
HAL Id: hal-00932862
https://hal.science/hal-00932862

Submitted on 17 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Damage Recovery in Robotics with the
T-Resilience Algorithm

Sylvain Koos, Antoine Cully, Jean-Baptiste Mouret

To cite this version:
Sylvain Koos, Antoine Cully, Jean-Baptiste Mouret. Fast Damage Recovery in Robotics with the
T-Resilience Algorithm. The International Journal of Robotics Research, 2013, 32 (14), pp.1700-1723.
�10.1177/0278364913499192�. �hal-00932862�

https://hal.science/hal-00932862
https://hal.archives-ouvertes.fr

S. Koos, A. Cully and J.B. Mouret. Fast Damage Recovery in Robotics with the T-Resilience Algorithm.
International Journal of Robotics Research, 2013.

Fast Damage Recovery in Robotics

with the T-Resilience Algorithm

Sylvain Koos, Antoine Cully and Jean-Baptiste Mouret∗

Damage recovery is critical for autonomous robots that
need to operate for a long time without assistance. Most
current methods are complex and costly because they re-
quire anticipating each potential damage in order to have
a contingency plan ready. As an alternative, we intro-
duce the T-Resilience algorithm, a new algorithm that al-
lows robots to quickly and autonomously discover com-
pensatory behaviors in unanticipated situations. This al-
gorithm equips the robot with a self-model and discovers
new behaviors by learning to avoid those that perform dif-
ferently in the self-model and in reality. Our algorithm
thus does not identify the damaged parts but it implic-
itly searches for efficient behaviors that do not use them.
We evaluate the T-Resilience algorithm on a hexapod robot
that needs to adapt to leg removal, broken legs and mo-
tor failures; we compare it to stochastic local search, pol-
icy gradient and the self-modeling algorithm proposed by
Bongard et al. The behavior of the robot is assessed on-
board thanks to a RGB-D sensor and a SLAM algorithm.
Using only 25 tests on the robot and an overall running
time of 20 minutes, T-Resilience consistently leads to sub-
stantially better results than the other approaches.

1. Introduction

Autonomous robots are inherently complex machines that
have to cope with a dynamic and often hostile environment.
They face an even more demanding context when they oper-
ate for a long time without any assistance, whether when ex-
ploring remote places (Bellingham and Rajan, 2007) or, more
prosaically, in a house without any robotics expert (Prassler
and Kosuge, 2008). As famously pointed out by Corbato
(2007), when designing such complex systems, “[we should
not] wonder if some mishap may happen, but rather ask
what one will do about it when it occurs”. In autonomous
robotics, this remark means that robots must be able to pur-
sue their mission in situations that have not been anticipated
by their designers. Legged robots clearly illustrate this need
to handle the unexpected: to be as versatile as possible, they
involve many moving parts, many actuators and many sen-
sors (Kajita and Espiau, 2008); but they may be damaged
in numerous different ways. These robots would therefore
greatly benefit from being able to autonomously find a new
behavior if some legs are ripped off, if a leg is broken or if
one motor is inadvertently disconnected (Fig. 1).

Fault tolerance and resilience are classic topics in robotics

∗Sylvain Koos, Antoine Cully and Jean-Baptiste Mouret are with the ISIR,
Université Pierre et Marie Curie-Paris 6, CNRS UMR 7222, F-75252, Paris
Cedex 05, France. Contact: mouret@isir.upmc.fr

(a) Normal state. (b) Two legs ripped out.

(c) One broken leg. (d) Two unpowered motors.

Figure 1: Examples of situations in which an autonomous
robot needs to discover a qualitatively new behav-
ior to pursue its mission: in each case, classic hexa-
pod gaits cannot be used. The broken leg exam-
ple (c) is a typical damage that is hard to diagnose
by direct sensing (because no actuator or sensor is
damaged).

and engineering. The most classic approaches combine in-
tensive testing with redundancy of components (Visinsky
et al., 1994; Koren and Krishna, 2007). These methods un-
doubtedly proved their usefulness in space, aeronautics and
numerous complex systems, but they also are expensive to
operate and to design. More importantly, they require the
identification of the faulty subsystems and a procedure to
bypass them, whereas both operations are difficult for many
kinds of faults – for example mechanical failures. Another
classic approach to fault tolerance is to employ robust con-
trollers that can work in spite of damaged sensors or hard-
ware inefficiencies (Goldberg and Chen, 2001; Caccavale and
Villani, 2002; Qu et al., 2003; Lin and Chen, 2007). Such con-
trollers usually do not require diagnosing the damage, but
this advantage is tempered by the need to integrate the reac-
tion to all faults in a single controller. Last, a robot can em-
bed a few pre-designed behaviors to cope with anticipated
potential failures (Görner and Hirzinger, 2010; Jakimovski
and Maehle, 2010; Mostafa et al., 2010; Schleyer and Russell,
2010). For instance, if a hexapod robot detects that one of
its legs is not reacting as expected, it can drop it and adapt
the position of the other legs accordingly (Jakimovski and
Maehle, 2010; Mostafa et al., 2010).

1

An alternative and promising line of thought is to let the
robot learn on its own the best behavior for the current situa-
tion. If the learning process is open enough, then the robot
should be able to discover new compensatory behaviors in
situations that have not been foreseen by its designers. Nu-
merous learning systems have been experimented in robotics
(for reviews, see Connell and Mahadevan (1993); Argall et al.
(2009); Nguyen-Tuong and Peters (2011); Kober and Peters
(2012)), with different levels of openness and various a pri-
ori constraints. Most of them primarily aim at automatically
tuning controllers for complex robots (Kohl and Stone, 2004;
Tedrake et al., 2005; Sproewitz et al., 2008; Hemker et al.,
2009), but some of these systems have been explicitly tested
in situations in which a robot needs to adapt itself to un-
expected situations (Mahdavi and Bentley, 2003; Berenson
et al., 2005; Bongard et al., 2006); the present work follows
in their footsteps.

Finding the behavior that maximizes performance in the
current situation is a reinforcement learning problem Sutton
and Barto (1998), but classic reinforcement learning algo-
rithms (e.g. TD-Learning, SARSA, ...) are designed for dis-
crete state spaces (Sutton and Barto, 1998; Togelius et al.,
2009). They are therefore hard to use when learning con-
tinuous behaviors such as locomotion patterns. Policy gra-
dient algorithms (Kohl and Stone, 2004; Peters and Schaal,
2008; Peters, 2010) are reasonably fast learning algorithms
that are better suited for robotics (authors typically report
learning time of 20 minutes to a few hours), but they are
essentially limited to a local search in the parameter space:
they lack the openness of the search that is required to cope
with truly unforeseen situations. Evolutionary Algorithms
(EAs) (Deb, 2001; De Jong, 2006) can optimize reward func-
tions in larger, more open search spaces (e.g. automatic de-
sign of neural networks, design of structures) (Grefenstette
et al., 1999; Heidrich-Meisner and Igel, 2009; Togelius et al.,
2009; Doncieux et al., 2011; Hornby et al., 2011; Whiteson,
2012), but this openness is counterbalanced by substantially
longer learning time (according to the literature, 2 to 10
hours for simple robotic behaviors).

All policy gradient and evolutionary algorithms spend
most of their running time in evaluating the quality of con-
trollers by testing them on the target robot. Since, contrary
to simulation, reality cannot be sped up, their running time
can only be improved by finding strategies to evaluate fewer
candidate solutions on the robot. In their “starfish robot”
project, Bongard et al. (2006) designed a general approach
for resilience that makes an important step in this direc-
tion. The algorithm of Bongard et al. is divided into two
stages: (1) automatically building an internal simulation of
the whole robot by observing the consequences of a few el-
ementary actions (about 15 in the demonstrations of the pa-
per) – this internal simulation of the whole body is called a
self-model1 (Metzinger, 2004, 2007; Vogeley et al., 1999; Bon-
gard et al., 2006; Holland and Goodman, 2003; Hoffmann
et al., 2010); (2) launching in this simulation an EA to find
a new controller. In effect, this algorithm transfers most of
the learning time to a computer simulation, which makes it
increasingly faster when computers are improved (Moore,

1Following the literature in psychology (Metzinger, 2004, 2007; Vogeley
et al., 1999) and artificial intelligence (Bongard et al., 2006; Holland and
Goodman, 2003), we define a self-model as a forward, internal model
of the whole body that is accessible to introspection and instantiated in
a model of the environment. In the present paper, we only consider a
minimal model of the environment (a horizontal plane).

1975).
Bongard’s algorithm highlights how mixing a self-model

with a learning algorithm can reduce the time required for
a robot to adapt to an unforeseen situation. Nevertheless, it
has a few important shortcomings. First, actions and models
are undirected: the algorithm can “waste” a lot of time to im-
prove parts of the self-model that are irrelevant for the task.
Second, it is computationally expensive because it includes
a full learning algorithm (the second stage, in simulation)
and an expensive process to select each action that is tested
on the robot. Third, there is often a “reality gap” between
a behavior learned in simulation and the same behavior on
the target robot (Jakobi et al., 1995; Zagal et al., 2004; Koos
et al., 2012), but nothing is included in Bongard’s algorithm
to prevent such gap to happen: the controller learned in the
simulation stage may not work well on the real robot, even
if the self-model is accurate. Last, one can challenge the rele-
vance of calling into question the full self-model each time an
adaptation is required, for instance if an adaptation is only
temporarily useful.

In the present paper we introduce a new resilience al-
gorithm that overcomes these shortcomings while still per-
forming most of the search in a simulation of the robot. Our
algorithm works with any parametrized controller and it is
especially efficient on modern, multi-core computers. More
generally, it is designed for situations in which:

• behaviors optimized on the undamaged robot are not ef-
ficient anymore on the damaged robot (otherwise, adap-
tation is useless) and qualitatively new behavior is re-
quired (otherwise, local search algorithms should per-
form better);

• the robot can only rely on internal measurements of its
state (truly autonomous robots do not have access to
perfect, external sensing systems);

• some damages cannot be observed or measured directly
(otherwise more explicit methods may be more effi-
cient).

Our algorithm is inspired by the “transferability ap-
proach” (Koos et al., 2012; Mouret et al., 2012; Koos and
Mouret, 2011), whose original purpose is to cross the “real-
ity gap” that separates behaviors optimized in simulation to
those observed on the target robot. The main proposition of
this approach is to make the optimization algorithm aware
of the limits of the simulation. To this end, a few controllers
are transferred during the optimization and a regression al-
gorithm (e.g. a SVM or a neural network) is used to approxi-
mate the function that maps behaviors in simulation to the
difference of performance between simulation and reality.
To use this approximated transferability function, the single-
objective optimization problem is transformed into a multi-
objective optimization in which both performance in simu-
lation and transferability are maximized. This optimization
is typically performed with a stochastic multi-objective op-
timization algorithm but other optimization algorithms are
conceivable.

As this paper will show, the same concepts can be applied
to design a fast adaptation algorithm for resilient robotics,
leading to a new algorithm that we called “T-Resilience” (for
Transferability-based resilience). If a damaged robot embeds
a simulation of itself, then behaviors that rely on damaged
parts will not be transferable: they will perform very differ-
ently in the self-model and in reality. During the adaptation
process, the robot will thus create an approximated trans-

2

ferability function that classifies behaviors as “working as
expected” and “not working as expected”. Hence the robot
will possess an “intuition” of the damages but it will not ex-
plicitly represent or identify them. By optimizing both the
transferability and the performance, the algorithm will look
for the most efficient behaviors among those that only use
the reliable parts of the robots. The robot will thus be able
to sustain a functioning behavior when damage occurs by
learning to avoid behaviors that it is unable to achieve in
the real world. Besides this damage recovery scenario, the
T-Resilience algorithm opens a new class of adaptation algo-
rithms that benefit from Moore’s law by transferring most of
the adaptation time from real experiments to simulations of
a self-model.

We evaluate the T-Resilience algorithm on a hexapod robot
that needs to adapt to leg removal, broken legs and motor
failures; we compare it to stochastic local search (Hoos and
Stützle, 2005), policy gradient (Kohl and Stone, 2004) and
Bongard’s algorithm (Bongard et al., 2006). The behavior on
the real robot is assessed on-board thanks to a RGB-D sen-
sor coupled with a state-of-the-art SLAM algorithm (Endres
et al., 2012).

2. Learning for resilience

Discovering a new behavior after a damage is a particular
case of learning a new behavior, a question that generates an
abundant literature in artificial intelligence since its begin-
nings (Turing, 1950). We are here interested in reinforcement
learning algorithms because we consider scenarios in which
evaluating the performance of a behavior is possible but the
optimal behavior is unknown. However, classic reinforce-
ment learning algorithms are primarily designed for dis-
crete states and discrete actions (Sutton and Barto, 1998; Pe-
ters, 2010), whereas autonomous robots have to solve many
continuous problems (e.g. motor control). Two alternative
families of methods are currently prevalent for continuous
reinforcement learning in robotics (table 1): policy gradi-
ent methods and evolutionary algorithms. These two ap-
proaches both rely on optimization algorithms that directly
optimize parameters of a controller by measuring the over-
all performance of the robot (Fig. 2); learning is thus here
regarded as an optimization of these parameters.

2.1. Policy gradient methods

Policy gradient methods (Sutton et al., 2000; Peters and
Schaal, 2008; Peters, 2010) use iterative stochastic optimiza-
tion algorithms to find a local extremum of the reward func-
tion. The search starts with a controller that can be generated
at random, designed by the user or inferred from a demon-
stration. The algorithm then iteratively modifies the param-
eters of the controller by estimating gradients in the control
space and applying slight changes to the parameters.

Typical policy gradient methods iterate the following
steps:

• generation of N controllers in the neighborhood of the
current vector of parameters (by variating one or multi-
ple parameter values at once);

• estimation of the gradient of the reward function in the
control space;

damaged
robot

learning by
optimization

controllers

reward/
performance

new original
controller

Figure 2: Principle of resilience processes based on policy
gradient. Controllers are optimized by measuring
rewards on the robot.

• modification of parameter values according to the gra-
dient information.

These steps are iterated until a satisfying controller is
found or until the process converges. Policy gradient al-
gorithms essentially differ in the way gradient is estimated.
The most simple way is the finite-difference method, which
independently estimates the local gradient of the reward
function for each parameter (Kohl and Stone, 2004; Tedrake
et al., 2005): considering a given parameter, if higher (resp.
lower) values lead to higher rewards on average on the N
controllers tested during the current iteration, the value of
the parameter is increased (resp. decreased) for the next it-
eration. Such a simple method for estimating the gradient
is especially efficient when parameters are mostly indepen-
dent. Strong dependencies between the parameters often re-
quire more sophisticated estimation techniques.

Policy gradient algorithms have been successfully applied
to locomotion tasks in the case of quadruped (Kimura et al.,
2001; Kohl and Stone, 2004) and biped robots (Tedrake et al.,
2005) but they typically require numerous evaluations on
the robot, most of the times more than 1000 trials in a few
hours (table 1). To make learning tractable, these examples
all use carefully designed controllers with only a few degrees
of freedom. They also typically start with well-chosen ini-
tial parameter values, making them efficient algorithms for
imitation learning when these values are extracted from a
demonstration by a human (Kober and Peters, 2010). Recent
results on the locomotion of a quadruped robot suggest that
using random initial controllers would likely require many
additional experiments on the robot (Yosinski et al., 2011).
Consistent results have been reported on biped locomotion
with computer simulations using random initial controllers
that make the robot fall (Nakamura et al., 2007) (about 10
hours of learning for 11 control parameters).

2.2. Evolutionary Algorithms

Evolutionary Algorithms (EAs) (Deb, 2001; De Jong, 2006)
are another family of iterative stochastic optimization meth-
ods that search for the optima of function (Grefenstette et al.,
1999; Heidrich-Meisner and Igel, 2009). They are less prone
to local optima than policy gradient algorithms and they can
optimize arbitrary structures (neural networks, fuzzy rules,
vector of parameters, ...) (Doncieux et al., 2011; Hornby et al.,
2011; Mouret and Doncieux, 2012; Whiteson, 2012).

While there exists many variants of EAs, the vast majority
of them iterate the following steps:
• (first iteration only) random initialization of a popula-

tion of candidate solutions;

3

Table 1: Typical examples of learning algorithms that have been used on legged robots.

approach/article starting beh. ⋆ learning time robot DOFs† param.‡ reward

Policy Gradient Methods
Kimura et al. (2001) no info. 80 min. quadruped 8 72 internal
Kohl and Stone (2004) walking 3 h quadruped 12 12 external
Tedrake et al. (2005) standing 20 min. bidepal 2 46 internal

Evolutionary Algorithm
Chernova and Veloso (2004) random 5 h quadruped 12 54 external
Zykov et al. (2004) random 2 h hexapod 12 72 external
Berenson et al. (2005) random 2 h quadruped 8 36 external
Hornby et al. (2005) non-falling 25h quadruped 19 21 internal
Mahdavi and Bentley (2006) random 10 h snake 12 1152 external
Barfoot et al. (2006) random 10 h hexapod 12 135 external
Yosinski et al. (2011) random 2 h quadruped 9 5 external

Others
Weingarten et al. (2004) 1 walking > 15 h hexapod (Rhex-like) 6 8 external
Sproewitz et al. (2008) 2 random 60 min. quadruped 8 5 external
Hemker et al. (2009) 3 walking 3-4 h biped 24 5 external
Barfoot et al. (2006) 4 random 1h hexapod 12 135 external
⋆Behavior used to initialize the learning algorithm.
† DOFs: number of controlled degrees of freedom.
‡ param: number of learned control parameters.
1 Nelder-Mead descent. 2 Powell method. 3 Design and Analysis of Computer Experiments. 4 Multi-agent reinforcement learning

• evaluation of the performance of each controller of the
population (by testing the controller on the robot);

• ranking of controllers;

• selection and variation around the most efficient con-
trollers to build a new population for the next iteration.

Learning experiments with EAs are reported to require
many hundreds of trials on the robot and to last from two to
tens of hours (table 1). EAs have been applied to quadruped
robots (Hornby et al., 2005; Yosinski et al., 2011), hexapod
robots (Zykov et al., 2004; Barfoot et al., 2006) and hu-
manoids (Katić and Vukobratović, 2003; Palmer et al., 2009).
EAs have also been used in a few studies dedicated to re-
silience, in particular on a snake-like robot with a damaged
body (Mahdavi and Bentley, 2003) (about 600 evaluations/10
hours) and on a quadrupedal robot that breaks one of its
leg (Berenson et al., 2005) (about 670 evaluations/2 hours).

Aside from these two main types of approaches, sev-
eral authors proposed to use other black-box optimiza-
tion algorithms: global methods like Nelder-Mead de-
scent (Weingarten et al., 2004), local methods like Powell’s
method (Sproewitz et al., 2008) or surrogate-based optimiza-
tion (Hemker et al., 2009). Published results are typically ob-
tained with hundreds of evaluations on the robot, requiring
several hours (table 1).

Regardless of the optimization technique, reward func-
tions are, in most studies, evaluated with external tracking
devices (table 1, last column). While this approach is use-
ful when researchers aims at finding the most efficient con-
trollers (e.g. Kohl and Stone (2004); Sproewitz et al. (2008);
Hemker et al. (2009)), learning algorithms that target adapta-
tion and resilience need to be robust to the inaccuracies and
constraints of on-board measurements.

2.3. Resilience based on self-modeling

Instead of directly learning control parameters, Bongard
et al. (2006) propose to improve the resilience of robots by

self-model of
damaged robot

damaged
robot

learning by
optimization

models

prediction
error

learning by
optimization

controllers

reward/
performance

new controllernew self-model

1 2

Figure 3: Principle of Bongard’s algorithm. (1) A self-model
is learned by testing a few actions on the damaged
robot. (2) This self-model is next used as a simula-
tion in which a new controller is optimized.

equipping robots with a self-model. If a disagreement is de-
tected between the self-model and observations, the pro-
posed algorithm first infers the damages by chosing mo-
tor actions and measuring their consequences on the behav-
ior of the robot; the algorithm then relies on the updated
model of the robot to learn a new behavior. This approach
has been successfully tested on a starfish-like quadrupedal
robot (Bongard et al., 2006; Zykov, 2008). By adapting its
self-model, the robot manages to discover a new walking
gait after the loss of one of its legs.

In Bongard’s algorithm, the identification of the self-model
is based on an active learning loop that is itself divided into
an action selection loop and a model selection loop (Fig. 3). The
action selection loop aims at selecting the action that will best
distinguish the models of a population of candidate models.
The model selection loop looks for the models that best pre-
dict the outcomes of the actions as measured on the robot. In
the “starfish” experiment (Bongard et al., 2006), the follow-
ing steps are repeated:
1.1. action selection (exploration):

– each of the 36 possible actions is tested on each of
the 16 candidate models to observe the orientation
of robot’s body predicted by the model;

– the action for which models of the population dis-

4

agree at most is selected;

– this action is tested on the robot and the cor-
responding exact orientation of robot’s body is
recorded by an external camera;

1.2. model selection loop (estimation):

– a stochastic optimization algorithm (an EA) is used
to optimize the population of models so that they
accurately predict what was measured with the
robot, for each tested action;

– if less than 15 actions have been performed, the ac-
tion selection loop is started again.

Once the 15 actions have been performed, the best model
found so far is used to learn a new behavior using an EA:

2. controller optimization (exploitation):

– a stochastic optimization algorithm (an EA) is used
to optimize a population controllers so that they
maximize forward displacement within the simu-
lation of the self-model;

– the best controller found in the simulation is trans-
ferred to the robot, making it the new controller.

The population of models is initialized with the self-model
that corresponds to the morphology of the undamaged
robot. Since the overall process only requires 15 tests on
the robot, its speed essentially depends on the performance
of the employed computer. Significant computing times are
nonetheless required for the optimization of the population
of models.

In the results reported by Bongard et al. (2006), only
half of the runs led to correct self-models. As Bongard’s.
approach implies identifying a full model of the robot, it
would arguably require many more tests to converge in most
cases to the right morphology. For comparison, results ob-
tained by the same authors but in a simulated experiment
required from 600 to 1500 tests to consistently identify the
model (Bongard and Lipson, 2005). It should also be noted
that these authors did not measure the orientation of robot’s
body with internal sensors, whereas noisy internal measure-
ments could significantly impair the identification of the
model. Other authors experimented with self-modeling pro-
cess similar to the one of Bongard et al., but with a humanoid
robot (Zagal et al., 2009). Preliminary results suggest that
thousands of evaluations on the robot would be necessary to
correctly identify 8 parameters of the global self-model. Al-
ternative methods have been proposed to build self-models
for robots and all of them require numerous tests, e.g. on
a manipulator arm with about 400 real tests (Sturm et al.,
2008) or on a hexapod robot with about 240 real tests (Parker,
2009). Overall, experimental costs for building self-models
appear expensive in the context of resilience applications in
both the number of tests on the real robot and in computing
time.

Furthermore, controllers obtained by optimizing in a sim-
ulation – as does the algorithm proposed by Bongard et al.
– often do no work as well on the real robot than in sim-
ulation (Koos et al., 2012; Zagal et al., 2004; Jakobi et al.,
1995). In effect, this classic problem has been observed in
the starfish experiments Bongard et al. (2006). In these ex-
periments, it probably originates from the fact that the iden-
tified self-model cannot perfectly model every detail of the
real world (in particular, slippage, friction and very dynamic
behaviors).

2.4. Concluding thoughts

Based on this short survey of the literature, two main
thoughts can be drawn:

1. Policy gradient methods and EAs can both be used to
discover original behaviors on a damaged robot; never-
theless, when they don’t start from already good initial
controllers, they require a high number of real tests (at
least a few hundred), which limits the speed of the re-
sulting resilience process.

2. Methods based on self-modeling are promising because
they transfer some of the learning time to a simulation;
however building an accurate global model of the dam-
aged robot requires many real tests; reality gap prob-
lems can also occur between the behavior learned with
self-model and the real, damaged robot.

3. The T-Resilience algorithm

3.1. Concept and intuitions

Following Bongard et al., we equip our robot with a self-
model. A direct consequence is that detecting the occurrence
of a damage is facilitated: if the observed performance is sig-
nificantly different from what the self-model predicts, then
the robot needs to start a recovery process to find a better be-
havior. Nevertheless, contrary to Bongard et al., we propose
that a damaged robot discovers new original behaviors using
the initial, hand-designed self-model, that is without updating
the self-model. Since we do not attempt to diagnose dam-
ages, the solved problem is potentially easier than the one
solved by Bongard et al; we therefore expect our algorithm
to perform faster. This speed increase can, however, comes
at the price of slightly less efficient post-damage behaviors.

The model of the undamaged robot is obviously not ac-
curate because it does not model the damages. Nonethe-
less, since damages can’t radically change the overall mor-
phology of the robot, this “undamaged” self-model can still
be viewed as a reasonably accurate model of the damaged
robot. Most of the degrees of freedom are indeed correctly
positionned, the mass of components should not change
much and the body plan is most probably not radically al-
tered.

Imperfect simulators and models are an almost unavoid-
able issue when robotic controllers are first optimized in sim-
ulation then transferred to a real robot. The most affected
field is probably evolutionary robotics because of the empha-
sis on opening the search space as much as possible: behav-
iors found within the simulation are often not anticipated
by the designer of the simulator, therefore it’s not surpris-
ing that they are often wrongly simulated. Researchers in
evolutionary robotics explored three main ideas to cross this
“reality gap”: (1) automatically improving simulators (Bon-
gard et al., 2006; Pretorius et al., 2012; Klaus et al., 2012), (2)
trying to prevent optimized controllers from relying on the
unreliable parts of the simulation (in particular, by adding
noise) (Jakobi et al., 1995), and (3) model the difference be-
tween simulation and reality (Hartland and Bredeche, 2006;
Koos et al., 2012).

Translated to resilient robotics, the first idea is equivalent
to improving or adapting the self-model, with the aforemen-
tioned shortcomings (sections 1 and 2.3). The second idea

5

population
(control parameters)

MOEA

(A) Discovery loop, each iteration
(B) Update of transferability,
every N iterations

approximated
transferability function

robot
self-model

(dynamic simulation)
behavior description
of the self-model
(e.g. contacts)

distance covered
in the self-model

distance covered
on the robot

(internal measures)
update of approx.
transferability
by regression

approximated transferability
corresponding to controller

transfer of
onto the robot

randomly selected in
the population

for each controller
in the population

exact transferability value
for the controller

Figure 4: Schematic view of the T-Resilience algorithm (see algorithm 1 for an algorithmic view). (A) Discovery loop: each
controller of the population is evaluated with the self-model. Its transferability score is approximated according to

the current model T̂ of the exact transferability function T . (B) Transferability update: every N iterations, a con-
troller of the population is randomly selected and transferred onto the real robot. The model of the transferability
function is next updated with the data generated during the transfer.

corresponds to encouraging the robustness of controllers so
that they can deal with an imperfect simulation. It could
lead to improvements in resilient robotics but it requires that
the designer anticipates most of the potential damages. The
third idea is more interesting for resilient robotics because it
acknowledges that simulations are never perfect and mixes
reality and simulation during the optimization. Among the
algorithms of this family, the recently-proposed transferabil-
ity approach (Koos et al., 2012) explicitly searches for high-
performing controllers that work similarly in both simula-
tion and reality. It led to successful solutions for quadruped
robot (2 parameters to optimize) and for a Khepera-like robot
in a T-maze (weights of a feed-forward neural networks to
optimize) (Koos et al., 2012; Koos and Mouret, 2011).

The main assumption of the transferability approach is
that some transferable behaviors exist in the search space.
Although formulated in the context of the reality gap, this
assumption holds well in resilient robotics. For instance, if
a hexapod robot breaks a leg, then gaits that do not criti-
cally rely on this leg should lead to similar trajectories in the
self-model and on the damaged robot. Such gaits are numer-
ous: those that make the simulated robot lift the broken leg
so that it never hits the ground; those that make the robot
walk on its “knees”; those that are robust to leg damages
because they are closer to crawling than walking. Similar
ideas can be found for most robots and for most mechani-
cal and electrical damages, provided that there are different
ways to achieve the mission. For example, any redundant
robotic manipulator with a blocked joint should be able to
follow a less efficient but working trajectory that does not

use this joint.
The transferability approach captures the differences be-

tween the self-model and reality through the transferability
function (Mouret et al., 2012; Koos et al., 2012):

Definition 1 (transferability function) A transferability
function T is a function that maps a vector b ∈ R

m of m solution
descriptors (e.g. control parameters or behavior descriptors)
to a transferability score T (b) that represents how well the
simulation matches the reality for this solution (e.g. performance
variation):

T : R
m 7→ R

b 7→ T (b)

This function is usually not accessible because this would
require to test every solution both in reality and in simula-
tion (see Mouret et al. (2012) and Koos et al. (2012) for an
example of exhaustive mapping). The transferability func-
tion can, however, be approximated with a regression algo-
rithm (neural networks, support vector machines, etc.) by
recording the behavior of a few controllers in reality and in
simulation.

3.2. T-Resilience

To cross the reality gap, the transferability approach es-
sentially proposes optimizing both the approximated trans-
ferability and the performance of controllers with a stochas-
tic multi-objective optimization algorithm. This approach
can be adapted to make a robot resilient by seeing the origi-
nal, “un-damaged” self-model as an inaccurate simulation of

6

Algorithm 1 T-Resilience (T real tests)

pop← {c1, c2, . . . , cS} (randomly generated)
data← ∅

for i = 1→ T do

random selection of c∗ in pop
computation of bself (c

∗), vector of m values describing c∗ in the self-model
transfer of c∗ on the robot (B) Updating approx.
estimation of performance Freal(c

∗) using internal measurements transferability function
estimation of transferability score T (bself (c

∗)) = ||Fself (c
∗)−Freal(c

∗)||
data← data ∪ {[bself (c

∗), T (bself (c
∗))]}

learning of new approximated transferability function T̂ , based on data

N iterations of MOEA on pop by maximizing Fself (c), T̂ (bself (c)), diversity(c) (A) Discovery loop

end for

selection of the new controller

the damaged robot, and if the robot only uses internal mea-
surements to evaluate the discrepancies between predictions
of the self-model and measures on the real robot. Resilient
robotics is thus a related, yet new application of the trans-
ferability concept. We call this new approach to resilient
robotics “T-Resilience” (for Transferability-based Resilience).

Algorithm. The T-Resilience algorithm relies on three main
principles (Fig. 4 and Algorithm 1):
• the self-model of the robot is not updated;

• the approximated transferability function is learned “on
the fly” thanks to a few periodic tests conducted on the
robot and a regression algorithm;

• three objectives are optimized simultaneously:

maximize







Fself (c)

T̂ (bself (c))
diversity(c)

where Fself (c) denotes the performance of the candidate so-
lution c that is predicted by the self-model (e.g. the forward
displacement in the simulation); bself (c) denotes the behav-
ior descriptor of c, extracted by recording the behavior of c in

the self-model; T̂ (bself (c)) denotes the approximated trans-
ferability function between the self-model and the damaged
robot, which is separately learned using a regression algo-
rithm; and diversity(c) is a application-dependent helper-
objective that helps the optimization algorithm to mitigate
premature convergence (Toffolo and Benini (2003); Mouret
and Doncieux (2012)).

Evaluating these three objectives for a particular controller
does not require any real test: the behavior of each controller
and the corresponding performance are predicted by the
self-model; the approximated transferability value is com-
puted thanks to the regression model of the transferability
function. The update of the approximated transferability function
is therefore the only step of the algorithm that requires a real test on
the robot. Since this update is only performed every N iter-
ations of the optimization algorithm, only a handful of tests
on the real robot have to be done.

At a given iteration, the T-Resilience algorithm does not
need to predict the transferability of the whole search space,
it only needs these values for the candidate solutions of the
current population. Since the population, on average, moves

towards better solutions, the algorithm has to periodically
update the approximation of the transferability function. To
make this update simple and unbiased, we chose to select the
solution to be tested on the robot by picking a random indi-
vidual from the population. We experimented with other se-
lection schemes in preliminary experiments, but we did not
observe any significant improvement.

Three choices depend on the application:
• the performance measure Fself (i.e. the reward func-

tion);

• the diversity measure;

• the regression technique used to learn the transferabil-
ity function and, in particular, the inputs and outputs of
this function.

We will discuss and describe each of these choices for our
resilient hexapod robot in section 4.

Optimization algorithm. Recent research in stochastic op-
timization proposed numerous algorithms to simultane-
ously optimize several objectives (Deb, 2001); most of them
are based on the concept of Pareto dominance, defined as
follows:

Definition 2 (Pareto dominance) A solution p∗ is said to dom-
inate another solution p, if both conditions 1 and 2 are true:

1. the solution p∗ is not worse than p with respect to all objec-
tives;

2. the solution p∗ is strictly better than p with respect to at least
one objective.

The non-dominated set of the entire feasible search space
is the globally Pareto-optimal set (Pareto front). It represents
the set of optimal trade-offs, that is solutions that cannot be
improved with respect to one objective without decreasing
their score with respect to another one.

Pareto-based multi-objective optimization algorithms aim
at finding the best approximation of the Pareto front, both in
terms of distance to the Pareto front and of uniformity of its
sampling. This Pareto front is found using only one execu-
tion of the algorithm and the choice of the final solution is left
to another algorithm (or to the researcher). Whereas classic
approaches to multi-objective optimization aggregate objec-
tives (e.g. with a weighted sum) then use a single-objective

7

controller c1

After the run

1 transfer

covered distance
(simulation)

approximated
transferability

best transferable
solution c* w.r.t.

best controller of the run =

During the run

25 transfers

controller c2

controller c25

transferable

not
transferable

performance

controller with highest real fitness
value among the 26 transfers

threshold
{
{

Figure 5: Choice of the final solution at the end of the T-
Resilience algorithm.

optimization algorithm, multi-objective optimization algo-
rithms do not require tuning the relative importance of each
objective.

Current stochastic algorithms for multi-objective opti-
mization are mostly based on EAs, leading to Multi-
Objective Evolutionary Algorithms (MOEA). Like most EAs,
they are intrinsically parallel (Cantu-Paz, 2000), making
them especially efficient on modern multi-core computers,
GPUs and clusters (Mouret and Doncieux, 2010). In the T-
Resilience algorithm, we rely on NSGA-II (Deb et al., 2002;
Deb, 2001), one of the most widely used multi-objective op-
timization algorithm (appendix B); however, any Pareto-
based multi-objective algorithm can replace this specific EA
in the T-Resilience algorithm.

At the end of the optimization algorithm, the MOEA dis-
cards diversity values and returns a set of non-dominated
solutions based on performance and transferability. We then
need to choose the final controller. Let us define the “trans-
ferable non-dominated set” as the set of non-dominated so-
lutions whose transferability values are greater than a user-
defined threshold. To determine the best solution of a run,
the solution of the transferable non-dominated set with the
highest performance in simulation is transferred onto the
robot and its performance in reality is assessed. The final so-
lution of the run is the controller that leads to the highest per-
formance on the robot among all the transferred controllers
(Fig. 5).

4. Experimental validation

4.1. Robot and parametrized controller

The robot is a hexapod with 18 Degrees of Freedom (DOF),
3 for each leg (Fig. 6(a,c)). Each DOF is actuated by position-
controlled servos (6 AX-12 and 12 MX-28 Dynamixel actua-
tors, designed by Robotis). The first servo controls the hor-
izontal orientation of the leg and the two others control its
elevation. The kinematic scheme of the robot is pictured on
Figure 6 c.

A RGB-D camera (Asus Xtion) is screwed on top of the
robot. It is used to estimate the forward displacement of
the robot thanks to a RGB-D SLAM algorithm (Endres et al.,

2012)2 from the ROS framework (Quigley et al., 2009)3.
The movement of each DOF is governed by a periodic

function that computes its angular position as a function γ
of time t, amplitude α and phase φ (Fig. 6, d):

γ(t, α, φ) = α · tanh (4 · sin (2 · π · (t+ φ))) (1)

where α and φ are the parameters that define the amplitude
of the movement and the phase shift of γ, respectively. Fre-
quency is fixed.

Angular positions are sent to the servos every 30 ms. The
main feature of this particular function is that, thanks to the
tanh function, the control signal is constant during a large
part of each cycle, thus allowing the robot to stabilize itself.
In order to keep the “tibia” of each leg vertical, the control
signal of the third servo is the opposite of the second one.
Consequently, positions sent to the ith servos are:
• γ(t, αi

1, φ
i
1) for DOF 1;

• γ(t, αi
2, φ

i
2) for DOFs 2;

• −γ(t, αi
2, φ

i
2) for DOFs 3.

This controller makes the robot equivalent to a 12 DOFs sys-
tem, even if 18 motors are controlled.

There are 4 parameters for each leg (αi
1, αi

2, φi
1, φi

2), there-
fore each controller is fully described by 24 parameters. By
varying these 24 parameters, numerous gaits are possible,
from purely quadruped gaits to classic tripod gaits.

This controller is designed to be as simple as possible so
that we can show the performance of the T-Resilience al-
gorithm in a straightforward setup. Nevertheless, the T-
Resilience algorithm does not put any constraint on the type
of controllers and many other controllers are conceivable
(e.g. bio-inspired central pattern generators like Sproewitz
et al. (2008) or evolved neural networks like in (Yosinski
et al., 2011; Clune et al., 2011)).

4.2. Reference controller

A classic tripod gait (Wilson, 1966; Saranli et al., 2001;
Schmitz et al., 2001; Ding et al., 2010; Steingrube et al., 2010)
is used as a reference point. This reference gait considers
two tripods: legs 0, 2, 4 and legs 1, 3, 5 (see Figure 6 for num-
bering). It is designed to always keep the robot balanced on
at least one of these tripods. The walking gait is achieved
by lifting one tripod, while the other pushes the robot for-
ward (by shifting itself backward). The lifted tripod is then
placed forward in order to repeat the cycle by inverting the
tripods. This gait is static, fast and similar to insect gaits (Wil-
son, 1966; Delcomyn, 1971). The parameters of this reference
controller are available in appendix C.

4.3. Implementation choices for T-Resilience

Performance function. The mission of our hexapod robot
is to go forward as fast as possible, regardless of its current
state and of any sustained damages. The performance func-
tion to be optimized is the forward displacement of the robot
predicted by its self-model. Such a high-level function does
not constrain the features of the optimized behaviors, so that
the search remains as open as possible, possibly leading to
original gaits (Nelson et al., 2009):

2We downloaded our implementation from: http://www.ros.org/

wiki/rgbdslam
3http://www.ros.org

8

(a) Hexapod robot. (b) Self-model. (c) Kinematic scheme.

Time (sec.)

C
o

n
tr

o
l s

ig
n

a
l (

ra
d

.)

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

(d) Control function.

Figure 6: (a) The 18-DOF hexapod robot is equipped with a RGB-D camera (RGB camera with a depth sensor). (b) Snapshot
of the simulation used as a self-model by the robot which occurs in an ODE-based physics simulator. The robot lies
on a horizontal plane and contacts are simulated as well. (c) Kinematic scheme of the robot. (d) Control function
γ(t, α, φ) with α = 1 and φ = 0.

Fself (c) = pt=E,SELF
x (c)− pt=0,SELF

x (c) (2)

where pt=0,SELF
x (c) denotes the x-position of the robot’s cen-

ter at the beginning of the simulation when the parameters c
are used and pt=E,SELF

x (c) its x-position the end of the sim-
ulation.

Because each trial lasts only a few seconds, this perfor-
mance function does not strongly penalize gaits that do not
lead to straight trajectories. Using longer experiments would
penalize these trajectories more, but it would increase the to-
tal experimental time too much to perform comparisons be-
tween approaches. Other performance functions are possible
and will be tested in future work.

Diversity function. The diversity score of each individual
is the average Euclidean distance to all the other candidate
solutions of the current population. Such a parameter-based
diversity objective enhances the exploration of the control
space by the population (Toffolo and Benini, 2003; Mouret
and Doncieux, 2012) and allows the algorithm to avoid many
local optima. This diversity objective is straightforward to
implement and does not depend on the task.

diversity(c) =
1

N

∑

y∈Pn

√

√

√

√

24
∑

j=1

(cj − yj)2 (3)

where Pn is the population at generation n, N the size of
P and cj the jth parameter of the candidate solution c.
Other diversity measures (e.g. behavioral measures, like in
(Mouret and Doncieux, 2012)) led to similar results in pre-
liminary experiments.

Regression model. When a controller c is tested on the
real robot, the corresponding exact transferability score T is
computed as the absolute difference between the forward
performance predicted by the self-model and the perfor-
mance estimated on the robot based on the SLAM algorithm.

T (c) =
∣

∣

∣
pSELF
t=E (c)− pREAL

t=0 (c)
∣

∣

∣
(4)

The transferability function is approximated by training a

SVM model T̂ using the ν-Support Vector Regression al-
gorithm with linear kernels implemented in the library lib-

svm4 (Chang and Lin, 2011) (learning parameters are set to
default values).

T̂ (bself (c)) = SVM(b
(1)
t=0, · · · , b

(1)
t=E , · · · , b

(6)
t=0, · · · , b

(6)
t=E) (5)

where E is the number of time-steps of the control function
(equation 1) and:

b
(n)
t =

{

1 if leg n touches the ground at that time-step
0 otherwise

(6)
We chose to describe gaits using contacts5, because it is a

classic representation of robotic and animal gaits (e.g. Del-
comyn (1971)). On the real robots, we deduces the contacts
by measuring the torque applied by each servo.

We chose SVMs to approximate the transferability score
because of the high number of inputs of the model and be-
cause there are many available implementations. Contrary
to other classic regression models (neural networks, Krig-
ing, ...), SVMs are indeed not critically dependent on the
size of the input space (Smola and Vapnik, 1997; Smola and
Schölkopf, 2004). They also provide fast learning and fast
prediction when large input spaces are used.

Self-model. The self-model of the robot is a dynamic simu-
lation of the undamaged six-legged robot in Open Dynamics
Engine (ODE)6 on a flat ground (Fig. 6b).

Main parameters. For each experiment, a population of
100 controllers is optimized for 1000 generations. Every 40
generations, a controller is randomly selected in the popula-
tion and transferred on the robot, that is we use 25 real tests
on the robot in a run. Each test takes place as follows:

4http://www.csie.ntu.edu.tw/˜cjlin/libsvm
5When choosing the input of a predictor, there is a large difference between

using the control parameters and using high-level descriptors of the be-
havior (Mouret and Doncieux, 2012). Intuitively, most humans can pre-
dict that a behavior will work on a real robot by watching a simulation,
but their task is much harder if they can only see the parameters. More
technically, predicting features of a complex dynamical system usually
requires simulating it. By starting with the output of a simulator, the
predictor avoids the need to re-invent physical simulation and can focus
on discrimination.

6Open Dynamics Engine: http://www.ode.org

9

Figure 7: Test cases considered in our experiments. (A) The
hexapod robot is not damaged. (B) The left mid-
dle leg is no longer powered. (C) The terminal part
of the front right leg is shortened by half. (D) The
right hind leg is lost. (E) The middle right leg is
lost. (F) Both the middle right leg and the front left
leg are lost.

• the selected controller is transferred and evaluated for 3
seconds on the robot while the RGB-D camera records
both color and depth images at 10 Hz;

• a SLAM algorithm estimates the forward displacement
of the robot based on the data of the camera;

• the estimate of the forward displacement is provided to
the main algorithm.

At each generation, each parameter of each selected can-
didate solution has a 10% chance of being incremented or
decremented, with both options equally likely; five values
are available for each ϕ (0, 0.25, 0.5, 0.75, 1) and for each α
(0, 0.25, 0.5, 0.75, 1).

To select the final solution, we fixed the transferability
threshold at 0.1 meter.

4.4. Test cases and compared algorithms

To assess the ability of T-Resilience to cope with many differ-
ent failures, we consider the six following test cases (Fig. 7):
• A. the hexapod robot is not damaged;

• B. the left middle leg is no longer powered;

• C. the terminal part of the front right leg is shortened by
half;

• D. the right hind leg is lost;

• E. the middle right leg is lost;

• F. both the middle right leg and the front left leg are lost.
We compare the The T-Resilience algorithm to three repre-

sentative algorithms from the literature (see appendix D for
the exact implementations of each algorithm and appendix
E for the validation of the implementations):
• a stochastic local search (Hoos and Stützle, 2005), be-

cause of its simplicity;

• a policy gradient method inspired from Kohl and Stone
(2004), because this algorithm has been successfully ap-
plied to learn quadruped locomotion;

• a self-modeling process inspired from Bongard et al.
(2006).

To make the comparisons as fair as possible, we de-
signed our experiments to compare algorithms after the
same amount of running time or after the same number of
real tests (see appendix F for their median durations and
their median numbers of real tests). In all the test cases, the T-
Resilience algorithm required about 19 minutes and 25 tests
on the robot (1000 generations of 100 individuals). Conse-
quently, two key values are recorded for each algorithm (see
Appendix D for exact procedures):
• the performance of the best controller obtained after

about 25 real tests7;

• the performance of the best controller obtained after
about 19 minutes.

The experiments for the four first cases (A, B, C and D)
showed that only the stochastic local search is competitive
with the T-Resilience. To keep experimental time reasonable,
we therefore chose to only compare T-Resilience with the lo-
cal search algorithm for the two last failures (E and F).

Preliminary experiments with each algorithm showed that
initializing them with the parameters of the reference con-
troller did not improve their performance. We interpret these
preliminary experiments as indicating that the robot needs
to use a qualitatively different gait, which requires substan-
tial changes in the parameters. This observation is consistent
with the gaits we tried to design for the damaged robot. As
a consequence, we chose to initialize each of the compared
algorithms with random parameters instead of initializing
them with the parameters of the reference controller. By thus
starting with random parameters, we do not rely on any a
priori about the gaits for the damaged robot: we start with
the assumption that anything could have happened.

We replicate each experiment 5 times to obtain statistics.
Overall, this comparison requires the evaluation of about
4000 different controllers on the real robot.

We use 4 Intel(R) Xeon(R) CPU E31230 3.20GHz, each of
them including 4 cores. Each algorithm is programmed in
the Sferesv2 framework (Mouret and Doncieux, 2010) and the
source-code is available as extension 10. The MOEA used
in Bongard’s algorithm and in the T-Resilience algorithm is
distributed on 16 cores using MPI.

Final performance values are recorded with a CODA cx1
motion capture system (Charnwood Dynamics Ltd, UK) so
that reported results do not depend on inaccuracies of the
internal measurements. However, all the tested algorithms
have only access to the internal measurements.

4.5. Using predefined controllers

One of the main strength of the T-Resilience algorithm is that
it does not rely on any assumption about the failure. Never-
theless, the number of potential failures on a hexapod robot
may appear quite limited: either one leg is unusable or two
legs are unusable (if more legs are broken, then the robot is
most probably unable to walk). For each of these 21 potential
failures, a specific gait can be designed in the lab, and these
behaviors may be sufficient to cope with any failure. The re-
covery process then consists in testing 22 controllers (these
21 controllers and the reference one) and using the best per-
forming one.

To show that our algorithm is able to handle more diverse
situations than this simple process, we consider an experi-

7Depending on the algorithm, it is sometimes impossible to perform ex-
actly 25 tests (for instance, if two tests are performed for each iteration).

10

T-Resilience
22 predefined controllers

Pre
-da

ma
ge

Pos
t-d

am
ag

e
Using predefined controllers Using T-Resilience

damage

No procedure
before damage

Covered distance Covered distance

...

Figure 8: Using 22 predefined controllers is an alternative
to learning new gaits. When the robot under-
goes damages, all of these controllers are tested on
the robot and the best performing one is selected.
In the proposed experiment, we compare the effi-
ciency of using these predefined controllers (left)
with the direct application of the T-Resilience algo-
rithm (right) in the following case: the two middle
legs of the robot are blocked in their initial position.

ment in which the two middle legs of the robot are blocked
in their initial position (Figure 8). This failure can easily
happen when a wire is deficient in a data bus. Although
this failure is not specifically anticipated by the described re-
covery process, the controller designed for a robot without
the two middle legs might perform well. The 20 other con-
trollers are most probably irrelevant to cope with this specific
damage. Since designing 20 high-performing controllers is a
very time-consuming process that is out of the scope of the
present article, we ignore them in this experiment.

We use an evolutionary learning algorithm to synthesize
the controller for the case of the two middle legs lost, so that
this controller is not biased against the tested failure. To ob-
tain controllers that work on the robot, we exploit the trans-
ferability approach (Koos et al., 2012; Mouret et al., 2012)
with the accurate self-model (i.e. without the two middle
legs). Because this optimization process is stochastic, we
replicate it 10 times and obtain 10 optimized walking con-
trollers. We then evaluate each optimized controller on the
robot with the two blocked legs, and we record the covered
distance. We compare the result to the direct application of
the T-Resilience algorithm on the robot with two blocked
middle legs (Figure 8). The T-Resilience experiments are
replicated 10 times, each one with 25 real tests on the robot.

For completness, the reference controller is also tested on
the robot with two blocked middle legs.

5. Results

5.1. Reference controller

Table 2 reports the performances of the reference controller
for each tested failure, measured with both the CODA scan-
ner and the on-board SLAM algorithm. At best, the dam-
aged robot covered 35% of the distance covered by the un-
damaged robot (0.78 m with the undamaged robot, at best
0.26 m after a failure). In cases B, C and E, the robot also

Test cases A B C D E F
Perf. (CODA) 0.78 0.26 0.25 0.00 0.15 0.10
Perf. (SLAM) 0.75 0.17 0.26 0.00 0.04 0.16

Table 2: Performances in meters obtained on the robot with
the reference gait in all the considered test cases.
Each test lasts 3 seconds. The CODA line corre-
sponds to the distance covered by the robot accord-
ing to the external motion capture system. The
SLAM line corresponds to the performance of the
same behaviors but reported by the SLAM algo-
rithm. When internal measures are used (SLAM
line), the robot can easily detects that a damage oc-
curred because the difference in performance is very
significant (column A versus the other columns).

performs about a quarter turn (Figure 9 (a), (b) and (e)); in
case D, it falls over; in case F, it alternates forward locomo-
tion and backward locomotion (figure 9 (f)). Videos of these
behaviors are available in appendix A.

This performance loss of the reference controller clearly
shows that an adaptation algorithm is required to allow the
robot to pursue its mission. Although not perfect, the dis-
tances reported by the on-board RGB-D SLAM are suffi-
ciently accurate to easily detect when the adaptation algo-
rithm must be launched.

5.2. Comparison of performances

Fig. 10 shows the performance obtained for all test cases and
all the investigated algorithms. Table 3 reports the improve-
ments between median performance values. P-values are
computed with the Wilcoxon rank-sum tests (appendix G).
The horizontal lines in Figure 10 show the efficiency of the
reference gait in each case.

The trajectories corresponding to controllers with median
performance values obtained with the T-Resilience are de-
picted on figure 9. Videos of the typical behaviors obtained
with the T-Resilience on every test case are available in ex-
tension (Extensions 1 to 9).

Performance with the undamaged robot (case A). When
the robot is not damaged, the T-Resilience algorithm discov-
ered controllers with the same level of performance than the
reference hexapod gait (p-value = 1). The obtained con-
trollers are from 2.5 to 19 times more efficient than controllers
obtained with other algorithms (Table 3).

The poor performance of the other algorithms may appear
surprising at first sight. Local search is mostly impaired by
the very low number of tests that are allowed on the robot,
as suggested by the better performance of the “time” variant
(20 minutes / 50 tests) versus the “tests” variant (10 min-
utes / 25 tests). Surprisingly, we did not observe any signif-
icant difference when we initialized the control parameters
with those of the reference controller (data not shown). The
policy gradient method suffers even more than local search
from the low number of tests because a lot of tests are re-
quired to estimate the gradient. As a consequence, we were
able to perform only 2 to 4 iterations of the algorithm. Over-
all, these results are consistent with those of the literature
because previous experiments used longer experiments and
often simpler systems. Similar observations have been re-
ported previously by other authors (Yosinski et al., 2011).

11

−200

0

200

400

0 200 400 600 800
Forward displacement (mm)

La
te

ra
l d

is
pl

ac
em

en
t (

m
m

)

(a) Undamaged hexapod robot (case A).

−200

0

200

400

0 200 400 600 800
Forward displacement (mm)

La
te

ra
l d

is
pl

ac
em

en
t (

m
m

)

(b) Middle left leg not powered (case B).

−200

0

200

400

0 200 400 600 800
Forward displacement (mm)

La
te

ra
l d

is
pl

ac
em

en
t (

m
m

)

(c) Front right leg shortened by half (case C).

−200

0

200

400

0 200 400 600 800
Forward displacement (mm)

La
te

ra
l d

is
pl

ac
em

en
t (

m
m

)

(d) Hind right leg lost (case D).

−200

0

200

400

0 200 400 600 800
Forward displacement (mm)

La
te

ra
l d

is
pl

ac
em

en
t (

m
m

)

(e) Middle right leg lost (case E).

−200

0

200

400

0 200 400 600 800
Forward displacement (mm)

La
te

ra
l d

is
pl

ac
em

en
t (

m
m

)

(f) Middle right leg and front left leg lost (case F).

Figure 9: Typical trajectories (median performance) observed in every test case. Dashed line: reference gait. Solid line: con-
troller with median performance value found by the T-Resilience algorithm. The poor performance of the reference
controllers after any of the damages shows that adaptation is required in these situations. The trajectories obtained
with the T-Resilience algorithm are not perfectly straight because our objective function does not explicitly reward
straightness (see sections 4.3 and 5.2).

12

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

●

●

● ●

●

●

tests
tim

e
tests

tim
e

tests
tim

e

 Local search Policy search Self−modeling T−Resilience

F
or

w
ar

d
di

sp
la

ce
m

en
t (

m
.)

(a) Undamaged hexapod robot (case A).

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

●

●

tests
tim

e
tests

tim
e

tests
tim

e

 Local search Policy search Self−modeling T−Resilience

F
or

w
ar

d
di

sp
la

ce
m

en
t (

m
.)

(b) Middle left leg not powered (case B).

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

●

●
●

tests
tim

e
tests

tim
e

tests
tim

e

 Local search Policy search Self−modeling T−Resilience

F
or

w
ar

d
di

sp
la

ce
m

en
t (

m
.)

(c) Front right leg shortened by half (case C).

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

●

●

tests
tim

e
tests

tim
e

tests
tim

e

 Local search Policy search Self−modeling T−Resilience

F
or

w
ar

d
di

sp
la

ce
m

en
t (

m
.)

(d) Hind right leg lost (case D).

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

●

●

T−Resilience
Local search

tests
Local search

time

F
or

w
ar

d
di

sp
la

ce
m

en
t (

m
.)

(e) Middle right leg lost (case E).

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

●

T−Resilience
Local search

tests
Local search

time

F
or

w
ar

d
di

sp
la

ce
m

en
t (

m
.)

(f) Middle right leg and front left leg lost (case F).

Figure 10: Performances obtained in each test cases (distance covered in 3 seconds). On each box, the central mark is the
median, the edges of the box are the lower hinge (defined as the 25th percentile) and the upper hinge (the 75th
percentile). The whiskers extend to the most extreme data point which is no more than 1.5 times the length of
the box away from the box. Each algorithm has been run 5 times and distances are measured using the external
motion capture system. Except for the T-Resilience, the performance of the controllers found after about 25
transfers (tests) and after about 20 minutes (time) are depicted (all T-Resilience experiments last about 20 minutes
and use 25 transfers). The horizontal lines denote the performances of the reference gait, according to the CODA
scanner (dashed line) and according to the SLAM algorithm (solid line).

13

Local search Policy search Self-modeling
reference gait

tests time tests time time tests
A 4.5 2.5 3.3 4.5 6.3 19.0 1.0
B 2.3 2.2 2.3 2.3 +++ 3.2 2.3
C 2.8 1.7 2.8 2.8 +++ +++ 1.8
D 1.4 1.1 2.1 3.0 +++ +++ +++
E 3.4 2.8 4.3
F 1.7 1.3 4.5

global median 2.8 2.0 2.6 2.9 +++ +++ 3.3

(a) Ratios between median performance values.

Local search Policy search Self-modeling
reference gait

tests time tests time time tests
A +59 +45 +53 +59 +64 +72 - 2
B +34 +33 +34 +34 +63 +42 +35
C +29 +18 +29 +29 +63 +74 +20
D + 9 + 2 +16 +20 +38 +30 +30
E +46 +42 +50
F +18 +10 +35

global median +32 +26 +32 +32 +63 +57 +33

(b) Differences between median performance values (cm).

Table 3: Performance improvements of the T-Resilience compared to other algorithms. For ratios, the symbol +++ indicates
that the compared algorithm led to a negative or null median value.

Bongard’s algorithm mostly fails because of the reality gap
between the self-model and the real robot. Optimizing the
behavior only in simulation leads – as expected – to con-
trollers that perform well with the self-model but that do not
work on the real robot. This performance loss is sometimes
high because the controllers make the robot fall of over or go
backward.

Resilience performance (cases B to F). When the robot
is damaged, gaits found with the T-Resilience algorithm are
always faster than the reference gait (p-value = 0.0625, one-
sample Wilcoxon signed rank test).

After the same number of tests (variant tests of each algo-
rithm), gaits obtained with T-Resilience are at least 1.4 times
faster than those obtained with the other algorithms (median
of 3.0 times) with median performance values from 30 to 65
cm in 3 seconds. These improvements are all stastically sig-
nificant (p-values ≤ 0.016) except for the local search in the
case D (loss of a hind leg; p-value = 0.1508).

After the same running time (variant time of each al-
gorithm), gaits obtained with T-Resilience are also signifi-
cantly faster (at least 1.3 times; median of 2.8 times; p-values
≤ 0.016) than those obtained with the other algorithms in
cases B, E and F. In cases C (shortened leg) and D (loss of a
hind leg), T-Resilience is not statistically different from local
search (shortened leg: p-value = 0.1508; loss of a hind leg: p-
value = 0.5476). Nevertheless, these high p-values may stem
from the low number of replications (only 5 replications for
each algorithm). Moreover, as section 5.4 will show, the ex-
ecution time of the T-Resilience can be compressed because
a large part of the running time is spent in computer sim-
ulations. Consequently, depending on the hardware, better
performances could be achieved in smaller amounts of time.

For all the tested cases, Bongard’s self-modeling algorithm
doesn’t find any working controllers. We observed that it
suffers from two difficulties: the optimized models do not
always capture the actual morphology of the robot, and real-

ity gaps between the self-model and the reality (see the com-
ments about the undamaged robot). In the first case, more
time and more actions could improve the result. In the sec-
ond time, a better simulation model could make things better
but it is unlikely to fully remove the effect of the reality gap.

Loss of a leg (case D and E). When the hind leg is
lost (case D), the T-Resilience yields controllers that per-
form much better than the reference controller. Neverthe-
less, the performances of the controllers obtained with the T-
Resilience are not statistically different from those obtained
with the local search. This unexpected result stems from the
fact that many of the transfers made the robot tilt down (fast
six-legged behaviors optimized on the self-model of the un-
damaged robot are often unstable without one of the hind
legs): in this case, the SLAM algorithm is unreliable (the al-
gorithm often crashed) and we have to discard the distance
measurements. In effect, only a dozen of transfers are usable
in case D, making the estimation of the transferability func-
tion especially difficult. Using more transfers could accentu-
ate the difference between T-Resilience and local search.

If the robot loses a less critical leg (middle leg in case E),
it is more stable and the algorithm can conduct informative
tests on the robot. The T-Resilience is then able to find fast
gaits (about 3 times faster than with the local search).

Straightness of the trajectories. For all the damages, the
gaits found by T-Resilience do not result in trajectories that
are perfectly aligned with the x-axis (Fig. 9, deviations from
10 to 20 cm). The deviations mainly stem from the choice of
the performance function and they should not be overinter-
preted as a weakness of the T-Resilience algorithm. Indeed,
the performance function only rewards the covered distance
during 3 seconds and nothing is explicitly rewarding the
straightness of the trajectory. At first, it seems intuitive that
the fastest trajectories will necessarily be straight. However,
the fastest gaits achievable with this specific robot are un-

14

Figure 11: Comparison between the use of predefined con-
trollers and the T-Resilience algorithm (covered
distance in meters; 10 replications). (left box) per-
formances of the controllers learned on the robot
without its two central legs; (central box) perfor-
mances of the same controllers on the robot, while
the two central legs are blocked; (right box) re-
sults obtained with the T-Resilience algorithm on
the robot with the two central legs blocked. The
dashed line indicates the performances of the ref-
erence controller on the robot with the two central
legs blocked. Performances are measured with the
external CODA scanner.

known and faster gaits may be achievable if the robot is not
pointing in the arbitrarily-chosen x-direction. For instance,
the trajectory found with the undamaged robot (Fig. 9(a)) de-
viates from the x-axis, but it has the same final performance
as the reference gait, which is perfectly straight. These two
gaits cannot be distinguished by the performance function
and we have no way to know if both faster and straighter
trajectories are possible in our system. The intuition that
the straightest trajectories should be the fastest is even more
challenged for the damaged robots because the robots are not
symmetric anymore. In future work, we will investigate al-
ternative performance functions that encourage straight tra-
jectories.

Moreover, trajectories are actually mostly straight (Fig. 9
and the videos in appendix)) but they do not exactly point
to the x-direction. This direction seems to be mainly deter-
mined by the position of the robot at the beginning of the ex-
periment: at t = 0, each degree of freedom is positioned ac-
cording to the value of the control function, that is, the robot
often starts in the middle of the gait pattern; because this po-
sition is non-symmetric and sometimes unstable, we often
observed that the first step often makes the robot point in a
different direction. Once the gait is started, deviations along
one directions are compensated by symmetrical deviations
at the next step and the gaits are mostly straight.

5.3. Comparison with predefined controllers

The transferability approach found efficient controllers for
the robot without the two central legs (right box on Figure
11; median at 0.47 m). We then tested these controllers on
the robot with the two central legs blocked and we observed
a significant performance drop (central box on Fig. 11; 0.28
m vs 0.47 m; p-value = 5.4 × 10−4). Importantly, among
the ten tested controllers, one made the robot goes backward
and another one made it fall: depending on the chosen pre-
defined controller, this damage may fully prevent the robot
to move.

Facing the same damage, the T-Resilience algorithm found
significantly higher-performing controllers than the prede-
fined ones (left box on Fig. 11; 0.41 m versus 0.28 m; p-
value = 0.063). For this damage, anticipating classic fail-
ures was therefore significantly less efficient than using the
T-resilience. Adding controllers for blocked legs, would only
postpone the problem because it is probable that there exists
some other damages for which this extended set would not
be sufficient. Such an addition would also slow down the
adaptation process because each of them need to be tested
on the robot.

5.4. Comparison of durations and
experimental time

The running time of each algorithm is divided into experi-
mental time (actual experiments on the robot), sensor pro-
cessing time (computing the robot’s trajectory using RGB-D
slam) and optimization time (generating new potential solu-
tions to test on the robot). The median proportion of time
allocated to each of this part of the algorithms is pictured for
each algorithm on figure 128.

The durations of the SLAM algorithm and of the optimiza-
tion processes both only depend on the hardware specifi-
cations and can therefore be substantially reduced by us-
ing faster computers or by parallelizing computation. Only
experimental time can not easily be reduced. The median
proportion of experimental time is 29% for the T-Resilience,
whereas both the policy search and the local search leads to
median proportions higher than 40% for a similar median
duration by run (about 20 minutes). The proportion of ex-
perimental time for the self-modeling process is much lower
(median value equals to 1%) because it requires much more
time for each run (about 250 minutes for each run, in our
experiments).

The median experimental time of T-Resilience (6.3 min-
utes) is significantly lower than those of local search and of
policy search (resp. 8.5 and 10.8 minutes, p-values < 2.5 ×
10−4). With the expected increases of computational power,
this difference will increase each year. The self-modeling
process requires significantly lower experimental time (me-
dian at 3.6 minutes, p-values < 1.5 × 10−11) because it only
test actions that involve a single leg, which is faster than test-
ing a full gait (3 second).

8Only test cases A, B, C and D are considered to compute these propor-
tions (5 runs for each algorithm) because the policy search and the self-
modeling process are not tested in test cases E and F

15

0

20

40

60

80

100

Local search
~ 20 min.

Policy search
~ 25 min.

Self−modeling
~ 250 min.

T−resilience
~ 19 min.

D
is

tr
ib

ut
io

n
of

 ti
m

e
(%

)

experiments

optimization

slam

(a) Distribution of duration (median duration indicated below the graph).

4

6

8

10

12

14

Local search Policy search Self−modeling T−resilience

E
xp

er
im

en
ta

l t
im

e
(m

in
.)

(b) Experimental time (experiments with the robot).

Figure 12: Distribution of duration and experimental time for each algorithm (median values on 5 runs of test cases A, B,
C, D). All the differences between experimental times are statistically significant (p-values < 2.5 × 10−4 with
Wilcoxon rank-sum tests).

6. Conclusion and discussion

All our experiments show that T-Resilience is a fast and effi-
cient learning approach to discover new behaviors after me-
chanical and electrical damages (less than 20 minutes with
only 6 minutes of irreducible experimental time). Most of
the time, T-Resilience leads to gaits that are several times
better than those obtained with direct policy search, local
search and Bongard’s algorithm; T-Resilience never obtained
worse results. Overall, T-Resilience appears to be a versatile
algorithm for damage recovery, as demonstrated by the suc-
cessful experiments with many different types of damages.
These results validate the combination of the principles that
underly our algorithm: (1) using a self-model to transform
experimental time with the robot into computational time
inside a simulation, (2) learning a transferability function
that predicts performance differences between reality and
the self-model (instead of learning a new self-model) and, (3)
optimizing both the transferability and performance to learn
behaviors in simulation that will work well on the real robot,
even if the robot is damaged. These principles can be imple-
mented with alternative learning algorithms and alternative
regression models. Future work will identify whether better
performance can be achieved by applying the same princi-
ples with other machine learning techniques.

During our experiments, we observed that the T-
Resilience algorithm was less sensitive to the quality of the
SLAM than the other investigated learning algorithms (pol-
icy gradient and local search). Our preliminary analysis
shows that the sensitivity of these classic learning algorithms
mostly stems from the fact they optimize the SLAM mea-
surements and not the real performance. For instance, in
several of our experiments, the local search algorithm found
gaits that make the SLAM algorithm greatly over-estimate
the forward displacement of the robot. The T-Resilience al-
gorithm relies only on internal sensors as well. However,
these measures are not used to estimate the performance
but to compute the transferability values. Gaits that lead to
over-estimations of the covered distance have low transfer-
ability scores because the measurement greatly differs from
the value predicted by the self-model. As a consequence,

they are avoided like all the behaviors for which the predic-
tion of the self-model does not match the measurement. In
other words, the self-model acts as a “credibility check” of
the SLAM measurements, which makes T-Resilience espe-
cially robust to sensor inaccuracies. If sensors were redun-
dant, this credibility check could also be used by the robot to
continue its mission when a sensor is unavailable.

An obvious limitation of our current results is that it we
only investigated straight gaits, whereas mobile robots need
to travel around obstacles and change direction. To make
the robot walk in any direction, a promising approach is to
learn a collection of simple controllers, one for each direc-
tion. TBR-learning, a recently introduced algorithm, allows
the discovery of such a repertoire of controllers with a sin-
gle run of the algorithm (Cully and Mouret, 2013a,b). The
learning is essentially as fast as learning a single controller
for straight walking (Cully and Mouret, 2013a) and it has
already been successfully combined with the transferability
approach (Cully and Mouret, 2013b). Future work should in-
vestigate how TBR-learning performs with a damaged robot.

The T-Resilience algorithm is designed to perform well
with an inaccurate self-model, but the better the self-model
is, the more efficient the algorithm is. For instance, in the
case of the lost hind leg, the stability properties of the robot
were too different from those of the self-model and efficient
behaviors could hardly be found in a limited amount of time.
If the situation of the robot implies that such a strong fail-
ure can not be repaired, then the T-Resilience would benefit
from an update of the self-model. In some extreme cases,
the T-Resilience algorithm could also be unable to find any
satisfying controller and it may be mandatory to identify the
damage to pursue the mission.

More generally, an algorithm to identify the damage is a
natural complement of the T-resilience algorithm. On the
short term, the T-resilience quickly provides a good solu-
tion after a damage. When the robot has more time or when
it can benefit from external diagnoses, it can take the time
to understand the damage. For instance, we can imagine
a robot in a rescue mission. If it is damaged, it must first
go back to its base – or at least to a safe place – and the T-
resilience algorithm is designed to allow the robot to do it.

16

Once it is back to its base, it can use the equipment of the
base to diagnose the damages and find a behavior that ex-
plicitly takes the damage into account. To identify a new
self-model, the robot could also launch Bongard’s algorithm
and then use the updated model with the T-Resilience algo-
rithm – to avoid reality gaps between the model and the real
robot. The combination of T-Resilience and update of the
self-model will be addressed in future work.

Overall, learning to predict what behaviors should be
avoided is a very general concept that can be applied to
many situations in which a robot has to autonomously adapt
its behavior. On a higher level, this concept could also share
some similarities with what human do when they are in-
jured: if a movement is painful, humans do not fully un-
derstand what cause the pain, but they identify the behav-
iors that cause the pain9; once they know that some move
are painful, they learn to instinctively avoid them. Humans
seem reluctant to permanently change their self-model to re-
flect what behaviors are possible: people with an immobi-
lized leg still know how to activate their muscles, ampu-
tated people frequently report pain in their missing mem-
bers (Ramachandran and Hirstein, 1998) and dream about
themselves in their intact body (Mulder et al., 2008). Hu-
mans may therefore learn by combining their self-model
with a second model that predicts which behaviors should
be avoided, even if they are possible. This model would be
similar in essence to a transferability function.

Acknowledgements

The authors thank Jeff Clune and Stéphane Doncieux for
helpful comments and suggestions.

Funding

This work was supported by the Agence Nationale pour la
Recherche [grant number ANR-12-JS03-0009]; a “Université
Pierre et Marie Curie - Direction Générale de l’Armement”
scholarship to A. Cully; and Polytech’Paris-UPMC.

References

B. Argall, S. Chernova, M. Veloso, and B. Browning. A sur-
vey of robot learning from demonstration. Robotics and Au-
tonomous Systems, 57(5):469–483, 2009.

T. Barfoot, E. Earon, and G. D’Eleuterio. Experiments in
learning distributed control for a hexapod robot. Robotics
and Autonomous Systems, 54(10):864–872, 2006.

J. G. Bellingham and K. Rajan. Robotics in remote and hos-
tile environments. Science, 318(5853):1098–102, November
2007. ISSN 1095-9203.

D. Berenson, N. Estevez, and H. Lipson. Hardware evolu-
tion of analog circuits for in-situ robotic fault-recovery. In
Proceedings of NASA/DoD Conference on Evolvable Hardware,
pages 12–19, 2005.

9In the same way as learning a transferability function is easier than learn-
ing a new self-model, finding the cause of a pain requires a medical doc-
tor whereas a patient can usually predict whether a move will be painful.

J. Bongard. Action-selection and crossover strategies for self-
modeling machines. In Proceedings of Genetic and Evolu-
tionary Computation Conference (GECCO), pages 198–205.
ACM, 2007.

J. Bongard and H. Lipson. Nonlinear system identification
using coevolution of models and tests. IEEE Transactions
on Evolutionary Computation, 9(4):361–384, 2005.

J. Bongard, V. Zykov, and H. Lipson. Resilient machines
through continuous self-modeling. Science, 314(5802):
1118–1121, 2006.

F. Caccavale and L. Villani, editors. Fault Diagnosis and
Fault Tolerance for Mechatronic Systems: Recent Advances.
springer, 2002.

E. Cantu-Paz. Efficient and accurate parallel genetic algorithms.
Kluwer Academic Publishers Norwell, MA, USA, 2000.

C. Chang and C. Lin. Libsvm: a library for support vector
machines. ACM Transactions on Intelligent Systems and Tech-
nology (TIST), 2(3):27, 2011.

S. Chernova and M. Veloso. An evolutionary approach
to gait learning for four-legged robots. In Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), volume 3, pages 2562–2567. IEEE, 2004.

J. Clune, K. Stanley, R. Pennock, and C. Ofria. On the perfor-
mance of indirect encoding across the continuum of reg-
ularity. Evolutionary Computation, IEEE Transactions on, 15
(3):346–367, 2011.

J. Connell and S. Mahadevan. Robot learning. Springer, 1993.

F. Corbato. On Building Systems That Will Fail. ACM Turing
award lectures, 34(9):72–81, 2007.

A. Cully and J.-B. Mouret. Behavioral repertoire learning in
robotics. In Proceedings of Genetic and Evolutionary Compu-
tation Conference (GECCO), 2013a.

A. Cully and J.-B. Mouret. Learning to walk in every direc-
tion. In submitted, 2013b.

K. De Jong. Evolutionary computation: a unified approach. MIT
Press, 2006.

K. Deb. Multi-objective optimization using evolutionary algo-
rithms. John Wiley and Sons, 2001.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm: NSGA-
II. IEEE Transactions on Evolutionary Computation, 6(2):182–
197, 2002.

F. Delcomyn. The Locomotion of the Cockroach Pariplaneta
americana. Journal of Experimental Biology, 54(2):443–452,
1971.

X. Ding, Z. Wang, A. Rovetta, and J. Zhu. Locomotion analy-
sis of hexapod robot. Proceedings of Conference on Climbing
and Walking Robots (CLAWAR), pages 291–310, 2010.

S. Doncieux, J.-B. Mouret, N. Bredeche, and V. Padois. Evo-
lutionary robotics: Exploring new horizons. In New Hori-
zons in Evolutionary Robotics: Extended Contributions from
the 2009 EvoDeRob Workshop., pages 3–25. Springer, 2011.

17

F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and
W. Burgard. An evaluation of the RGB-D SLAM system. In
Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), 2012.

K. Goldberg and B. Chen. Collaborative control of robot mo-
tion: robustness to error. In Proceedings of IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS),
volume 2, pages 655–660, 2001. ISBN 0-7803-6612-3.

M. Görner and G. Hirzinger. Analysis and evaluation of the
stability of a biologically inspired, leg loss tolerant gait
for six-and eight-legged walking robots. In Proceedings of
the IEEE International Conference on Robotics and Automation
(ICRA), pages 4728–4735, 2010.

J. J. Grefenstette, A. C. Schultz, and D. E. Moriarty. Evolu-
tionary algorithms for reinforcement learning. Journal of
Artificial Intelligence Research, pages 241–276, 1999.

C. Hartland and N. Bredeche. Evolutionary robotics, an-
ticipation and the reality gap. In Robotics and Biomimet-
ics, 2006. ROBIO’06. IEEE International Conference on, pages
1640–1645. IEEE, 2006.

V. Heidrich-Meisner and C. Igel. Neuroevolution strategies
for episodic reinforcement learning. Journal of Algorithms,
64(4):152–168, October 2009.

T. Hemker, M. Stelzer, O. Von Stryk, and H. Sakamoto. Ef-
ficient walking speed optimization of a humanoid robot.
The International Journal of Robotics Research, 28(2):303–314,
2009.

M. Hoffmann, H. Marques, A. Arieta, H. Sumioka, M. Lun-
garella, and R. Pfeifer. Body Schema in Robotics: A Re-
view. IEEE Transactions on Autonomous Mental Development,
2(4):304–324, 2010.

O. Holland and R. Goodman. Robots with internal models a
route to machine consciousness? Journal of Consciousness
Studies, 10(4-5):4–5, 2003.

H. H. Hoos and T. Stützle. Stochastic local search: Foundations
and applications. Morgan Kaufmann, 2005.

G. S. Hornby, J. D. Lohn, and D. S. Linden. Computer-
automated evolution of an X-band antenna for NASA’s
Space Technology 5 mission. Evolutionary computation, 19
(1):1–23, January 2011. ISSN 1530-9304.

G. Hornby, S. Takamura, T. Yamamoto, and M. Fujita. Au-
tonomous evolution of dynamic gaits with two quadruped
robots. IEEE Transactions on Robotics, 21(3):402–410, 2005.

B. Jakimovski and E. Maehle. In situ self-reconfiguration
of hexapod robot oscar using biologically inspired ap-
proaches. Climbing and Walking Robots. InTech, 2010.

N. Jakobi, P. Husbands, and I. Harvey. Noise and the reality
gap: The use of simulation in evolutionary robotics. Pro-
ceedings of the European Conference on Artificial Life (ECAL),
pages 704–720, 1995.

S. Kajita and B. Espiau. Handbook of Robotics, chapter Legged
Robots, pages 361–389. Springer, 2008.

D. Katić and M. Vukobratović. Survey of intelligent control
techniques for humanoid robots. Journal of Intelligent &
Robotic Systems, 37(2):117–141, 2003.

H. Kimura, T. Yamashita, and S. Kobayashi. Reinforce-
ment learning of walking behavior for a four-legged robot.
In Proceedings of IEEE Conference on Decision and Control
(CDC), volume 1, pages 411–416. IEEE, 2001.

G. Klaus, K. Glette, and J. Tørresen. A comparison of sam-
pling strategies for parameter estimation of a robot simula-
tor. Simulation, Modeling, and Programming for Autonomous
Robots, pages 173–184, 2012.

J. Kober and J. Peters. Reinforcement learning in robotics:
A survey. In Reinforcement Learning: State of the Art, pages
579–610. Springer, 2012.

J. Kober and J. Peters. Imitation and Reinforcement Learning
– Practical Learning Algorithms for Motor Primitives in
Robotics. IEEE Robotics and Automation Magazine, 17(2):1–
8, 2010.

N. Kohl and P. Stone. Policy gradient reinforcement learning
for fast quadrupedal locomotion. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA),
volume 3, pages 2619–2624. IEEE, 2004.

S. Koos and J.-B. Mouret. Online discovery of locomotion
modes for wheel-legged hybrid robots: a transferability-
based approach. In Proceedings of CLAWAR, pages 70–77.
World Scientific Publishing Co., 2011.

S. Koos, J.-B. Mouret, and S. Doncieux. The transferabil-
ity approach: Crossing the reality gap in evolutionary
robotics. IEEE Transactions on Evolutionary Computation, 1:
1–25, 2012.

I. Koren and C. M. Krishna. Fault-tolerant systems. Morgan
Kaufmann, 2007.

C.-M. Lin and C.-H. Chen. Robust fault-tolerant control for a
biped robot using a recurrent cerebellar model articulation
controller. Systems, Man, and Cybernetics, Part B: Cybernet-
ics, 37(1):110–123, 2007.

S. Mahdavi and P. Bentley. An evolutionary approach to
damage recovery of robot motion with muscles. Advances
in Artificial Life, pages 248–255, 2003.

S. Mahdavi and P. Bentley. Innately adaptive robotics
through embodied evolution. Autonomous Robots, 20(2):
149–163, 2006.

T. Metzinger. Being no one: The self-model theory of subjectivity.
MIT Press, 2004.

T. Metzinger. Self models. Scholarpedia, 2(10):4174, 2007.

G. E. Moore. Progress in digital integrated electronics. In
International Electron Devices Meeting, volume 21, pages 11–
13. IEEE, 1975.

K. Mostafa, C. Tsai, and I. Her. Alternative gaits for multiped
robots with leg failures to retain maneuverability. Interna-
tional Journal of Advanced Robotic Systems, 7(4):31, 2010.

J.-B. Mouret and S. Doncieux. Sferes v2: Evolvin’ in the
Multi-Core World. In Proceedings of IEEE Congress on Evo-
lutionary Computation (CEC), pages 4079–4086, 2010.

J.-B. Mouret and S. Doncieux. Encouraging behavioral di-
versity in evolutionary robotics: an empirical study. Evo-
lutionary Computation, 20(1):91–133, January 2012.

18

J.-B. Mouret, S. Koos, and S. Doncieux. Crossing the reality
gap: a short introduction to the transferability approach.
In Proceedings of ALIFE’s workshop ”Evolution in Physical
Systems”, pages 1–7, 2012.

T. Mulder, J. Hochstenbach, P. Dijkstra, and J. Geertzen. Born
to adapt, but not in your dreams. Consciousness and cogni-
tion, 17(4):1266–71, 2008.

Y. Nakamura, T. Mori, M. Sato, and S. Ishii. Reinforce-
ment learning for a biped robot based on a cpg-actor-critic
method. Neural Networks, 20(6):723–735, 2007.

A. Nelson, G. Barlow, and L. Doitsidis. Fitness functions in
evolutionary robotics: A survey and analysis. Robotics and
Autonomous Systems, 57(4):345–370, 2009.

D. Nguyen-Tuong and J. Peters. Model Learning for Robot
Control : A Survey. Cognitive Processing, 12(4):319–340,
2011.

M. Palmer, D. Miller, and T. Blackwell. An Evolved Neural
Controller for Bipedal Walking: Transitioning from Simu-
lator to Hardware. In Proceedings of IROS’ workshop on Ex-
ploring new horizons in Evolutionary Design of Robots, 2009.

G. Parker. Punctuated anytime learning to evolve robot con-
trol for area coverage. Design and Control of Intelligent
Robotic Systems, pages 255–277, 2009.

J. Peters. Policy gradient methods. Scholarpedia, 5(10):3698,
2010.

J. Peters and S. Schaal. Reinforcement learning of motor
skills with policy gradients. Neural Networks, 21(4):682–
697, 2008.

E. Prassler and K. Kosuge. Handbook of Robotics, chapter Do-
mestic Robotics, pages 1253–1281. Springer, 2008.

C. Pretorius, M. du Plessis, and C. Cilliers. Simulating
robots without conventional physics: A neural network
approach. Journal of Intelligent & Robotic Systems, pages
1–30, 2012.

Z. Qu, C. M. Ihlefeld, Y. Jin, and A. Saengdeejing. Robust
fault-tolerant self-recovering control of nonlinear uncer-
tain systems. Automatica, 39(10):1763–1771, 2003.

M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng. ROS: an open-source robot op-
erating system. In Proceedings of ICRA’s workshop on Open
Source Software, 2009.

V. Ramachandran and W. Hirstein. The perception of phan-
tom limbs. Brain, 121(9):1603–1630, 1998.

U. Saranli, M. Buehler, and D. Koditschek. Rhex: A simple
and highly mobile hexapod robot. The International Journal
of Robotics Research, 20(7):616–631, 2001.

G. Schleyer and A. Russell. Adaptable gait generation for
autotomised legged robots. In Proceedings of Australasian
Conference on Robotics and Automation (ACRA), 2010.

J. Schmitz, J. Dean, T. Kindermann, M. Schumm, and
H. Cruse. A biologically inspired controller for hexapod
walking: simple solutions by exploiting physical proper-
ties. The biological bulletin, 200(2):195–200, 2001.

A. Smola and V. Vapnik. Support vector regression ma-
chines. Advances in neural information processing systems,
9:155–161, 1997.

A. Smola and B. Schölkopf. A tutorial on support vector re-
gression. Statistics and computing, 14(3):199–222, 2004.

A. Sproewitz, R. Moeckel, J. Maye, and A. Ijspeert. Learning
to move in modular robots using central pattern genera-
tors and online optimization. The International Journal of
Robotics Research, 27(3-4):423–443, 2008.

S. Steingrube, M. Timme, F. Wörgötter, and P. Manoonpong.
Self-organized adaptation of a simple neural circuit en-
ables complex robot behaviour. Nature Physics, 6(3):224–
230, 2010.

J. Sturm, C. Plagemann, and W. Burgard. Adaptive body
scheme models for robust robotic manipulation. In
Robotics: Science and Systems, 2008.

R. S. Sutton and A. G. Barto. Introduction to Reinforcement
Learning. MIT Press, 1998.

R. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy
gradient methods for reinforcement learning with func-
tion approximation. Advances in neural information process-
ing systems, 12(22), 2000.

R. Tedrake, T. Zhang, and H. Seung. Learning to walk in
20 minutes. In Proceedings of Yale workshop on Adaptive and
Learning Systems, 2005.

A. Toffolo and E. Benini. Genetic diversity as an objective
in multi-objective evolutionary algorithms. Evolutionary
Computation, 11(2):151–167, 2003.

J. Togelius, T. Schaul, D. Wierstra, C. Igel, and J. Schmidhu-
ber. Ontogenetic and phylogenetic reinforcement learning.
Kuenstliche Intelligenz, pages 30–33, 2009.

A. M. Turing. Computing machinery and intelligence. Mind,
59(236):433–460, 1950.

M. Visinsky, J. Cavallaro, and I. Walker. Robotic fault detec-
tion and fault tolerance: A survey. Reliability Engineering
& System Safety, 46(2):139–158, January 1994.

K. Vogeley, M. Kurthen, P. Falkai, and W. Maier. Essential
functions of the human self model are implemented in the
prefrontal cortex. Consciousness and cognition, 8(3):343–63,
1999.

J. Weingarten, G. Lopes, M. Buehler, R. Groff, and
D. Koditschek. Automated gait adaptation for legged
robots. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), volume 3, pages 2153–
2158, 2004.

S. Whiteson. Evolutionary computation for reinforcement
learning. In Reinforcement Learning: State of the Art, pages
326–355. Springer, 2012.

D. Wilson. Insect walking. Annual Review of Entomology, 11
(1):103–122, 1966.

J. Yosinski, J. Clune, D. Hidalgo, S. Nguyen, J. Zagal, and
H. Lipson. Evolving Robot Gaits in Hardware: the Hy-
perNEAT Generative Encoding Vs. Parameter Optimiza-
tion. Proceedings of the European Conference on Artificial Life
(ECAL), pages 1–8, 2011.

19

J. Zagal, J. Ruiz-del Solar, and P. Vallejos. Back to reality:
Crossing the reality gap in evolutionary robotics. In Pro-
ceedings of IFAC Symposium on Intelligent Autonomous Vehi-
cles (IAV), 2004.

J. Zagal, J. Delpiano, and J. Ruiz-del Solar. Self-modeling in
humanoid soccer robots. Robotics and Autonomous Systems,
57(8):819–827, 2009.

V. Zykov. Morphological and behavioral resilience against phys-
ical damage for robotic systems. PhD thesis, Cornell Univer-
sity, 2008.

V. Zykov, J. Bongard, and H. Lipson. Evolving dynamic gaits
on a physical robot. In Proceedings of Genetic and Evolution-
ary Computation Conference, Late Breaking Paper (GECCO),
volume 4, 2004.

20

Figure 13: The stochastic multi-objective optimization algorithm NSGA-II (Deb et al., 2002). Starting with a population of
N randomly generated individuals, an offspring population of N new candidate solutions is generated using
the best candidate solutions of the current population. The union of the offspring and the current population is
then ranked according to Pareto dominance (here represented by having solutions in different ranks connected
by lines labeled L1, L2, etc.) and the best N candidate solutions form the next generation.

A. Index to Multimedia Extensions

Extension Media type Description
1 Video Illustration of the algorithm (case C: front leg shortened)
2 Video For each investigated damage: reference controller, median result of T-resilience,

and best result of T-resilience
3 Video A full T-Resilience run (25 tests, accelerated 2.5 times) in case B (unpowered leg)
4 Video A full T-Resilience run (25 tests, accelerated 2.5 times) in case F (both middle and hind legs lost)
5 Code Source code (C++) for all the experiments

B. NSGA-II

Figure 13 describes the main principle of the NSGA-II algorithm (Deb et al., 2002).

C. Reference controller

Table 4 shows the parameters used for the reference controller (section 4.1). The amplitude orientation parameters (αi
1) are

set to 1 to produce a gait as fast as possible, while the amplitude elevation parameters (αi
2) are set to a small value (0.25)

to keep the gait stable. The phase elevation parameters (φi
2) define two tripods: 0.25 for legs 0-2-4; 0.75 for legs 1-3-5. To

achieve a cyclic motion of the leg, the phase orientation values (φi
1) are chosen by subtracting 0.25 to the phase elevation

values (φi
2), plus a 0.5 shift for legs 3-4-5 that are on the left side of the robot.

Leg number 0 1 2 3 4 5

Orientation
αi
1 1.00 1.00 1.00 1.00 1.00 1.00

φi
1 0.00 0.50 0.00 0.00 0.50 0.00

Elevation
αi
2 0.25 0.25 0.25 0.25 0.25 0.25

φi
2 0.25 0.75 0.25 0.75 0.25 0.75

Table 4: Parameters of the reference controller.

D. Implementation details

D.1. Local search

Our implementation of the local search (algorithm 2) starts from a randomly generated initial controller. A random per-
turbation c′ is derived from the current best controller c. The controller c′ is next tested on the robot for 3 seconds and the
corresponding performance value Freal(c

′) is estimated with a SLAM algorithm using the RGB-D camera. If c′ performs
better than c, c is replaced by c′, else c is kept.

For both the stochastic local search and the policy gradient method (section D.2), a random perturbation c′ from a con-
troller c is obtained as follows:
• each parameter c′j is obtained by adding to cj a random deviation δj , uniformely picked up in {−0.25, 0, 0.25};

21

• if c′j is greater (resp. lower) than 1 (resp. 0), it takes the value 1 (resp. 0).

The process is iterated during 20 minutes to match the median duration of the T-Resilience (Table 5; variant time). For
comparison, the best controller found after 25 real tests is also kept (variant tests).

Algorithm 2 Stochastic local search (T real tests)

c← random controller

for i = 1→ T do
c′ ← random perturbation of c
if Freal(c

′) > Freal(c) then
c← c′

end if
end for

new controller: c

D.2. Policy gradient method

Our implementation of the policy gradient method is based on Kohl and Stone (2004) (algorithm 3). It starts from a randomly
generated controller c. At each iteration, 15 random perturbations c′i from this controller are tested for 3 seconds on the
robot and their performance values are estimated with the SLAM algorithm, using the RGB-D camera. The number of
random perturbations (15) is the same as in (Kohl and Stone, 2004), in which only 12 parameters have to be found. For
each control parameter j, the average performance A+,j (resp. A or A−,j) of the controllers whose parameter value c′ij is
greater than (resp. equal to or less than) the value of cj is computed. If A is not greater than both A+,j and A−,j , the control
parameter cj is modified as follows:

• cj is increased by 0.25, if A+,j > A−,j and cj < 1;

• cj is decreased by 0.25, if A−,j > A+,j and cj > 0.

Once all the control parameters have been updated, the newly generated controller c is used to start a new iteration of the
algorithm.

The whole process is iterated 4 times (i.e. 60 real tests; variant tests) with a median duration of 24 minutes to match the
median duration of the T-Resilience (Table 5). For comparison, the best controller found after 2 iterations (i.e. 30 real tests;
variant time) is also kept.

Algorithm 3 Policy gradient method (T × S real tests)

c← random controller

for i = 1→ T do
{c′1, c′2, . . . , c′S} ← S random perturbations of c
for j = 1→ S do
A0 ,j = average of Freal(c

′i) for c′i such as c′ij = cj
A+,j = average of Freal(c

′i) for c′i such as c′ij > cj
A−,j = average of Freal(c

′i) for c′i such as c′ij < cj
if A0,j > max(A+,j , A−,j) then

cj remains unchanged
else

if A+,j > A−,j then
cj = min(cj + 0.25, 1)

else
cj = max(cj − 0.25, 0)

end if
end if

end for
end for

new controller: c

D.3. Self-modeling process (Bongard’s algorithm)

Our implementation of the self-modeling process is based on Bongard et al. (2006) (algorithm 4). Unlike the implementa-
tion of Bongard et al. (2006), we use internal measurements to assess the consequences of actions. This measure is performed
with a 3-axis accelerometer (ADXL345) placed at the center of the robot, thus allowing the robot to measure its orientation.

22

Algorithm 4 Self-modeling approach (T real tests)

popmodel ← {m
1,m2, . . . ,mSmodel} (randomly generated or not)

empty training set of actions Ω

for i = 1→ T do
selection of the action which maximises variance of predictions in popmodel

execution of the action on the robot
recording of robot’s orientation based on internal measurements (accelerometer) (1) Self-modeling
addition of the action to the training set Ω
Nmodel iterations of MOEA on popmodel evaluated on Ω

end for

selection of the new self-model
popctrl ← {c

1, c2, . . . , cSctrl} (randomly generated)

Nctrl iterations of MOEA on popctrl in the self-model (2) Optimization of controllers

selection of the new controller in the Pareto front

Top view Front view

(1)

(2)

(a)

(b)

(c)

π/6

-π/6

-2π/3
π/6

π/6

Figure 14: The six possible actions of a leg that can be tested on the robot: (1,a), (2, a), (1,b), (2, b), (1,c), (2, c).

Robot’s model. The self-model of the robot is a dynamic simulation of the hexapod built with the Open Dynamics Engine
(ODE); it is the same model as the one used for T-Resilience experiments. However this self-model is parametrized in order
to discover some damages or morphological modifications. For each leg of the robot, the algorithm has to find optimal
values for 5 parameters:

• length of middle part of the leg (float)

• length of the terminal part of the leg (float)

• activation of the first actuator (boolean)

• activation of the second actuator (boolean)

• activation of the last actuator (boolean)

The length parameters have 6 different values: {0, 0.5, 0.75, 1, 1.25, 1.5}, which represents a scale factor with respect to
the original size. If the length parameter of one part is zero, the part is deleted in the simulation and all other parts only
attached to it are deleted too. We therefore have a model with 30 parameters.

Action set. As advised by Bongard (2007) (variant II), we use a set of actions where each action uses only one leg. The
first servo has 2 possible positions (1,2): −π/6 and π/6. For each of these two positions, we have 3 possible actions (a,b,c) as
shown on Figure 14. There are consequently 6 possible actions for each leg, that is, 36 actions in total.

Parameters. A population of 36 models is evolved during 2000 generations. The initial population is randomly generated
for the initial learning scenario. For other scenarios, the population is initialized with the self-model of the undamaged
robot. A new action is tested every 80 generations, which leads to a total of 25 actions tested on the real robot. Applying a
new action on the robot implies making an additional simulation for each model at each generation, leading to arithmetic
progression of the number of simulation needed per generation. Moreover, 36× 36 additional simulations are needed each
time a new action has to be selected and transferred (the whole action set applied to the whole population). In total, about
one million simulations have been done per run ((25× 26/2)× 36× 80 + 36× 36× 25 = 968400).

The self-modeling process is iterated 25 times (i.e. 25 real tests; variant tests) before the optimization of controllers occurs,
which leads to a median duration of 250 minutes on overall. (Table 5). For comparison, the best controller optimized with
the self-model obtained after 25 minutes of self-modeling is also kept (i.e. after 11 real tests; variant time).

23

Evaluations (x 10 000)
For

wa
rd

dis
pla

cem
en

t (m
.)

0 1 2 3 4 5 6 7 8 9 10
-0.2

0

0.2

0.4

0.6

0.8

Evaluations (x 10 000)
For

wa
rd

dis
pla

cem
en

t (m
.)

0 1 2 3 4 5 6 7 8 9 10
-0.2

0

0.2

0.4

0.6

0.8

Evaluations0 50 100
-0.2

0

0.2

0.4

0.6

0.8

Evaluations0 50 100
-0.2

0

0.2

0.4

0.6

0.8

(a) Local search.

Evaluations (x 10 000)

For
wa

rd
dis

pla
cem

en
t (m

.)

0 1 2 3 4 5 6 7 8 9 10
-0.2

0

0.2

0.4

0.6

0.8

Evaluations (x 10 000)

For
wa

rd
dis

pla
cem

en
t (m

.)

0 1 2 3 4 5 6 7 8 9 10
-0.2

0

0.2

0.4

0.6

0.8

Evaluations0 50 100
-0.2

0

0.2

0.4

0.6

0.8

Evaluations0 50 100
-0.2

0

0.2

0.4

0.6

0.8

(b) Policy search.

Figure 15: Performances obtained with the local search (a) and the policy search (b) in simulation (40 runs; 105 evaluations).
Thick black curves depict median performance values, dark areas are delimited by first and third quartiles and
light areas by lower and upper bounds. Horizontal dashed lines depict the performance of the reference controller
in simulation. Figures on the right show the progression of performance values during the first 100 evaluations.
Median number of evaluations used in our experiments on the robot for the tests and the time variants are
respectively depicted by vertical dashed lines and vertical solid lines. Local search and policy gradient search are
both able to find good controllers, provided that they are executed during enough iterations.

E. Validation of the implementations

To ensure that the observed poor performances are not caused by an implementation error, the local search and the policy
search have been tested in simulation with higher numbers of evaluations. Each algorithm has been executed 40 times with
105 evaluations on the simulated hexapod robot, which is used as a self-model with the T-Resilience algorithm. Results are
depicted on Figure 15.

These experiments in simulation demonstrate that the small number of evaluations is the cause of the poor performances
of these two algorithms in our experiments (cases A to E). Walking controllers are achieved after about 1, 000 evaluations
(median performance greater than 0.4 m). After 2 × 104 evaluations, both algorithms converge to behaviors with good
performances (figure 15; median performances 0.66 m for local search and 0.50 m for policy search). These performances
have to be balanced with the high number of required evaluations that is most of the time not feasible with a real robot and
not compatible with our damage recovery problem. In our experiments with the real robot (section 4), we only performed
between 25 and 60 evaluations, which is not enough for the algorithms to find efficient controllers, even in simulation
(figure 15; median performances 0.23 m after 25 evaluations and 0.30 m after 50 evaluations for local search; 0.06 m after 30
evaluations and 0.13 m after 60 evaluations for policy search).

These results indicate that the poor performances observed with both algorithms in our experiments (cases A to E) are
mainly caused by low numbers of evaluations performed on the robot.

24

F. Median durations and number of tests

Algorithms
Median duration Median number

(min.) of real tests
Local search 20 (10) 50 (25)
Policy search 25 (13) 60 (30)
T-Resilience 19 (19) 25 (25)

Self-modeling 25 (250) 11 (25)

Table 5: Median duration and median number of real tests on the robot during a full run for each algorithm, for the “time”
variant. Number in parenthesis correspond to the “tests” variant.

G. Statistical tests

Local search Policy search Self-modeling
Ref.

tests time tests time time tests
A 0.008 0.008 0.008 0.008 0.008 0.008 1.000
B 0.008 0.016 0.016 0.016 0.008 0.008 0.063
C 0.016 0.151 0.008 0.008 0.008 0.008 0.063
D 0.151 0.548 0.016 0.087 0.063 0.008 0.063
E 0.008 0.008 0.063
F 0.008 0.063 0.063

Table 6: Statistical significance when comparing performances between the T-Resilience and the other algorithms (Ref. cor-
responds to the reference gait). P-values are computed with Wilcoxon rank-sum tests.

25

