boxes with upper and lower bounding functions defined, respectively,
as follows:

F ∗(x) =





0 x ≤ 0

φ(x/0.5) 0 < x ≤ 0.5

1 x > 0.5,

(22a)

F∗(x) =





0 x ≤ 0.79

1− φ

(
2− x

2− 0.79

)
0.79 < x ≤ 2

1 x > 2,

(22b)

as shown in Figure 2(b);

3. Random closed intervals [U, V ], such that U and V are independent
and have cdfs F ∗ and F∗ defined, respectively, by (22a) and (22b).
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Figure 2: Contour functions (a) and upper and lower cdfs (b) of random sets on SLR for
φ(x) = x (−), φ(x) = x2 (−−) and φ(x) =

√
x (−.).

We can remark that the bounds of these three random intervals (for
given φ) have the same marginal distributions F ∗ and F∗. Consequently,
their plausibility and belief functions coincide on all intervals of the form
(−∞, x], since

bel((−∞, x]) = P (V ≤ x) = F∗(x)

and
pl((−∞, x]) = P (U ≤ x) = F ∗(x).

More generally, their plausibility functions coincide on all closed intervals
since, for all a ≤ b,

Pl([a, b]) = 1− P (V < a)− P (U > b),

which only depends on the marginal distributions of U and V . In particular,
they have identical contour function π(x) = Pl([x, x]).

In the following, we considered three different functions φ: linear (φ(x) =
x), convex (φ(x) = x2) and concave (φ(x) =

√
x). The corresponding

contour functions and cumulative distributions are shown, respectively, in
Figures 2(a) and 2(b).

4.4. Combined evidence on z′T
Let (Ω1, P1,Γ1) and (Ω2, P2,Γ2) denote the random intervals encoding

evidence on zT and SLR, respectively. Assuming independence between the
two sources of evidence (a quite natural hypothesis here, as the two pieces
of evidence have completely different origins), the combined evidence on
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z′T = zT + SLR is simply the sum of these two random intervals, which is a
random interval (Ω, P,Γ) with Ω = Ω1 × Ω2, P = P1 ⊗ P2 and

Γ(ω1, ω2) = [U1(ω1) + U2(ω2), V1(ω1) + V2(ω2)], ∀(ω1, ω2) ∈ Ω, (23)

where Γ1(ω1) = [U1(ω1), V1(ω1)] and Γ2(ω2) = [U2(ω2), V2(ω2)].
Let Bel and Pl denote, respectively, the belief and plausibility functions

induced by (Ω, P,Γ). While the analytical expressions of Bel(I) and Pl(I)
for an arbitrary interval I may be difficult to derive, these quantities can be
easily approximated using Monte Carlo simulation. An i.i.d. random sample
(u1, v1), . . . , (uN , vN ) from (U, V ) can be generated by sampling N elements
ω1, . . . , ωN from (Ω, P ) with replacement and computing [ui, vi] = Γ(ωi),
i = 1 . . . , N . Quantities Bel(I) and Pl(I) can then be estimated by

B̂el(I) =
1

N
#{1 ≤ i ≤ N | [ui, vi] ⊆ I} (24)

P̂ l(I) =
1

N
#{1 ≤ i ≤ N | [ui, vi] ∩ I 6= ∅}. (25)

5. Results

The above method was applied to a dataset of hourly measurements of
sea level in Le Havre, France, recorded during 15 years. Figure 3 shows
the empirical cdf of the 15 annual maxima, together with the best fit by a
Gumbel distribution.

The joint contour function pl(µ, zT ) and the marginal contour function
pl(zT ) computed from (19) and (20), respectively, are shown in Figure 4.

The consonant random interval with contour function pl(zT ) was com-
bined with random intervals on SLR described in Subsection 4.3 to compute
a random interval on z′T , as explained in Subsection 4.4. The corresponding
contour functions and upper and lower cdfs are shown in Figure 5. Again,
these functions are the same for the three kinds of random intervals con-
sidered in Subsection 4.3 and they only depend on the choice of φ. The
corresponding functions for the random interval obtained by adding a con-
stant SLR value (the center of the interval [0.5, 0.79]) to the random interval
of zT are also shown in Figure 5 for comparison. We can see that the un-
certainty on SLR accounts for most of the uncertainty on z′T , a conclusion
that holds for all three choices of φ.

Figure 6 shows a contour plot of plausibilities Pl([x, y]) for 8.5 ≤ x ≤
y ≤ 12 and φ(x) = x. Again, these quantities depend only on the marginal
distributions of the bounds U and V of the random interval on z′T . In
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Figure 3: Empirical distribution of annual maxima of sea level recorded in Le Havre,
France during 15 years and best fit using a Gumbel Distribution.

contrast, degrees of belief Bel([x, y]) depend on the joint distribution of
U and V . They are plotted in Figure 7. We can see, however, that the
results are very similar for the three kinds of random intervals on SLR.
This confirms that the particular choice of random interval on SLR has a
minor influence on the results, provided that the core and support are kept
constant.
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Le Havre data.
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of function φ and constant prediction of SLR.
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6. Conclusion

The DS theory of belief functions places emphasis on the representation
of evidence for evaluating degrees of belief. The generality and flexibility
of this framework makes it suitable for representing and combining expert
judgments with statistical evidence. In this paper, this approach has been
applied to the estimation of the centennial sea level at a particular location,
taking into account historical data and expert assessments of sea level rise
during the 21st century. Statistical evidence has been modeled using the
likelihood-based approach, which equates the contour function of a conso-
nant belief function with the normalized likelihood. Expert judgments as
reported in the last IPCC assessment report and the recent scientific litera-
ture have been represented by different random closed intervals. This study
shows that the uncertainty on the 21st century sea level rise accounts for
most of the uncertainty on the centennial sea level by the end if this century,
a parameter that should be taken into account for adapting coastal defenses
to climate change. This conclusion holds for different alternative ways of
modeling expert opinions.

The work reported in this paper is only preliminary. It would be inter-
esting to adopt a more objective approach to SLR assessment by modeling
uncertainty on basic physical parameters (such as climate sensitivity) and
propagating it in climate models. A deeper study would also benefit from
closer interaction with climate experts and should be based on rigorous
knowledge elicitation procedures that remain to be developed. Finally, the
design of flood defense structures depends not only on extreme sea level,
but also on other parameters such as wave height and length. The approach
sketched here will have to be extended to represent uncertainty on several
design parameters and propagate it in hydraulic and flood models so as to
devise optimal decision strategies in response to sea level rise.
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