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78216, San Luis Potośı, Mexico (e-mail: azavala@ipicyt.edu.mx)

Abstract: This paper concerns the leader-follower multiple agent formation with nonlinear
and coupled individual dynamics. We address the problem of multi-agent formation control by
proposing a decentralized control strategy. The agents in the formation are quad-rotors UAVs.
By attributing the high-order nonlinear and unmodelled dynamics as uncertainties, we propose
a switching singular system model to represent the formation of the multiple UAVs system with
switching topology. For stabilizing the system with uncertainties, the decentralized controllers
are designed by using Lyapunov design and redesign. The simulation results illustrate the stated
problems and verify the proposed theorem.
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1. INTRODUCTION

The research on Multi-Agent Systems (MAS) has at-
tracted an increasing attention over the last few years
because of the applications on formation control, dis-
tributed sensor network, flocking, distributed computation
and synchronization of coupled chaotic oscillators, see You
et al. (2013). In particular, numerous extensions to the
consensus protocol for multi-robots have been proposed,
such as the works of Porfiri et al. (2007), Ni and Cheng
(2010), and Li et al. (2013). These researches are moti-
vated by the widespread applications, such as cooperative
searching, scheduling of automated highway systems, air
traffic control, terrain and utilities inspection, disaster
monitoring, environmental surveillance, rescue and plane-
tary exploration.

In the past few years, there have been numerous results
concerning the cooperative control of the simple linear
(first-order or second-order) multi-agent systems, such as
Porfiri et al. (2007), Vela et al. (2008), Qu et al. (2008), Ni
and Cheng (2010), Wang and Hu (2010), Guo et al. (2011),
and Cao et al. (2012). Most of the researchers propose
their ideas with the assumption that the model of agent is
linear or simplified. In practice, the dynamics of the agents
are usually nonlinear. Under this circumstance, the agents
may not achieve consensus in the presence of disturbance
sometimes.
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The consensus problem has been studied in many papers.
A different dynamics between the leader and the followers
has been considered by Hong et al. (2006), where the track-
ing problem without detecting the velocity of the leader
has been solved. Ni and Cheng (2010) used the Riccati and
Lyapunov inequalities to design the controller for a group
with switched topology. They have found that the multi-
agents system is stable if the graph is jointly connected.
Notarstefano et al. (2011) have studied the group with a
stationary leader in the case of communication connecting
intermittently. Cao et al. (2012) focus on the group with
a directed graph, which is strong connected. They also
discussed the observability of the tracking errors between
the leader and the followers.

In this paper, the problem of consensus is also discussed,
but the distinction is that the model of each agent in the
group is nonlinear and coupled. The unmodeled dynamics
are considered in the controller design. We introduce our
leader-follower formation with quad-rotors UAVs agents,
where the switching topology is taken into account. There
are several cases that cause the switching of the topology,
for instance, the changing of the neighbors, agents entering
and leaving the group, and the changing of the leaders.
Considering the property of the agents, our objective is to
develop a decentralized formation strategy by designing
the controller based on Lyapunov design and redesign,
which is mainly inspired by Memon and Khalil (2008). In
this work, the neighbors information is only needed instead
of the global information. The model of the formation is
represented by a switching system, which facilitates the
stability proof. Sometimes, the switching system may be
singular. Even we focus on the scenario of leader-follower
formation in the present work, which is traditionally



considered as a centralized formation, we devote to develop
a decentralized strategy. In this paper, the leaders are
variable and they comply with not only the reference
signal, but also the followers. Additionally, the number of
leaders is not restricted to one. These constitute our main
contribution.

2. PRELIMINARIES

2.1 Graph theory notions and some notations

A leader-follower formation group can be represented by
the directed graph G = (V, E). The vertex set V =
{1, 2, . . . , n} contains the indexes of the agents whose
collection is in future represented by S = {s1, s2, . . . , sn}.
The set S represents the collection of the agents. Let us
denote by SL ⊂ S, which contains all the leaders. The set
of followers is represented by SF satisfying Sl ∩ SF = S.
E ⊆ V × V is the edge set. The neighbors of agent si are
denoted by Ni = {j ∈ V : (i, j) ∈ E}.

2.2 Switching topology

Let us assume that there are totally m possible graphs∑
G = {G1,G2, . . . ,Gm}, which represent the communi-

cating topologies of the agents. The corresponding set of
switching time instants is σt = {t1, . . . , tk}. The formation
of the agents can be specified by one of these graphs at
each time instant. A piecewise right continuous function is
defined as follows

σ(t) : [0,∞)→ Ψ, where Ψ = {1, . . . ,m}

We call this function a switching signal which indicates
the graph currently activated. The set Ψ aggregates the
indexes of all the possible graphs.

Definition 1. The consensus for a MAS with leader-
follower formation strategy is achieved, if the following

condition is satisfied ‖ [X1 − r(t), . . . , Xn − r(t) ]
T ‖ → 0,

where Xi is the states vector of agent si, i = {1, . . . , n}.
The notation ‖ · ‖ is the 2 -norm in R2.

3. MODELING OF MULTIPLE UAVS SYSTEM

3.1 Uncertainty analysis for a single quad-rotor UAV

In most of the articles, for example, Vela et al. (2008),
Wang and Hu (2010), Guo et al. (2011), and Cao et al.
(2012), simplified agent models is used for the convenience
of controller design and stability analysis. However, in
some cases, the nonlinear influence is not negligible. Espe-
cially for the model of quad-rotor UAVs, which is nonlinear
and coupled, sometimes the assumption conditions for re-
ducing the model will not be satisfied in presence of distur-
bance or unmodeled dynamics. In this case, the consensus
algorithm always fails to work (we will illustrate it in the
section of simulation). To deal with these disadvantages,
we present in this section the accurate model for each UAV
and then, both the simplified model and the unmodeled
dynamics, which is caused by the model reduction, will be
used in the controller design and stability analysis.

The dynamics of the quad-rotors UAV is given as Bresciani
(2008)

Ẍ = (sinψ sinφ+ cosψ sin θ cosφ)
FT
m

Ÿ = (− cosψ sinφ+ sinψ sin θ cosφ)
FT
m

Z̈ = −g + (cos θ cosφ)
FT
m

ṗ =
IY Y − IZZ

IXX
qr − JTP

IXX
qΩ +

τφ
IXX

q̇ =
IZZ − IXX

IY Y
pr +

JTP
IY Y

pΩ +
τθ
IY Y

ṙ =
IXX − IY Y

IZZ
pq +

τψ
IZZ

(1)

where (X,Y, Z) are the coordinates of the UAV in the
inertial frame. φ, θ and ψ represent the Euler angles. p, q, r
are the angular velocities under the body-fixed frame, and
Ω = ω2 + ω4 − ω1 − ω3 is the overall propellers speed,
where ωi(i = 1, 2, 3, 4) is the speed of each rotor. FT is
the total thrust, τθ is the pitching torque, τφ is the rolling
torque and τψ is the yawing torque. IXX , IY Y , and IZZ
are moments of inertia corresponding to the axis of the
body-fixed frame. JTP is the rotor inertia. The attitude
rotating speed relation between the body coordinates and
the generalized coordinates can be written as follows φ̇θ̇

ψ̇

 =

[
1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ/ cos θ cosφ/ cos θ

][
p
q
r

]
(2)

Assumption 1. The altitude of each agent is slow-varying
during the formation control period.

Assumption 2. The attitude angle is less than π/2 and
the input forces or torques (thrust, pitch, roll and yaw)
are bounded.

Assumption 3. The attitude angles will be closed to zero.

Assumption 1 guarantees that the pitch angle |θ| < π
2 to

avoid the elements become infinity. From assumption 2,
the rotating matrix in (2) is invertible.

Let us denote

o(φ, θ) =

[
0 sinφ tan θ cosφ tan θ
0 cosφ− 1 − sinφ
0 sinφ/ cos θ cosφ/ cos θ − 1

]
(3)

Using (3), the time derivative of (2) yields φ̈θ̈
ψ̈

 =

[
ṗ+ qr
q̇ − pr
ṙ + pq

]
+ ∆̄R (4)

where ∆̄R has the expression as follows

∆̄R = o(φ, θ) ·

[
ṗ
q̇
ṙ

]
+ ȯ(φ, θ, φ̇, θ̇) ·

[
p
q
r

]
−

[
qr
−pr
pq

]
(5)

Therefore, the rotating dynamic using (1) and (2) is given
by



 φ̈θ̈
ψ̈

 =


τφ
IXXτθ
IY Yτψ
IZZ

+


IXX + IY Y − IZZ

IXX
qr − JTP

IXX
qΩ

IZZ − IXX − IY Y
IY Y

pr +
JTP
IY Y

pΩ

IXX − IY Y + IZZ
IZZ

pq


+∆̄R

According to assumption 1, we assume that the altitude
is stabilized and the thrust force FT is approximately a
constant. Therefore, the UAV works in a planar surface
XOY . Let us note that the uncertainty caused by as-
sumption 1 is ∆FT

. The nominal value of thrust force is
F̄T . By considering the definition of Euler angles, we can
calculate the uncertainty FT = mg

cos(θ)cos(φ) = F̄T + ∆FT
,

where F̄T = mg.

The uncertainties in translation yields

∆T =

[−θ + sinψ sinφ+ cosψ sin θ cosφ
φ− cosψ sinφ+ sinψ sin θ cosφ
−1 + cos θ cosφ

]
FT
m

+


∆FT

m
· θ

−∆FT

m
· φ

∆FT

m

 =

[
∆X

∆Y

∆Z

] (6)

By denoting ∆̄R = [∆̄φ, ∆̄θ, ∆̄ψ]T , the planar translational
dynamic can be represented as

Ẍ =
F̄T
m
· θ + ∆X

Ÿ = − F̄T
m
· φ+ ∆Y

φ̈ =
τφ
IXX

+

(
IXX + IY Y − IZZ

IXX
qr − JTP

IXX
qΩ

)
+ ∆̄φ

θ̈ =
τθ
IY Y

+

(
IZZ − IXX − IY Y

IY Y
pr +

JTP
IY Y

pΩ

)
+ ∆̄θ

ψ̈ =
IXX − IY Y + IZZ

IZZ
pq +

τψ
IZZ

+ ∆̄ψ

(7)

Since the planar dynamics in (7) have no zero dynamics
from input τφ, respectively, τθ to output, Y respectively,
X. It is possible to cancel the nonlinear dynamics by
using feedback linearization. By setting the state vector
X = [X,Y, Ẋ, Ẏ , φ, θ, ψ, φ̇, θ̇, ψ̇]T , the feedback lineariza-
tion controller can be designed as,

τφ = αφ (X ) + βφ (X )uY
τθ = αθ (X ) + βθ (X )uX
τψ = αψ (X ) + βψ (X )uψ

(8)

where βφ (X ) = − IXXm
F̄T

,βθ (X ) = IY Ym
F̄T

and βψ (X ) =

IZZ ,

αφ (X ) = −(IXX + IY Y − IZZ)θ̇ψ̇ + JTP qΩ

αθ (X ) = −(IZZ − IXX − IY Y )φ̇ψ̇ − JTP qΩ
αψ (X ) = −(IZZ + IXX − IY Y )φ̇θ̇

In the foregoing feedback linearization, the term JTP qΩ
is usually omitted in the practice, because the it is very
small. Then, the planar dynamics in (7) can be rewritten
as

Ẍ = g · θ + ∆X

Ÿ = −g · φ+ ∆Y

φ̈ = −1/g · uY + ∆φ

θ̈ = 1/g · uX + ∆θ

ψ̈ = uψ + ∆ψ

where the uncertain parts ∆φ, ∆θ, and ∆ψ are

∆φ=

(
cos θ − cos(2φ)

cos θ
qr − q2 sinφ cosφ

cos θ
+ r2 sinφ cosφ

cos θ

)
·
(
IXX + IY Y − IZZ

IXX

)
+ ∆̄φ

∆θ=

[
(1− cosφ

cos θ
)pr−2qr

sinφ cosφ tan θ

cos θ
−r2 cos2 φ tan θ

cos

−pq sinφ

cos θ
− q2 sinφ tan θ

]
·
(
IZZ − IXX − IY Y

IY Y

)
+∆̄θ

and

∆ψ =
[
pr sinφ+ r2 sinφ cosφ tan θ − q2 sinφ cosφ tan θ

+pq(1− cosφ) + qr cos(2φ) tan θ]
·(IXX − IY Y + IZZ)/IZZ + ∆̄ψ

When the attitude angles (roll, pitch) keep varying in small
range around the origin, the model uncertainties (∆X , ∆Y ,
∆φ, ∆θ, and ∆ψ) are negligible. Thus, the dynamics of
the UAV in the planar surface is decoupled into three sub-
dynamics such that the dynamics in X, Y directions and
the yaw dynamics, which is shown as follows.

(1) Dynamics in X direction

Ẍ = g · θ + ∆X

θ̈ = 1/g · uX + ∆θ
(9)

(2) Dynamics in Y direction

Ÿ = −g · φ+ ∆Y

φ̈ = −1/g · uY + ∆φ
(10)

(3) Yaw dynamics

ψ̈ = uψ + ∆ψ

In the present work, we always consider that the quad-
rotor UAVs fly with the same altitude and the yaw angles
are always stabilized at zero. As the X and Y dynamics
have the same structures, we just take the X direction to
develop our analysis.

Let us denote x = [X, Ẋ, Ẍ,X(3)]T , then the state space
expression will be

ẋ = Ax+Bδi (11)

where δi = uX + F̄T /m∆θ + ∆̈X , matrices A and B are as
follows

A =

 0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , B =

 0
0
0
1


Then, by using the feedback linearization controller (8),
the nonlinear and coupled UAV model is decoupled as
some subsystems, equation (11) is one of them.



In summary of the above analysis, we can see that

(1) The UAV system has no nontrivial zero dynamics,
the dynamics of the UAV can be reduced to a linear
system by introducing feedback linearization.

(2) The dynamics along x and y axis are decoupled owing
to feedback linearization.

(3) The pair (A,B) is in controllable canonical form.

3.2 Modeling of multiple UAVs system

Let us denote xi as the state vector of the sub-dynamics
of follower si. Note that in the following part, we say “the
state of agent si” instead of “the state vector of the sub-
dynamics of follower si in X direction” for short. All of the
relative variables are associated with the X direction.If we
use ui to replace uX in the following part, the equation
(11) can be rewritten as

ẋi = Axi +B(ui + δi) (12)

Without considering the uncertainties, we get the nominal
model of agent si from (12).

ẋi = Axi +Bui

We define two kinds of errors in our work, they are

(a) Tracking errors between agents and the reference
trajectory.

di = xi −R(t)

where R(t)T = [rX(t), ṙX(t), r̈X(t), r
(3)
X (t)] is the

reference signal, di is the error between the state
vector of agent si and the reference R(t). Let us
denote d = [dT1 , d

T
2 , . . . , d

T
n ]T , where d ∈ R4n, n is

the number of the agents in the group.
(b) Formation errors between agents and their neighbors.

ei = xi − xnbi
where ei is the error between the state vectors of agent
i and those of its neighbors. xnbi satisfies

xnbi =
∑
j∈Ni

ωijxj + µ(si)R(t)

where ωij is a weight. µ(sj) is given as follows

µ(sj) =

{
0, si ∈ SF
εi, si ∈ SL

where εi ∈ (0, 1]. Let us denote e = [eT1 , e
T
2 , . . . , e

T
n ]T ,

where e ∈ R4n.

Remark 1. According to definition 1, if the error d defined
in (a) converges to zero, the agents achieve consensus in
the X direction. Nevertheless, we can not directly design
controllers to stabilize d, because not all of the agents
are able to acquire the information of the reference. Only
leaders can acquire the information of the reference. We
can only design controllers to stabilize e.

In this paper, we use a mapping matrix to represent the
relationship between d and e. If we construct a mapping
matrix T as

T (ij) =

{
−ωij i 6= j

1 i = j
(13)

where ωij ∈ [0, 1]. For i ∈ V and |Ni| 6= 0, the elements
ωij(i, j ∈ V) satisfy

n∑
j=1

ωij =

{
1 si ∈ SF

1− εi si ∈ SL
(14)

where εi ∈ (0, 1]. Then, we have the following equation
x1 −

∑
j∈N1

ω1jxj

...

xn −
∑
j∈Nn

ωnjxj

−
 µ(sj)R(t)

...
µ(sj)R(t)

=T⊗ I4

 x1 −R(t)
...

xn −R(t)



where ⊗ represents the Kronecker product.

If we note α(T ) = T ⊗ I4, the mapping relating these two
kinds of errors yields

e = α(T )d (15)

where α(T ) ∈ R4n×4n.

From (9), by neglecting δi, the formation error dynamics
for agent si is given as follows

ėi = Aei +B

ui − ∑
j∈Ni

ωijuj

 (16)

The main idea is to represent a multi-agent systems by a
whole system. Matrix A = In ⊗ A represents the system
matrix and B = In ⊗ B is the input matrix. If we
denote ûi = ui −

∑
j∈Ni

ωijuj The input vector is UT =

[û1, . . . , ûn]. We omit these uncertainties parts temporarily
for the sake of studying the principle characteristics of the
formation, then the nominal error dynamics for the MAS
is given by

ė = Ae + BU (17)

The control input U is called the formation controller.

Substituting equation (15) into (17), the model of the
whole system with rigid formation is given by

α(T )ḋ = Aα(T )d + BU (18)

In our work, the leaders and the followers do not have
to keep a certain rigid communication structure in the
group, they are organized based on the decentralized
method, which depends on the neighbors of each agent.
The formation shape and the communication structure of
the group may be changing according to the position of
each UAV. Therefore, the system in equation (18) will be
a switched system as below

α(Tσ(t))ḋ = Aα(Tσ(t))d + BU (19)

Then (19) is the model of the multiple UAVs system with
decentralized cooperation.

Remark 2. The model of the multiple UAVs with decen-
tralized leader-follower cooperation is a switched system.

Remark 3. If the mapping matrix α(Tσ(t)) is singular, the
system will be a switched singular system.

Remark 4. If the mapping matrix is singular, the system
(19) is not regular and unstable.



In this subsection, the nominal model of the multi-UAVs
formation has been proposed in equation (19), which is a
switching system with the possibility of singular.

4. DECENTRALIZED CONTROLLER DESIGN

In this section, the decentralized controllers are designed
and the consensus conditions are given. The scenarios
is considered such that the topology is switching and
the mapping matrix may be singular. The switching in-
stants T = {t1, t2, . . . , tk, . . .} can be rewritten as T =
{T1, . . . ,Tl, . . .}, where Tl = {tl1, . . . , tlkl} and tlkl − tl1 <
∞. Then, we are ready to introduce our main results in
this work as the following theorem.

Theorem 1. For a leader-follower formation system, which
has a nominal model in (19) with switching topol-
ogy, the set of switching instants is given by T =
{t11, . . . , t1k1 , . . . , tl1, . . . , tlkl , . . .}, kl ≥ 1. All the agents
achieve consensus, if

(i) The controller Ū = U + V are used, where U has
the same format as in equation (17) and VT =
[v1, . . . , vn]. The decentralized controller ûi = ξei is
the control input for the error dynamics of agent si,
i ∈ V. For a leader, ei is

ei = µ(sj) [xi −R(t)] + [1− µ(sj)]xi −
∑
j∈Ni

ωijxj(20)

The feedback gain is ξ = −γBTP , where γ is a scalar,
P = PT > 0 and Q = QT , which satisfy the following
Algebraic Riccati Equation (ARE)

ATP + PA− 2γPBBTP +Q = 0 (21)

(ii) The mapping matrix T (t) satisfies

Rank

tjkj∑
tj1

Tσ(t)

 = n, j = {1, . . . , l, . . .} (22)

where n is the number of agents.
(iii) The states of agent si can be stabilized in presence of

the uncertainties by using the controller ũi = ui + vi,
where vi is the Lyapunov redesign compensation for
agent si, which is given by

vi = −ηi
(

Θi, Θ̇i,F
) wi
|wi|

(23)

where wi = ∂V (ei)
∂ei

B, ηi is a nonnegative function

w.r.t Θi, Θ̇i, and F . The notation Θi represents the
vector of Euler angles for agent si and F is the
variation of the thrust force.

Proof. The proof of the theorem is mainly divided into
two parts. To begin with, the controller to stabilize the
decoupled nominal model is proposed, using Lyapunov
design. Furthermore, the uncertainties are considered by
using Lyapunov redesign.

a. Lyapunov design

For each agent si, the error dynamics is given by equation
(16). The Lyapunov function candidate for (16) is given
by

V (ei) = eTi Pei (24)

where P = PT > 0. The task is to find out an admissible
controller ûi, which satisfies

sup
ui∈R

{
∂V (ei)

∂ei
(Aei +Bûi)

}
< 0,∀ei 6= 0 (25)

Using equation (24), we can rewrite (25) as

sup
ui∈R

{
eTi A

TPei + eTi PAei + ûTi B
TPei + eTi PBûi

}
< 0,∀ei 6= 0

(26)

According to condition (i),

ûi = ξei = −γBTPei (27)

This is equivalent to minimize the cost function Ji =∫∞
0
eTi (t)Qei(t) + 1

2γ û
2
i (t)dt.

Substituting equation (27) into (26), thus, the problem
becomes to find out a positive definite matrix P , which
satisfies the following inequality with some γ.

sup
γ∈R

{
ATP + PA− 2γPBBTP

}
< 0 (28)

Such a P can be found by resolving the ARE in (21).
Thus, for agent si, if we choose the Lyapunov function as
V (ei) = eTi Pei, equation (21) guarantees that

V̇ (ei) = −eTi Qei (29)

where Q is positive definite. Therefore, the closed-loop
system is asymptotically stable.

According to definition 1, r(t) = (rX(t), rY (t)) represents
the external reference signal, which satisfies r(4)(t) = 0
and Psi = (X,Y ) represent the coordinates of agent si. A
group of agents achieve consensus when conditions ‖Xi −
rX(t), . . . , Xn − rX(t)‖ → 0 and ‖Yi − rY (t), . . . , Yn −
rY (t)‖ → 0 are satisfied.

Let us denote K = In ⊗ ξi. According to equation (13),
(14), and (20), we can rewrite the controller U for the
model (19) as

U = Ke = Kα(Tσ(t))d

Then, the closed-loop system of (19) is rewritten by

α(Tσ(t))ḋ = (A+ BK)α(Tσ(t))d (30)

The mapping matrix changes at each switching instant. We
call the model (19) between every two switches as a sub-
system of the switching system. From the condition (ii), we
obtain that on each time interval over Tl, the summation
of the corresponding sequence of these mapping matrices
is nonsingular. We list these sub-systems during the time
interval over Tl as follows

α(Tσ(tl1))ḋ = (A+ BK)α(Tσ(tl1))d
...

α(Tσ(tlkl)
)ḋ = (A+ BK)α(Tσ(tlkl)

)d

According to the property of Kronecker product, we have

kl∑
j=1

α(Tσ(tlj)) =

kl∑
j=1

Tσ(tlj) ⊗ I4 = α

 kl∑
j=1

Tσ(tlj)





Therefore, according to condition (ii),

Rank

 kl∑
j=1

α(Tσ(tlj))

 = 4 ·Rank

 kl∑
j=1

Tσ(tlj)

 = 4n

In time interval tl1 < t < t(l+1)1, we can choose a
candidate Lyapunov function as

Vl(d) =

kl∑
j=1

dTPljd (31)

where

Plj = (α(Tlj)⊗ Im)
T
In ⊗ P (α(Tlj)⊗ Im)

From the aforementioned analysis, we know that Vl(d) > 0,
if d 6= 0. Thus, the Lyapunov function in (31) is feasible.
Then, we have

Vl(d) =

kl∑
j=1

dTPljd =

kl∑
j=1

eT In ⊗ P e =

kl∑
j=1

n∑
i=1

V (ei) (32)

The derivative of (31) is calculated as

V̇l(d) =

kl∑
j=1

n∑
i=1

V̇ (ei) =

kl∑
j=1

n∑
i=1

−eTi Qei ≤ 0

This means that the tracking error d converges to zero
asymptotically in the time interval over Tl, l = {1, . . .}.
For the switching time instant tlkl , since the equation (29)
is always correct, then, we have

Vl(d) =

kl∑
j=1

n∑
i=1

V (ei(tlkl)) ≤
kl∑
j=1

n∑
i=1

V (ei(t
−
lkl

)) = Vl−1(d)

Then, by using the multiple Lyapunov function theorem
for the switching system, the system is stable at these
switching instants. Thus, the error d will converge to the
origin asymptotically without the effect of uncertainties.

b. Lyapunov redesign

For the purpose of overcoming the influence of unmodeled
dynamics and the uncertainties, we propose to redesign
the controller based on Lyapunov function.

By considering the uncertainties, the error dynamics can
be rewritten as follows

ėi = Aei +B(ûi + vi + δi + δnbi )

If we note A′ = A − γBTP , the error dynamics can be
rewritten as

ėi = A′ei +B(vi + δi + δnbi )

We may consider that ‖δnbi ‖ is bounded. Let us denote
these uncertainties by the following expression

∆i = δi + δnbi

According to equations (4), (6), and (7), we can see that
the uncertainties have the properties as the following
inequality

|∆i| = |δi(Θi, Θ̇i,F , vi) + δnbi |
≤ ρ(Θi, Θ̇i,F) + ki|Θ̈i|+Mnb

i

= ρ(Θi, Θ̇i,F) + ki|vi|+Mnb
i

where Θi = [φi, θi, ψi]
T represents the vector of Euler

angles for agent si and FT = [∆FT
, ∆̇FT

, ∆̈FT
] is the

variation of the thrust force. ρ : R9 → R is a nonnegative
continuous function. The positive scalar Mnb

i is the bound
of the uncertainties of δnbi .

According to condition (i) and (ii), the controller U can
stabilize the nominal system. Since in the first part of the
controller design without considering the uncertainties, the
stability of the nominal switching system is proven.

The nominal model is piecewise continuous in t, and
Lipschitz in x and u. For agent si, the Lyapunov function
in equation (24) satisfies

V̇ (ei) =
∂V (ei)

∂ei
[Aei +B(ui + vi + ∆i)]

=
∂V (ei)

∂ei
[Aei +Bui] +

∂V (ei)

∂ei
B(vi + ∆i)

= −eTi Qei +
∂V (ei)

∂ei
B(vi + ∆i)

≤ ∂V (ei)

∂ei
B(vi + ∆i)

Let us denote wi = ∂V (ei)
∂ei

B, and rewrite the last inequality
as

V̇ (ei) ≤ wivi + wi∆i

≤ wivi + |wi|
[
ρ
(

Θi, Θ̇i,F
)

+Mnb
i + ki|vi|

]
In the following part, we make ρi as an abbreviation of

ρ
(

Θi, Θ̇i

)
. Let us take

vi = −ηi
(

Θi, Θ̇i,F
)

sign(wi)

Then, the derivative of the Lyapunov function satisfies

V̇ (ei) ≤ −ηi|wi|+ ki|wi|ηi + |wi|(ρi +Mnb
i )

= −(1− ki)ηi|wi|+ |wi|(ρi +Mnb
i )

If we choose ηi as follows

ηi ≥ (ρi +Mnb
i )/(1− ki)

Then, the Lyapunov function yields

V̇ (ei) ≤ −(1− ki)ηi|wi|+ |wi|(1− ki)ηi = 0

The Lyapunov function for the overall system in equation
(31) satisfies

V̇l(d) =

kl∑
j=1

n∑
i=1

V̇ (ei) ≤ 0

Based on the analysis above, if we choose the controller for
agent si as U = Ū + V, where U = [û1, û2, . . . , ûn]T and
V = [v1, v2, . . . , vn]T .

The overall system will be asymptotically stable even in
presence of uncertainties. It means that all the agents
achieve consensus. This ends the proof.

Remark 5. The notation Ū gathers the controllers for all
the agents. It is for the convenience of stability proof,
rather than a centralized controller. The centralized con-
troller does not exist in our formation strategy.

Remark 6. If one agent can obtain the information of the
reference command r(t), it has the ability to behave as



a leader or follower and it depends on the factor εi. For
example, the value of εi can depend on the recognition
rate of the reference. When the sensor of camera is used
to capture the target object, εi represents the probability
of recognition. The assignment of εi is one part of our
future work.

5. SIMULATION

In this section, we have mainly two tasks. To begin with,
we will illustrate the problem that we have stated in
introduction. Furthermore, the simulation results show the
performance of the controller. In the following simulations,
the formation system has seven agents and agent s1 acts as
a leader and agents s2, . . . , s7 are followers. The reference
command is represented by r(t) = (kXt, kY t), where kX =
kY = 1.

Taking γ = 1 and the symmetric positive definite matrix
P as

P =

 26.8247 30.9783 17.2024 3.1623
30.9783 65.8961 42.9828 8.4827
17.2024 42.9828 44.8076 9.7962
3.1623 8.4827 9.7962 5.4399


One solves (21) for Q giving

Q =

 20.0000 26.8247 30.9783 17.2024
26.8247 81.9566 83.0985 46.1451
30.9783 83.0985 105.9657 53.2903
17.2024 46.1451 53.2903 39.5924


which can be verified to be a symmetric positive definite
matrix. This gives rise to the following control gain values

ξ = [−3.1623 − 8.4827 − 9.7962 − 5.4399]

which we used in our simulations.

In Fig. 1, the formation can not achieve consensus, if we
use the ordinary decentralized controller without consid-
ering the influence of uncertainties. Conversely, the forma-
tion achieves consensus by using the controller based on
Lyapunov design and redesign, which has been shown in
Fig. 2.

Both in Fig. 1 and Fig. 2, the mapping matrices are fixed
and nonsingular.

In Fig. 3 and Fig. 4, the initial conditions for each agents
are x1 = [0, 0, 0, 0]T , x2 = [21, 0, 0, 0]T , x3 = [16, 0, 0, 0]T ,
x4 = [7, 0, 0, 0]T , x5 = [2, 0, 0, 0]T , x6 = [−10, 0, 0, 0]T ,
x7 = [−11, 0, 0, 0]T . In Fig. 3, the mapping matrix Tb is not
full rank. The condition (ii) in theorem 1 is not satisfied.
In Fig. 4, the mapping matrix switches from Tb to Ta. Ta
and Tb are written as follows

Ta =


1 0 0 0 0 0 0
0 1 −1 0 0 0 0
0 0 1 −1 0 0 0
0 0 0 1 −1 0 0
−1 0 0 0 1 0 0
−1 0 0 0 0 1 0
−1 0 0 0 0 0 1

 Tb =


1 0 0 0 0 0 0
0 1 −1 0 0 0 0
0 0 1 −1 0 0 0
0 −1 0 1 0 0 0
−1 0 0 0 1 0 0
−1 0 0 0 0 1 0
−1 0 0 0 0 0 1


We can see that in Fig. 3, the group of agents can not
achieve consensus, because the condition (ii) in theorem
1 is not satisfied. On the contrary, in Fig. 4 the topology
switched from Tb to Ta, then the conditions in theorem 1
are satisfied, thus, all the agents keep consensus.

Fig. 1. The tracking curve with uncertainties by using
simplified model based controller design

Fig. 2. The tracking curve with uncertainties by using
Lyapunov design and redesign

Fig. 3. The tracking curve when the topology is fixed and
the mapping matrix is singular

Fig. 4. The tracking curve with switching topology



6. CONCLUSION

In this paper, we propose a decentralized control strat-
egy for the leader-follower formation with nonlinear and
coupled agent dynamics. The main idea is to represent
the agent dynamics by a nominal decoupled linear model,
and then, analyze the probable uncertainties. We propose
a switched singular system to model the formation with
switching topology. By using Lyapunov design and re-
design method, we prove the consensus of the agents even
in presence of switching topology and model uncertainties.
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