
HAL Id: hal-00932855
https://hal.science/hal-00932855

Submitted on 17 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Resolution Calculus for Propositional Schemata
Vincent Aravantinos, Mnacho Echenim, Nicolas Peltier

To cite this version:
Vincent Aravantinos, Mnacho Echenim, Nicolas Peltier. A Resolution Calculus for Propositional
Schemata. 2011. �hal-00932855�

https://hal.science/hal-00932855
https://hal.archives-ouvertes.fr

A Resolution Calculus for Propositional Schemata

Vincent Aravantinos, Mnacho Echenim and Nicolas Peltier

February 7, 2011

1 Introduction

This report describes a resolution calculus handling families of propositional
formulae. The calculus is proven to be sound, refutationally complete and ter-
minating. The class of propositional schemata we consider is more or less equiv-
alent to the class of regular schemata introduced in [1] although the definitions
differ. The core of the resolution calculus (namely the resolution and factoring
rule and the encoding of arithmetic parameters) is close to the one of [5] (al-
though we use a different presentation). The main originality of our approach
is the loop detection rule ensuring termination and refutational completeness.

2 Preliminaries

Informally, the syntax and semantics of our logic are almost identical to a very
simple subclass of clausal logic, except that we consider a particular set of con-
stant symbols, called parameters, that must be interpreted as natural numbers.
Every predicate symbol is monadic and the only function symbols are 0, succ
(natural numbers).

Let Ω be a set of unary predicate symbols, or (indexed) propositional vari-
ables. Let P and V be two disjoint sets of variables. The elements in P are
the parameters, and the ones in V are the index variables. Throughout this pa-
per, parameters are denoted by n,m and index variables by x, y, z. The letters
i, j, k, l will denote natural numbers (meta-variables).

The set of (arithmetic) terms T is the least set satisfying V ⊆ T , 0 ∈ T and
t ∈ T ⇒ succ(t) ∈ T . Notice that T does not contain the parameters. A term
is ground iff it is of the form succi(0) (with i ∈ N), in which case it may be
viewed as a natural number and simply denoted by i. The set of ground terms
is denoted by N. If x is a variable and i is a natural number then x+ i denotes
the term succi(x).

An atom is either of the form n ≈ t where n ∈ P and t ∈ T or of the form
pt where p ∈ Ω and t ∈ T . It is ground if t is ground. Notice that parameters
only occur in equational atoms. Atoms of the form n ≈ t (resp. pt) are called
equational atoms (resp. indexed atoms).

1

A literal is either an atom (positive literal) or the negation of an atom
(negative literal). A clause is a finite set (or disjunction) of literals (the empty
clause is denoted by �). An equational literal (resp. indexed literal) is a literal
whose atom is an equational atom (resp. an indexed atom). We denote by Ceq

and Cin the sets (disjunctions) of equational literals (resp. indexed literals) in
C. If S is a set of clauses then Sin denotes the set of clauses {Cin | C ∈ S}. A
clause C is purely equational iff Cin = ∅ and parameter-free iff Ceq = ∅.

For every expression (term, atom, literal or clause) E , var(E) denotes the set
of index variables occurring in E .

The depth of an expression is defined as usual: depth(x)
def

= 0 if x ∈ V ,

depth(0) = 0, depth(succ(t)) = 1 + depth(t), depth(¬pt)
def

= depth(pt)
def

=

depth(t), depth(n ̸≈ t)
def

= depth(n ≈ t)
def

= depth(t) and depth(
∨n

i=1 li)
def

=

maxi∈[1,n] depth(li) (by convention depth(�)
def

= 0).
A substitution σ is a function mapping every index variable x to a term

xσ ∈ T (notice that parameters cannot be mapped). The domain dom(σ) of
σ is the set of index variables x such that xσ ̸= x. For every expression E , Eσ
denotes the expression obtained from E by replacing every variable x by xσ. A
substitution σ is ground iff for every x ∈ dom(σ), xσ is ground. A renaming is
an injective substitution σ such that xσ ∈ V for every x ∈ dom(σ). A σ is flat
if for every x ∈ V , xσ ∈ V ∪ {0}.

σ is a unifier of t1, . . . , tn iff t1σ = . . . = tnσ. As is well known, any unifiable
set of terms has a most general unifier (unique up to a renaming), denoted by
mgu(t1, . . . , tn). Notice that in our simple case, all terms are of the form succi(t)
where t ∈ {0}∪V . Then any unifier of succi(t) and succj(s) where t, s ∈ {0}∪V
(if it exists) is necessarily either empty or of the form t 7→ succj−i(s) (if t ∈ V ,
t ̸= s and j > i) or of the form s 7→ succi−j(t) (if t ∈ V , t ̸= s and j < i).

An interpretation I is a function mapping:

• Every parameter to a ground term in T (i.e. a natural number).

• Every ground indexed atom to a truth value true or false.

An interpretation I validates:

• A ground atom n ≈ t iff I(n) = t.

• A ground atom pt iff I(pt) = true.

• A ground literal ¬a iff I does not validate a.

• A ground clause C iff it validates at least one literal in C.

• A non ground clause C iff for every substitution σ of domain var(C), I
validates Cσ.

• A set of clauses S iff it validates every clause in S.

2

We write I |= S iff I validates S (then I is called a model of S). If S, S′

are two sets of clauses, we write S |= S′ iff for every interpretation I, we
have I |= S ⇒ I |= S′. By definition, an interpretation I validates a clause
n ̸≈ succi(x) iff I(n) < i. Thus the notation n < i is a shorthand for the clause
n ̸≈ succi(x).

Proposition 1 The satisfiability problem is decidable for (finite) purely equa-
tional clause sets.

Proof. By definition of the semantics, a purely equational clause set
{C1, . . . , Ck} is equivalent to the formula

∧k
i=1 ∀x⃗iCi where x⃗i is the set of

index variables in Ci. The only symbols occurring in this formula (beside the
variables in x⃗i) are 0, succ, ≈, ̸≈ and the parameters. Since 0, succ are non in-

terpreted, {C1, . . . , Ck} is satisfiable iff the formula ∃n⃗.
∧k

i=1 ∀x⃗iCi holds in the
empty theory, where n⃗ is the set of parameters in C1, . . . , Cn. The satisfiability
problem is well known to be decidable for such formulae (by the results in [6, 4]
or even [3]).

Remark 2 Notice that by definition, any clause of the form n ̸≈ u∨ n ̸≈ v ∨C
such that u and v are not unifiable is valid. For instance, n ̸≈ succ(x) ∨ n ̸≈ x

holds in any interpretation, since n cannot be equal to both succ(x) and x.

3 The Calculus

3.1 Definition

If u and v are two terms, we write u ▹ v iff v = succi(u) for some i > 0. This
ordering is extended into a pre-ordering on atoms as follows: pu ▹ qv iff u▹ v.

We assume that a total ordering ≺ is given on elements of Ω. ≺ is extended
into an ordering on atoms as follows: a ≺ a′ iff either a ▹ a′ or there exists a
term u such that a = pu, a

′ = qu and p ≺ q. By definition, the equational atoms
are not comparable.

Notice that ≺ is stable by substitution, i.e. a ≺ a′ ⇒ aσ ≺ a′σ, for every
substitution σ. ▹ and ≺ are extended to index literals by ignoring negation
symbols and to clauses by the multiset extension.

Let sel be a selection function mapping every clause C to a (possibly empty)
set of selected index literals in C. We assume that sel satisfies the following
conditions: for every clause C such that Cin ̸= ∅, either sel(C) is a nonempty
set of ▹-maximal negative literals or sel(C) is the set of ≺-maximal literals
in Cin. Notice that by definition equational literals are never selected (thus
sel(C) = ∅ if Cin = ∅).

For instance, consider the clause

n ̸≈ succ(succ(x)) ∨ ¬px ∨ ¬psucc(x) ∨ qsucc(x) ∨ rsucc(x).

Assume that p ≺ q ≺ r. psucc(x), qsucc(x) and rsucc(x) are ▹-maximal. rsucc(x) is
≺-maximal. sel can contain the literals ¬psucc(x) or rsucc(x) but neither ¬px nor
qsucc(x).

3

The Resolution calculus is defined, as usual, by the following rules (we ex-
ternalize factorization for technical convenience).

pu ∨ C ¬pv ∨D
(C ∨D)σ

If: σ = mgu(u, v), puσ and ¬pvσ are selected.

pu ∨ pv ∨ C
(pu ∨ C)σ

¬pu ∨ ¬pv ∨ C
(¬pu ∨ C)σ

If: σ = mgu(u, v), puσ or ¬pu is selected.
We denote by R(S) the set of clauses that can be deduced from (pairwise

index variable disjoint renamings of) clauses in S by resolution or factorization
(in one step).

A clause C is redundant w.r.t. a clause set S (written C ⊑ S) iff for ev-
ery ground substitution σ of domain var(C), there exist D1, . . . , Dn ∈ S and
σ1, . . . , σn such that D1σ1, . . . , Dnσn |= Cσ and D1σ1, . . . , Dnσn ≼ Cσ. If S
is a clause set, we write S ⊑ S′ iff every clause in S is redundant w.r.t. S′.

A clause set S is saturated iff R(S) ⊑ S.
A derivation from a clause set S is a sequence of clauses C1, . . . , Cn such

that for every i ∈ [1, n], Ci ∈ S ∪ R({C1, . . . , Ci−1}). We write S ⊢ C iff there
exists a derivation C1, . . . , Cn from S such that C = Cn.

A derivation of S is a derivation containing every clause in S. For instance
p0,¬px ∨ psucc(x), psucc(0) is a derivation of {psucc(0)} from {p0,¬px ∨ psucc(x)}.

The notion of refutation differs from the usual one: since no rule can be
applied on the equational part of the clauses, these literals cannot be eliminated:

Definition 3 A refutation of S is a derivation from S of a finite unsatisfiable
set of purely equational clauses. ♢

Notice that the satisfiability of this set can be tested by Proposition 1.

3.2 Basic properties of the calculus

It is very easy to check that the above rules are sound, i.e. the conclusion are
logical consequences of the premises.

Proposition 4 Let S be a set of clauses. S |= R(S).

Proof. Immediate.

We now prove a weak form of refutational completeness. We first notice that
the calculus is obviously complete for parameter-free clause sets:

Proposition 5 Let S be a saturated set of parameter-free clauses. If S is un-
satisfiable then � ∈ S.

4

Proof. When the clauses contain no equational literals, our Resolution calculus
coincides with the usual one. Hence the result.

Theorem 6 Let S be a saturated set of clauses. If S is unsatisfiable then there
exists an unsatisfiable set of purely equational clauses S′ such that S′ ⊆ S.

Proof. Let I be an interpretation of the parameters in S. Let Sg be the set of
ground instances of the clauses in S. Let SI be the set of clauses obtained from
Sg by:

• Deleting every clause containing an equational literal that is true in I.

• Removing all equational literals in the remaining clauses.

By construction, SI contains no equational literal, hence no parameter. If
SI has a model J then obviously I ∪J is a model of S. Thus SI is unsatisfiable.
We now check that SI is saturated.

Since S is saturated, so is Sg (since the notion of saturatedness only depends
on ground instances). Let pu ∨ C and ¬pu ∨D be two clauses in SI on which
the Resolution rule applies. By definition Sg contains two clauses pu ∨ C ∨ C ′

and ¬pu ∨ D ∨ D′ where C ′, D′ are purely equational clauses that are false
in I. Since Sg is saturated, there exist n clauses E1, . . . , En ∈ Sg such that
E1, . . . , En |= C ∨ D ∨ C ′ ∨ D′ and E1, . . . , En ≺ C ∨ D ∨ C ′ ∨ D′. Assume
w.l.o.g. that there is a k ∈ [0, n] such that for every i ∈ [1, k], I |= E

eq
i and

for every i ∈ [k + 1, n], I ̸|= E
eq
i (i.e. the k clauses such that I |= E

eq
i are

assumed to be at the beginning of the sequence E1, . . . , En). By definition, we
have Ein

k+1, . . . , E
in
n ∈ SI .

We show that Ein
k+1, . . . , E

in
n |= C ∨D. Let J be an interpretation satisfying

Ein
k+1, . . . , E

in
n . Let J ′ be the interpretation defined as follows: J ′(n)

def

= I(n)

and J ′(A)
def

= J(A) for every ground atom A. By definition, J ′ |= E
eq
i , for

every i ∈ [1, k] thus ∀i ∈ [1, k], J ′ |= Ei. Moreover, since J |= Ein
i , for every

i ∈ [k + 1, n] we also have ∀i ∈ [k + 1, n], J ′ |= Ei. Therefore J ′ |= E1, . . . , En,
hence J ′ |= C ∨D ∨ C ′ ∨D′. But I ̸|= C ′ ∨D′, thus J |= C ∨D.

Moreover, since E1, . . . , En ≺ C∨D∨C ′∨D′, we must have Ein
k+1, . . . , E

in
n ≺

C ∨D (since index literals and equational literals are not comparable). Conse-
quently, C ∨D is redundant in SI .

By the same reasoning we can prove that any factor of a clause in SI is
redundant.

Thus R(SI) ⊑ SI and SI is saturated. Thus by Proposition 5, � ∈ SI .
Consequently, S contains a purely equational clause CI that is false in I. This
holds for every interpretation I, thus S contains a set of purely equational
clauses S′ such that for every interpretation I of the parameters in S′, I ̸|= S′.
This implies that S′ is unsatisfiable.

Theorem 6 does not imply semi-decidability because S′ may well be infinite:

5

Example 7 Let S = {n ̸≈ x ∨ px, py ∨ ¬psucc(y),¬p0}. The reader can easily
check that S is unsatisfiable and that our calculus generates an infinite number
of purely equational clauses of the form n ̸≈ succi(0):

1 n ̸≈ x ∨ px (given)
2 py ∨ ¬psucc(y) (given)
3 ¬p0 (given)
4 n ̸≈ succ(y) ∨ py (resolution 1, 2, x 7→ succ(y))
4′ n ̸≈ succ(y′) ∨ py′ (renaming, 4)
5 n ̸≈ 0 (resolution 1, 3, x 7→ 0)
6 n ̸≈ succ(0) (resolution 4, 3, y 7→ 0)
7 n ̸≈ succ(succ(y)) ∨ py (resolution 4′, 2, y′ 7→ succ(y))
8 n ̸≈ succ(succ(0)) (resolution 7, 3, y 7→ 0)

. . .

This set of clauses is clearly unsatisfiable, but every finite subset it contains
is satisfiable. ♣

4 Restricting the language

We restrict ourselves to a particular class of clause sets. This class is very
convenient from a theoretical point of view and, as we shall see in Section 8, it
is expressive enough for our purpose.

We shall firstly assume that the clauses contain at most one variable (e.g. we
discard clauses such as px ∨ py where x, y are distinct variables). Furthermore,
the clauses containing a variable should not contain any ground term (i.e. no
occurrence of 0). For instance, a clause such as px ∨ q0 is forbidden.

Definition 8 Let t ∈ {0}∪V . A clause C is a t-clause iff every atom occurring
in it is of the form psucci(t) for some i ∈ N. ♢

Next, we assume that the non equational part of the clause is of depth 0 or
1 (the depth of the equational part is arbitrary). Finally, we strongly restrict
the form of the equational part of the clauses:

Definition 9 A clause C is normalized iff there exists a term t ∈ V ∪ {0} such
that the following conditions hold:

• Ceq is either empty or of the form n ̸≈ succk(t).

• Cin is a t-clause of depth 0 or 1.

• If t = 0 then depth(Cin) = 0.

A set of clauses S is normalized iff the following conditions hold:

1. S contains at most one parameter (always denoted by n in the following)

2. Every clause in S is normalized. ♢

6

For instance px∨¬psucc(x), n ̸≈ succ(succ(x))∨px or n ̸≈ 0∨q0 are normalized,
but n ̸≈ 0 ∨ psucc(0), n ̸≈ succ(x) ∨ ¬p0 ∨ qx or psucc(succ(x)) are not.

Definition 10 The level of a normalized clause is an element of N∪{⊥}, defined
as follows:

• If Ceq = � then the level of C is ⊥.

• If Ceq ̸= � then level(C)
def

= level(Ceq)− level(Cin) + 1.

S|i denotes the set of clauses in S of level i (where i ∈ N ∪ {⊥}). If I is a
subset of N ∪ {⊥}, S|I denotes the set of clauses whose levels are in I. ♢

For instance, the levels of n ̸≈ succ(0) ∨ p0, n ̸≈ succ(succ(x)) ∨ psucc(x)
and n ̸≈ succ(x) ∨ px are all equal to 2. For any parameter-free clause C,
the level of n ̸≈ 0 ∨ C is 1, the one of n ̸≈ succ(0) ∨ C is 2, etc. (because
C necessarily has depth 0 in this case). The level of n ̸≈ succ(succ(x)) ∨ px
is 3 (as the one of its instance n ̸≈ succ(succ(succ(x))) ∨ psucc(x)), the one of
n ̸= succ(succ(x)) ∨ psucc(x) is 2.

Intuitively, a clause of level ⊥ expresses either some universal property such
as ∀x¬px ∨ psucc(x) or a ground property, e.g. p0, psucc(0) etc. A clause of level

distinct from ⊥ is of the form n ̸≈ succk(t)∨C where the only indices occurring
in C are t or succ(t). It can be viewed as an implication: n ≈ succk(t) ⇒ C. If
t = 0 then the clause states a ground property that must be true if n is equal to
succk(0). If t is a variable x, the clause expresses an assertion that must hold
for the natural number x = n − l, assuming that n ≥ l. This could be written
n ≥ l ⇒ C{x 7→ n− l} but of course this last formula is not a clause.

Remark 11 For any interpretation I, the level of a clause C (if distinct from
⊥) is always equal to I(n) + 1 − i, where i denotes the maximal index of the
(only) ground instance of C that is relevant in I (this instance depends on the
value of n).

For example, consider the clause C : n ̸≈ succ(x) ∨ px. The level of C is 2.
The only ground instance of C that is relevant for the interpretation I = {n 7→
k} is of the form n ̸≈ succ(succk−1(0))∨ psucck−1(0) (since n ̸≈ succ(x) is true in

I if x ̸= succk−1(0)) where the value of n is k+1. We have 2 = k+1− (k− 1).
We order the levels in N∪{⊥} by using the usual ordering on natural numbers

and by assuming that ⊥ < i for every i ∈ N. Thus if i is a natural number then
[⊥, i] denotes the set {⊥} ∪ [0, i].

Proposition 12 For every l ∈ N ∪ {⊥}, the number of normalized clauses of
level l (on a given finite signature) is finite (up to renaming and up to duplication
of literals).

Proof. A normalized clause is of the form n ̸≈ t∨C or C where C is a t-clause
of depth 0 or 1. Furthermore, if t is fixed and if Ω is finite, the number of
distinct t-clauses of depth 0 or 1 is finite (up to duplication of literals), since
every literal in C is of the form pt, ¬pt, psucc(t) or ¬psucc(t), for some p ∈ Ω.

7

Definition 13 A set of clauses is k-normalized if it is normalized and if the
level of every clause in S is in [⊥, k]. ♢

Section 8 gives hints on the expressive power of normalized clause sets.
The following propositions states straightforward properties of t-clauses:

Proposition 14 If C is a t-clause (where t ∈ V ∪{0}) and if σ is flat then Cσ
is a tσ-clause.

Proposition 15 If C,D are two t-clauses then C ∨D is a t-clause.

Proposition 16 If C is a succ(t)-clause of depth 0 then C is a t-clause.

The next lemma states that the class of normalized clauses is preserved by
the inference rules.

Lemma 17 If S is set of normalized non valid clauses then any non valid clause
in R(S) is normalized.

Proof. Let C be a (non valid) clause deduced from two normalized clauses D1

and D2 by resolution. By definition, Din
1 and Din

2 are of the form pu1
∨ D′

1

and ¬pu2
∨ D′

1 where u1 and u2 are unifiable. Let D′′
i

def

= D
eq
i . Since S is

normalized, there exists a term ti ∈ V ∪ {0} such that liui
∨ D′

i is a ti-clause.
Furthermore, D′′

i is either empty or of the form n ̸≈ succki(ti). Then C is of
the form (D′

1 ∨ D′
2 ∨ D′′

1 ∨ D′′
2)σ where σ = mgu(u1, u2). By definition, ui is

either ti or succ(ti). Thus σ is of one of the following forms: ∅, {t2 7→ t1},
{t2 7→ succ(t1)} (with t2 ∈ V and t1 ∈ V∪{0}) or {t1 7→ t2, t1 7→ succ(t2)} (with
t1 ∈ V and t2 ∈ V ∪ {0}).

Any atom occurring in D′
iσ is of the form qtiσ or qsucc(tiσ).

If σ is empty or of the form t2 7→ t1 or t1 7→ t2 then t1σ = t2σ (notice that if σ
is empty then u1, u2 are ground thus, since D1, D2 are normalized we must have
u1 = u2 = t1 = t2 = 0). Since σ is flat, by Proposition 14, D′

1σ is a tiσ-clause.
By Proposition 15, D′

1σ∨D
′
2σ is a t1σ-clause. D

′′
i is either empty or of the form

n ̸≈ succki(ti). Assume that D′′
1 and D′′

2 are not empty and that k1 ̸= k2. Then
C contains the disjunction n ̸≈ succk1(t1σ) ∨ n ̸≈ succk2(t2σ). Since t1σ = t2σ

and k1 ̸= k2, succ
k1(t1σ) and succk2(t2σ) are not unifiable, hence C is valid.

Otherwise, D′′
1 ∨D′′

2 is either empty or of the form n ̸≈ succk1(t1σ). Thus C is
normalized.

Assume that σ is t2 7→ succ(t1). If D
′
2σ contains a atom of the form qsucc(t2)

then we have pt2▹qsucc(t2) thus by definition of the selection function, the literal
¬pt2 would not be selected, which is impossible. Hence every atom in D′

2σ is of
the form qt2σ = qsucc(t1), hence D2σ

′ is a t1-clause. D
′
1σ is obviously a t1-clause

(since σ is the identity on D′
1), thus by Proposition 15, D′

1σ∨D
′
2σ is a t1-clause.

Assume that D′′
1 and D′′

2 are not empty and that k1 ̸= k2 +1. Then C contains
the disjunction n ̸≈ succk1(t1σ) ∨ n ̸≈ succk2(t2σ). Since t2σ = succ(t1) and
k1 ̸= k2 + 1, succk1(t1σ) and succk2(t2σ) are not unifiable, hence C is valid.
Otherwise, D′′

1 ∨D′′
2 is either empty or of the form n ̸≈ succk2+1(t1). Thus C is

normalized.

8

The proof is similar if σ is t1 7→ succ(t2).
Now assume that C is deduced by factorisation, from a clause pu ∨ pv ∨ C

′

(resp. ¬pu ∨ ¬pv ∨C
′). By definition, u and v are either ground or of the form

succi(x) and succj(x) for some variable x. Since pu∨pv∨C
′ (resp. ¬pu∨¬pv∨C

′)
is non valid, u and v must be unifiable. Thus we must have u = v hence the
mgu of u and v is empty. Hence C = pu∨C

′ (resp. C = ¬pu∨C
′) is normalized.

Factorisation cannot be applied in a non trivial way on normalized clauses (it
simply removes a literal).

Lemma 18 relates the level of any clause to that of its parents.

Lemma 18 Let S be a set of normalized clauses. Let C be a non valid clause
of level j ∈ N in R(S) deduced from two parent clauses D1, D2 in S of level
k1, k2 respectively. The following conditions hold:

• k1, k2 ∈ {⊥, j, j − 1}.

• If C is ground then k1, k2 ∈ {⊥, j}.

• If k1 ̸= ⊥ and k2 ̸= ⊥ then k1 = k2.

Proof. By definition, there exists a term t ∈ V ∪ {0} such that C is of the
form n ̸≈ succj−1+ϵ(t) ∨ C ′ and C ′ is a t-clause of depth ϵ (notice that j ̸= ⊥
by hypothesis). Similarly, If Di is not parameter-free, then Di is of the form
n ̸≈ succki−1+ϵi(ti) ∨ D′

i where D′
i is a t′i-clause of depth ϵi. We must have

succj−1+ϵ(t) = succki−1+ϵi(ti)σ where σ is the mgu of two terms u1 and u2
occurring in selected literals in D1 and D2 respectively.

u1 and u2 are of the form 0, xi or succ(xi) where xi is a variable, thus σ
is either empty (if u1 = u2 = 0) or of the form x1 → 0 (if u1 = x1 and
u2 = 0) or x2 → 0 (if u1 = 0, u2 = x2) or x1 → x2 (if either u1 = x1 and
u2 = x2 or u1 = succ(x1) or u2 = succ(x2)) or x1 → succ(x2) (if u1 = x1 and
u2 = succ(x2)) or x2 → succ(x1) (if u1 = succ(x1) and u2 = x2). Several cases
must be distinguished according to the form of σ.

• If σ is empty then we must have u1 = u2 = 0. Then D1, D2 are ground,
hence C is also ground. Furthermore, if Di is not parameter-free, we
have j − 1 + ϵ = ki − 1 + ϵi. By definition of normalized clauses we have
ϵ = ϵi = 0, thus j = ki.

• If σ is of the form x1 7→ x2 or x1 7→ 0 or x2 7→ 0 then Din
1 and Din

2 must
be of the same depth, thus ϵ1 = ϵ2. If Di is not parameter-free, we have
j − 1 + ϵ = ki − 1 + ϵi, thus ki = j + ϵ− ϵi. If ϵ = 1 then this means that
C ′ is of depth 1. But every literal in C ′ occurs in D′

jσ for some j = 1, 2,
thus D′

jσ is of depth 1 for some j = 1, 2. Since σ is flat, Dj is of depth 1,
hence ϵj = 1. Since ϵ1 = ϵ2 we deduce that ϵi = 1, hence ϵ − ϵi ≤ 0 and
ki ∈ {0, j, j − 1}.

If C is ground then we must have u1 = 0 or u2 = 0, hence ϵ1 = ϵ2 = 0.
Moreover, ϵ = 0 by definition of the notion of normalized clause. Thus
ki = j.

9

Finally if D1 and D2 are both not parameter-free we remark that, since
u1 and u2 are of same depth we must have ϵ1 = ϵ2 hence k1 = k2.

• If σ is of the form x1 7→ succ(x2) then u1 = x1 and u2 = succ(x2). In this
case C is not ground. If D1 is not parameter-free, we have j − 1 + ϵ =
k1−1+ϵ1+1, thus k1 = j+ϵ−ϵ1−1. Moreover we have ϵ1 = 0 since u1 = x1
is maximal. Thus k1 = j + ϵ− 1 ∈ {j − 1, j}. If D2 is not parameter-free,
we have j − 1 + ϵ = k2 − 1 + ϵ2, thus k2 = j + ϵ − ϵ2. Moreover we have
ϵ2 = 1 since u2 = succ(x2) occurs in D2. Thus k2 = j − 1+ ϵ ∈ {j − 1, j}.

• The case where σ is of the form {x2 7→ succ(x1)} is symmetric.

5 Loop Detection

In this section we refine the calculus proposed in Section 3 by defining a loop
detection rule that is capable of pruning infinite derivations. To help the reader
to grasp the next definitions and lemmata, we first provide an informal high level
description of the rule. Let S be a clause set. The set of clauses S′ = {C | S ⊢ C}
generated from S can be partitioned into an infinite sequence of clause sets S′|⊥,
S′|1, . . . , S

′|k,. . . , where for every k ∈ N∪{⊥}, S′|k contains exactly the clauses
of level k in S′ (see Definition 10) . Notice that by Lemma 18, the clauses in
S′|k (where k > 0) must be generated either from clauses in S′|k ∪S

′|⊥ or from
S′|k−1 ∪ S

′|⊥ (except of course those that already occur in the original clause
set S). By definition of the notion of level, each of these sets S′|k can be viewed
as a formula of the form n ̸≈ succk(x) ∨ Sk, where Sk is a conjunction of x-
clauses1. Since the set of x-clauses is finite there must exist, by the pigeonhole
argument, two natural numbers i and j > 0 such that Si = Si+j . This means
that the set of clauses generated at level i is equivalent to the set of clauses
generated at level i + j, up to a shift on the parameter n: indeed if Si = Si+j

then n ̸≈ succi+j(x)∨Si+j is equivalent to n ̸≈ succi∨Si, up to a shift n 7→ n+j.
We shall show that, under some particular conditions, the existence of such a
“cycle” in the derivation allows one to derive an upper bound on the value of
the parameter n: if S is satisfiable then it has a model I such that I(n) < i+ j.
The intuition is that if a model I such that I(n) > i + j exists, then one can
obtain another model J such that J(n) = I(n)− j by applying the translation
n 7→ n− j on I. This implies that the clause n < i+ j (written n ̸≈ succi+j(x))
can be derived. Then it is easy to see that every clause of level strictly greater
than i + j is redundant w.r.t. n < i + j (since n ̸≈ succi+j(t) ∨ C is obviously
subsumed by n ̸≈ succi+j(x)). Consequently, once the pruning clause n < i+ j

has been generated, only finitely many non redundant clauses can be deduced.
Obviously, this result does not hold for any derivation: for instance if the

initial clause set S contains clauses of arbitrary level, then the value of parameter
must also be arbitrary. Now we give the formal definition of the conditions that
must be satisfied by S. We start by slightly restricting the notion of redundancy:

1to simplify the presentation we assume that every clause C ∈ Sk is of depth 1.

10

Definition 19 A clause C is level-redundant w.r.t. S (written C ⊑l S) iff for
every ground substitution σ of domain var(C) there exist n clauses C1, . . . , Cn

such that:

• If C is non ground then C1, . . . , Cn are non ground.

• C1, . . . , Cn are either of level ⊥ or of the same level as C.

• There exist n substitutions θ1, . . . , θn such that C1θ1, . . . , Cnθn |= Cσ and
C1θ1, . . . , Cnθn ≼ Cσ.

If S′ is a set of clauses, we write S′ ⊑l S iff ∀C ∈ S,C ⊑l S. ♢

For instance, px is redundant w.r.t. {p0, psucc(x)} but not level-redundant
(since p0 is ground and px is not). n ̸≈ succ(x) ∨ px is redundant w.r.t.
{px,¬px} but not level-redundant since level(n ̸≈ succ(x) ∨ px) = 2 and
level(px) = level(¬px) = ⊥ < 2. Notice that every tautological clause and
every clause subsumed by a clause in S is level-redundant w.r.t. S, thus in
practice these two notions coincide.

Definition 20 A set of clauses S is saturated up to level i iff R(S|[⊥,i[) ⊑l S.♢

If S is a set of clauses and i is a natural number, shift(S, i) denotes the set of
clauses of the form n ̸≈ succi+j(x)∨C, where x ∈ V and n ̸≈ succj(x)∨C ∈ S.

Example 21 Consider the clause set

S = {n ̸≈ succ(succ(x))∨¬p(x)∨p(succ(x)), n ̸≈ succ(x)∨q(x), n ̸≈ 0∨p(x),¬r(x)}.

We have shift(S, 0) = {n ̸≈ succ(succ(x)) ∨ ¬p(x) ∨ p(succ(x)), n ̸≈ succ(x) ∨
q(x)}, shift(S, 1) = {n ̸≈ succ(succ(succ(x))) ∨ ¬p(x) ∨ p(succ(x)), n ̸≈
succ(succ(x)) ∨ q(x)}, shift(S, 2) = {n ̸≈ succ(succ(succ(succ(x)))) ∨ ¬p(x) ∨
p(succ(x)), n ̸≈ succ(succ(succ(x))) ∨ q(x)} etc. Notice that ¬r(x) or n ̸≈
0 ∨ p(x) cannot occur in shift(S, i) because they contain no literal of the form
n ̸≈ succj(x), where x ∈ V . ♣

Lemma 22 will set the foundations for defining the loop detection rule. This
lemma applies when we detect that the clauses of a certain level i in S are
logically entailed by the ones of a level i+ j > i, up to a shift on the parameter
n. This means that any model of S|i+j is also a model of S|i, up to a shift
n 7→ n − j. If, moreover, we assume that S is saturated up to level i, this
implies as we shall see that for any model I of S such that I(n) ≥ i + j, one
can construct a model J of S such that J(n) = I(n) − j < I(n). To get a
model of S|[i,∞[, it suffices to apply the translation n 7→ n − j on the model
I, namely to fix the truth values of the variables pi, pi+1, pi+2, . . . in J as the
ones of pi+j , pi+j+1, pi+j+2, . . . in I; then, since S is saturated up to level i,
it is possible to show that this interpretation can be extended into a model of
S. Thus, satisfiability is preserved when we state that the value of n is strictly
lower than i+ j. As explained before, adding this assertion into S makes every
clause of level greater than i+ j redundant since it is subsumed by n < i+ j.

11

Lemma 22 Let S be a set of normalized clauses of parameter n and let i, j be
natural numbers satisfying the following conditions:

1. S is saturated up to level i.

2. S|i ∪ S|⊥ |= S|[i,∞[

3. S|i contains no ground clause.

4. j ̸= 0.

5. S|⊥ ∪ S|i+j |= shift(S|i, j).

Then: S is satisfiable iff S ∪ {n < i+ j} is.

Proof. Let I be an interpretation satisfying S. W.l.o.g. we assume that the
value of n is minimal (w.r.t. the usual ordering on natural numbers), i.e. for
every interpretation J such that J(n) < I(n) we have J ̸|= S.

Assume that I ̸|= {n < i+ j} (i.e. I(n) ≥ i+ j which implies that I(n) > 0
since j ̸= 0 by assumption).

We construct an interpretation J as follows.

• J(n)
def

= I(n) − j. By Condition 4 this implies that J(n) < I(n) thus
J ̸|= S.

• The value of the ground atom pk (for k ∈ N) is defined by induction on
the ordering ≺:

– If k ≤ I(n)− i− j + 1 then J(pk)
def

= I(pk).

– If k > I(n) − i + 1, then suppose J(qk′) is already defined for every
literal qk′ lower than pk. Thus, for any clause made only of such
literals, its value under J is completely defined. Notice also that the
value of every purely equational clause only depends on J(n) and is
thus also completely defined. Consequently, we can define J(pk) as
follows: if S|[⊥,i[contains a clause which has an instance of the form
pk ∨ C, where all indexed atoms of C are lower than pk and J ̸|= C,
then we set J(pk) to true. Otherwise we set it to false.

Let S′ = S|[⊥,i]. By Condition 2 we have S|i ∪ S|⊥ |= S|[i,∞[thus S
′ |= S

(since by definition S = S|[⊥,i] ∪ S|[i,∞[). We now show that J |= S′ (thus
contradicting the fact that J ̸|= S).

Let D be a clause in S′ and let θ be a ground substitution such that J ̸|= Dθ.
By definition θ is either empty (if D is ground) or of the form x 7→ k where x
is the unique variable in D.

First, assume that D ∈ S|i. By Condition 5 S|⊥∪S|i+j |= shift(S|i, j). Since
I |= S ⊇ S|⊥ ∪ S|i+j this implies that I |= shift(S|i, j). By definition, D is of
the form n ̸≈ succi−1+ϵ(t)∨D′, where D′ is a t-clause of depth ϵ. By condition
3 D is not ground, thus t is a variable x. Then shift(S|i, j) contains the clause

12

n ̸≈ succi−1+ϵ+j(x) ∨D′ and I |= n ̸≈ succi−1+ϵ+j(x) ∨D′. Since J ̸|= Dθ we
must have J(n) = i − 1 + ϵ + k. Thus I(n) = J(n) + j = i − 1 + ϵ + k + j,
hence (since I |= n ̸≈ succi−1+ϵ+j(x)θ ∨ D′θ), we have I |= D′θ. The indices
occurring in D′ are either x or succ(x). Thus the indices occurring in D′θ are
either k or k+1. Furthermore if an index k+1 occurs in D′θ then D is of depth
1, thus ϵ = 1 (otherwise ϵ = 0). Hence the maximal index that can occur in
D′ is I(n)− i− j + 1. By definition of J , I and J coincide on the propositions
pl such that l ≤ I(n) − i − j + 1. Thus we have J |= D′θ, hence J |= Dθ, a
contradiction.

Now, assume that D ∈ S|[⊥,i[. W.l.o.g. we assume that Dθ is the least
instance (w.r.t. ≺) of a clause in S|[⊥,i[such that J ̸|= Dθ. Note that D cannot
be empty (otherwise S would be unsatisfiable). If D is purely equational then,
since D cannot be valid, D must be of the form n ̸≈ succl(t) for some l < i and
t ∈ V ∪ {0} (since D ∈ S|[0,i[and D is normalized). Then D is equivalent to
either n < l (if t ∈ V) or n ̸= l (if t = 0), where l < i. In the first case, we
have I ̸|= D which is impossible since I is a model of S and D ∈ S′ ⊆ S. In the
second case, since l < i and J(n) = I(n)− j ≥ i we have J |= D.

Thus D contains at least one index literal. We denote by lu the maximal
index literal in D (there is only one maximal index literal since D contains only
one variable and since ≺ is total). D is of the form lu ∨ D′ ∨ D′′, where D′

is parameter-free, D′′ is purely equational (with possibly D′, D′′ = �), and for
any literal l ∈ D′θ, l ≼ luθ. By definition of the ordering, this implies that the
index of every literal l ∈ D′θ is smaller or equal to uθ.

We distinguish two cases according to the value of uθ.

• If uθ ≤ I(n) − i − j + 1, then every index in D′θ must be lower or equal
to I(n)− i− j + 1. By definition of J , this implies that I and J coincide
on (lu ∨D′)θ. If D′′ is empty, then we have D = lu ∨D′, and the proof
is completed since by hypothesis J |= Dθ, thus J |= (lu ∨ D′)θ and I |=
(lu ∨ D′)θ. Otherwise, D′′ is of the form n ̸≈ succl(t). Since J ̸|= D′′θ

we have J(n) = l + k for some k ∈ N (if t = x) or J(n) = l (if t = 0).
Because D′′ is not empty, we cannot have D ∈ S|⊥ thus D ∈ S|[0,i[, hence
l < i. Thus we cannot have J(n) = l (since by hypothesis I(n) > i + j

and by definition of J , J(n) = I(n) − j, thus J(n) ≥ i), hence we are in
the first case and k > J(n)− i. u is either x or succ(x). Thus uθ is either
k or k + 1. Furthermore, if u is x then lu ∨D′ is an x-clause of depth 0
(otherwise lu would not be maximal), hence l + 1 < i and in this case we
have k > J(n)−i+1. Thus in every case uθ ≥ J(n)−i+1 ≥ I(n)−j−i+1
which contradicts our assumption.

• Now assume that uθ > I(n)− i− j +1. Since Dθ is the minimal instance
of a clause in S|[⊥,i[that is false in J and since S is saturated up to
level i we can assume that D′θ ≺ luθ (indeed, every literal D′θ must be
smaller than luθ, furthermore, if luθ occurs in D′θ then the factorization
rule applies on D and generates a clause with a strictly smaller instance
that is false in J). By definition of J this implies that lu is a negative
literal ¬pu. But then since J(puθ) = true, S|[⊥,i[contains a clause of the

13

form pv ∨E
′ ∨E′′ such that E′ is parameter-free, E′′ is purely equational,

there exists a substitution θ′ such that vθ′ = uθ, J ̸|= (E′ ∨ E′′)θ′ and
∀l ∈ E′, lθ′ ≺ pvθ′ .

The resolution rule applies on D and pv∨E
′∨E′′ and yields a clause of the

form (E′∨E′′∨D′∨D′′)σ, where σ is the mgu of u and v. An instance of
this clause is E′′θ′ ∨D′′θ ∨E′θ′ ∨D′θ. This clause is strictly smaller than
Dθ and false in J . Since S is saturated up to level i, (E′∨E′′∨D′∨D′′)σ
is level-redundant in S. Thus there exist m clauses C1, . . . , Cm ∈ S and m
substitutions σ1, . . . , σn such that C1σ1, . . . , Cmσm ≼ (E′∨E′′∨D′∨D′′)σ
and C1σ1, . . . , Cmσm |= (E′∨E′′∨D′∨D′′)σ. By Lemma 18, (E′∨E′′∨D′∨
D′′)σ is of level at most i, thus so are C1, . . . , Cm. If C1, . . . , Cm are of level
i then we must have J |= C1, . . . , Cm by the first item above. Otherwise,
by the minimality condition on Dθ, we have J |= C1σ1, . . . , Cmσm. In
every case we deduce that J |= (E′ ∨E′′ ∨D′ ∨D′′)σ which is impossible.

Lemma 22 by itself is not sufficient to define a suitable loop detection rule.
Indeed, Condition 2 is hard to check and Condition 3 is not guaranteed. For-
tunately, we show that these two conditions always hold for set of clauses that
are obtained from a k-normalized clause set:

Definition 23 A set of clauses S is k-reducible iff there exists a k-normalized
set of clauses S′ such that for every clause C ∈ S there exists a derivation
C1, . . . , Cn from S′ such that Cn = C and C1, . . . , Cn are level-redundant w.r.t.
S. ♢

Lemma 24 Let S be a k-reducible set of normalized clauses. For every i ≥ k,
S|i ∪ S|⊥ |= S|i+1. Hence S|i ∪ S|⊥ |= S|[i,∞[.

Proof. Since S is k-reducible, there exists a k-normalized set of clauses S′

such that C is derivable from S′. Furthermore, every clause in the derivation is
level-redundant w.r.t. S.

We show, by induction on the length of the derivation that for every clause
C ′ of level i+ 1 occurring in this derivation, we have S|i ∪ S|⊥ |= C ′. Since C ′

is of level i+1 > k, the length of the derivation is greater than 0. C ′ is deduced
from two clauses D1, D2 (resp. from a unique clause D1) by resolution (resp.
factorization). By Lemma 18, D1, D2 (resp. D1) are either in S|⊥ or of level i
or i+1. If D1 is of level i or ⊥ then S|i ∪S|⊥ |= D1 since D1 is level-redundant
w.r.t. S. Otherwise by the induction hypothesis, we must have S|i ∪S|⊥ |= D1.
The same property holds for D2. Consequently, the parents of C ′ are logical
consequences of S|i ∪ S|⊥ hence S|i ∪ S|⊥ |= C ′.

The second part of the lemma follows immediately by a straightforward

induction (since S|[i,∞[
def

=
∪

j≥i S|j).

Definition 25 If i > 0, we denote by S|⋆i the set of non ground clauses of level

i in S. If i = 0 then we define S|⋆0
def

= S|0. ♢

14

Lemma 26 Let S be a k-reducible, set of normalized clauses. If i > k, then
S|⋆i ∪ S|⊥ |= S|i.

Proof. Let C ∈ S|i. Since S is k-reducible, there exists a derivation of C from a
set of k-normalized clauses. Furthermore, every clause in this derivation is level-
redundant w.r.t. S. We prove, by induction on the length of the derivation, than
for every clause C ′ of level i occurring in the derivation, we have S|⋆i ∪S|⊥ |= C ′.
The proof is obvious if C ′ is non ground. If C is ground, since i > k, C ′

must be deduced from two clauses D1 and D2 by resolution (or factorization).
Furthermore, by Lemma 18, D1 and D2 are of level i or ⊥. By the induction
hypothesis we have S|⋆i ∪ S|⊥ |= D1, D2 |= C ′.

Proposition 27 Let S be a set of clause. Let C be a clause such that C ⊑l S.
Let i be the level of C. If C is not ground then C ⊑l S|⊥ ∪ S|⋆i .

Proof. By definition there exist n clauses C1, . . . , Cn of level ⊥ or i such
that for every substitution σ there exist n substitutions σ1, . . . , σn such that
Cσ1, . . . , Cσn |= C and C1θ1, . . . , Cnθn ≼ Cσ. Furthermore, since C is not
ground, C1, . . . , Cn are not ground. If Ci is of level ⊥ then it occurs in S|⊥
and if it is of level i, then, since it is not ground, it occurs in S|⋆i . Thus
C1, . . . , Cn ∈ S|⊥ ∪ S|⋆i and C ⊑l S|⊥ ∪ S|⋆i .

Lemma 28 Let S be a k-reducible set of normalized clauses and let i, j be nat-
ural numbers.

If:

1. j ̸= 0 and i > k.

2. S is saturated up to level i.

3. S|⊥ ∪ S|⋆i+j |= shift(S|⋆i , j).

Then: S is satisfiable iff S ∪ {n < i + j} is. n < i + j is called a pruning
clause for S.

Proof. Let S′ = S|[⊥,i[∪
∪

l≥i S|
⋆
l . By definition we have S|l = S′|l if l < i,

and S′|l = S|⋆l if l ≥ i. Furthermore, since S is k-reducible, S′ is also k-
reducible. Finally, by Lemma 26 we have S ≡ S′. Hence it suffices to show
that S′ ∪ {n < i + j} is satisfiable. We prove that S′ satisfies the application
conditions of Lemma 22.

1. S′ is saturated up to level i. Let C be a clause deduced from clauses
in S′|[⊥,i[= S|[⊥,i[. Since S is saturated up to level i, C is level-redundant
with respect to S. Hence C ⊑l S. If the level of C is strictly lower than i
we deduce that C ⊑l S|[⊥,i[hence C ⊑l S

′. Otherwise, by Lemma 18, C
is non ground, thus C ⊑l S|⊥ ∪ S|⋆i by Proposition 27.

2. S′|i ∪ S
′|⊥ |= S′|[i,∞[. This is a direct application of Lemma 24.

15

3. S′|i contains no ground clause. If i = 0, then this is trivial since by
definition there exists no ground clause of depth 0. If i > 0 then the result
stems from the definition of S|⋆i .

4. S′|⊥ ∪ S′|i+j |= shift(S′|i, j). We have S|⊥ ∪ S|⋆i+j |= shift(S|⋆i , j) and
S|⊥∪S|

⋆
i+j = S′|⊥∪S

′|i+j . Thus S
′|⊥∪S

′|i+j |= shift(S|⋆i , j). Furthermore
S|⋆i \ S

′|i hence shift(S|⋆i , j) \ shift(S
′|i, j).

In practice, Condition 3 may be difficult to check. A simple solution (that
is sufficient for the termination result in the following section) is to check that
S|⋆i+j = shift(S|⋆i , j) (up to a renaming of variables).

Example 29 Consider the clause set S = {1, . . . , 8} of Example 7 (generated
from the formula pn ∧ (∀x psucc(x) ⇒ px) ∧ ¬p0):

1 n ̸≈ x ∨ px (level 1)
2 py ∨ ¬psucc(y) (level ⊥)
3 ¬p0 (level ⊥)
4 n ̸≈ succ(y) ∨ py (level 2)
5 n ̸≈ 0 (level 1)
6 n ̸≈ succ(0) (level 2)
7 n ̸≈ succ(succ(y)) ∨ py (level 3)
8 n ̸≈ succ(succ(0)) (level 3)

The initial clauses 1, 2, 3 are of level ⊥, 0 or 1 thus S is 1-reducible. Let i = 2,
j = 1. We have S|⋆i = {n ̸≈ succ(y) ∨ py}, S|

⋆
i+j = {n ̸≈ succ(succ(y))} (the

clauses 6 and 8 are dismissed since they are ground, according to Definition 25).
Thus shift(S|⋆i , j) = {n ̸≈ succ(succ(y)) ∨ py} = S|⋆i+j , hence Condition 3 holds
trivially. Furthermore, it is easy to check that S is saturated up to level i.

Hence the pruning rule applies and generates: n ̸≈ succ(succ(succ(x))), i.e.
n < 3. Together with clauses 5, 6 and 8, we obtain a finite, purely equational,
and unsatisfiable clause set. The unsatisfiability of this set can be tested by
standard algorithms. Thus the initial clause set is unsatisfiable. ♣

Example 30 Consider the following schema:

p0 ∨
n∧

x=0

(px ⇒ qx) ∧
n∧

x=0

(qx ⇔ ¬qsucc(x)) ∧ ¬qn ∧ ¬qsucc(n).

This schema can be encoded by the following clause set (see Section 8 for details):

1 p0 (level ⊥)
2 ¬px ∨ qx (level ⊥)
3 ¬qx ∨ ¬qsucc(x) (level ⊥)
4 qx ∨ qsucc(x) (level ⊥)
5 n ̸≈ x ∨ ¬qx (level 1)
6 n ̸≈ x ∨ ¬qsucc(x) (level 0)

16

We apply our calculus (we assume that p ≺ q):

7 q0 (resolution 1,2) (level ⊥)
8 n ̸≈ 0 (resolution 7, 5) (level 1)
9 n ̸≈ succ(x) ∨ qx (resolution 5,4) (level 2)
10 ¬psucc(x) ∨ ¬qx (resolution 2, 3) (level ⊥)
11 n ̸≈ succ(succ(x)) ∨ ¬qx (resolution 9, 3) (level 3)
12 n ̸≈ succ(succ(0)) (resolution 11, 7) (level 3)
13 n ̸≈ succ(succ(succ(x))) ∨ qx (resolution 11, 4) (level 4)
14 n ̸≈ x ∨ qx (resolution 4, 6) (level 1)
15 n ̸≈ succ(x) ∨ ¬qx (resolution 3, 14) (level 2)
16 n ̸≈ succ(0) (resolution 7, 15) (level 2)
17 n ̸≈ succ(succ(x)) ∨ qx (resolution 4, 15) (level 3)
18 n ̸≈ succ(succ(succ(x))) ∨ ¬qx (resolution 17, 3) (level 4)
19 n ̸≈ succ(succ(succ(0))) (resolution 18, 7) (level 4)

Let i = 2, j = 2. Let S′ = {1-18}. S′ is saturated up to level 2. We have
S′|⋆2 = {9, 15}, S′|⋆4 = {13, 18}. One can easily check that shift(S|⋆2, 2) = S|⋆4.
Thus the looping rule applies and generates: n ̸≈ succ(succ(succ(succ(x)))) i.e.
n < 4. Together with the clauses 8, 10, 12 and 19, this yields a finite, purely
equational, unsatisfiable, clause set. ♣

6 Termination

In this section we define a pruning rule based on Lemma 28 and we show that
the addition of this rule makes the calculus terminating, provided that the rules
are applied in a fair way.

Definition 31 A derivation with pruning from a clause set S is a (possibly
infinite) sequence of clause sets (Si)i∈I , with I = [0, n] or I = N, such that
S0 = S and for every i ∈ I \ {0}, one the following conditions holds:

• Si = Si−1 ∪ {C} where C ∈ R(Si−1) (deduction step).

• Si = Si−1 ∪ {C} where C is a pruning clause for Si−1 (pruning step).

• Si = Si−1 \ {C}, where C is level-redundant in Si (deletion step). ♢

In practice identifying all level-redundant clauses is unfeasible, thus we only
delete the clauses that are valid or subsumed.

We write S ⊢p C if there exists a derivation with pruning C1, . . . , Cn from
S such that Cn = C.

Definition 32 A derivation with pruning of a clause set S is a derivation with
pruning containing every clause in S (here S denotes the conclusions of the
derivation). ♢

17

A derivation is non redundant iff the deletion steps are applied with the
highest priority. It is fair iff for every C such that S ⊢p C, there exists an i ∈ N

such that C is redundant w.r.t. Si.

Lemma 33 Let (Si)i∈I be a derivation with pruning from a k-normalized clause
set. For every i ∈ I, Si is k-reducible.

Proof. By definition every clause C in Si can be deduced from clauses in
S. Thus there exists a derivation C1, . . . , Cn from S such that Cn = C. By
definition, for every clause Cj (1 ≤ j ≤ n), either Cj ∈ Si, or Cj has been
deleted by a previous redundancy elimination step. In both cases Cj must be
level-redundant with respect to Si.

Corollary 34 Let (Si)i∈I be a fair, non redundant derivation with pruning from
a finite and normalized clause set. I is finite.

Proof. Since S0 is finite and normalized, it must be k-normalized for some
k ∈ ⊥∪N. Assume that I is infinite. By Proposition 12, the number of distinct
clauses of a given level is finite. Thus for every l, there exists an index γ(l) such
that every clause that is generated after this step is of level strictly greater than
l. Since I is infinite, γ is strictly increasing. Let l be a natural number strictly
greater that the maximal number of distinct normalized clause sets of the same
level.

For every m ∈ N, let S′
m denote the set of clauses C such that n ̸≈

succm−1+ϵ(x) ∨ C ∈ Sγ(l)|m, with x ∈ V. Obviously, S′
m is a set of normal-

ized clauses. Then by the pigeonhole argument, there exist i < l and j ̸= 0 such
that S′

i = S′
i+j . By definition, this implies that Sγ(l)|

⋆
i+j = shift(Sγ(l)|

⋆
i , j) (thus

in particular Sγ(l)|
⋆
i+j |= shift(Sγ(l)|

⋆
i , j)).

Furthermore, Sγ(l) is saturated up to level i (since the derivation is fair and
since no clause of level i or i + 1 can be deduced after step γ(l)). Thus the
pruning rule applies on Sγ(l). Hence it also applies on Sγ(l)+1, By fairness
it must be applied at some point, thus the clause n < i+ j occurs in one of the
Sk. But then the number of non redundant clauses is finite since any clause of
level ≥ i+ j is subsumed by n < i+ j.

7 Constructing the resolution proof

From the result of the previous sections, we know that a normalized clause set S
is satisfiable iff a finite set of unsatisfiable purely equational clauses is derivable
from S. In this section we show how to explicitly construct a resolution proof
for S (which is needed for applying the cut elimination procedure in [2]). Since
S is parameterized by a parameter n, so is its proof, which is actually a schema
of (propositional) resolution proofs.

We introduce some notations. Let δ be a clause set or a derivation. If k ∈ N,
we denote by δ[k] the clause set or derivation obtained by:

18

• Deleting from δ every clause of the form n ̸≈ t ∨ C such that k is not an
instance of t.

• Replacing every clause n ̸≈ t ∨ C such that k = tσ by Cσ.

Intuitively the clauses in S[k] are exactly those obtained by fixing the value
of the parameter n to k. Notice that the clauses in δ[k] are standard clauses
(with no parameter). We have the following:

Proposition 35 Let S be a set of clauses. Let I be an interpretation. I |= S

iff I |= S[I(n)].

Proof. This follows immediately from the definition.

Thus a set of clauses S is satisfiable iff there exists a natural number k such
that S[k] is satisfiable. The set {S[k] | k ∈ N} is the family of (standard) clause
sets denoted by the schema S. Our goal is to construct, from a refutation of S,
a family of refutation (without pruning) of every clause set S[k].

Proposition 36 For every set of non parameter-free and non ground clauses S
and for every pair of natural number k, j such that k ≥ j, we have shift(S, j)[k] =
S[k − j].

Proof. By definition shift(S, j) is the set of clauses of the form n ̸≈ succi+j(x)∨
C, where x ∈ V and n ̸≈ succi(x) ∨ C ∈ S. Notice that every clause in S must
have the form n ̸≈ succi(x) ∨ C where i ∈ N and x ∈ V .

Thus shift(S, j)[k] is the set of clauses of the form Cσ, where succi+j(x)σ = k,
i.e. the set of clauses of the form C{x→ k− j − i} where n ̸≈ succi(x)∨C ∈ S

and i ≤ k − j. This last set of clauses is exactly S[k − j].

Proposition 37 Let S be a set of normalized clauses. If δ is a derivation from
S, then δ[k] is a derivation (in the usual sense) from S[k].

Proof. The proof is by a straightforward induction on the length of δ.

The following lemma handles the (easy) case of the derivations without prun-
ing.

Lemma 38 Let S be a normalized clause set and let δ be a refutation of S. Let

(∆k)k∈N be the family of derivations defined by ∆k
def

= δ[k].
If δ does not contain any application of the pruning rule then ∆k is a refu-

tation of S[k].

Proof. This is an immediate consequence of Proposition 37.

Let δ be a derivation with pruning from a clause set S. We may assume
that δ contains only one application of the pruning rule (this is sufficient to
ensure termination, as shown in Section 6). We denote by iδ and jδ the natural
number i, j corresponding to the application of the pruning rule in δ (as defined
in Lemma 28). We denote by Sδ the set of clauses on which the pruning rule is

applied and by T δ the set: T δ def

= Sδ|⋆i ∪ S|⊥.

19

Lemma 39 Let S be a set of normalized clauses and let δ be a refutation with
pruning of S.

Let δ′ be the greatest subderivation of δ from T δ.
Let (∆k)k∈N be the family of derivations defined as follows:

• ∆k
def

= δ[k] if k < i.

• ∆k
def

= δ[k].Γk if k ≥ i where:

– Γk
def

= δ′[k] if k < i+ j

– Γk
def

= δ′[k].Γk−j if k ≥ i+ j

∆k is a refutation of S[k].

Proof. If k < i, then the proof is an immediate consequence of Proposition
37. If k ≥ i, we show (by induction on k) that Γk is a refutation of T δ[k]. This
is sufficient to obtain the desired result since, by Lemma 24, each clause in T δ

occurs in δ (thus δ[k] is a derivation of T δ[k]).
Again, we distinguish two cases, according to the value of k.

• Assume firstly that i ≤ k < i+ j. By definition, δ′[k] is a derivation from
T δ[k]. δ must contain a clause of the form n ̸≈ k. This clause is of level
greater than i, thus must be deducible form T δ, as shown in the proof of
Lemma 24. Hence δ′ is a derivation of n ̸≈ k and δ′[k] is a refutation of
T δ[k].

• Now assume that k ≥ i + j. Every clause in Sδ|⋆i+j is deducible from

T δ (as shown by Lemma 24). Thus δ′ is a derivation from T δ of Sδ|⋆i+j .

By definition of the pruning rule, we have Sδ|⋆i+j = shift(Sδ|⋆i , j). Hence

δ′ is a derivation from T δ of shift(Sδ|⋆i , j), thus δ′[k] is a derivation of
shift(Sδ|⋆i , j)[k].

We have T δ = Sδ|⋆i ∪ Sδ|⊥. By Proposition 36 Sδ|⋆i [k − j] is equal to
shift(Sδ|⋆i , j)[k]. Hence δ′[k] is a derivation of Sδ|⋆i [k − j]. Thus δ′[k] is a
derivation of Sδ|⋆i [k − j] ∪ Sδ|⊥ hence of T δ[k − j]. But by the induction
hypothesis Γk−j is a refutation of T δ[k−j]. Thus δ′[k].Γk−j is a refutation
of T δ[k].

8 Expressive power

Although the class of normalized clause sets is strongly restricted from a syn-
tactic point of view it is actually rather expressive. We show how to encode
literals that are outside the class into normalized clause sets.

20

8.1 Encoding translation on indices

We first consider atoms of the form psucck(x) (where k ∈ N). Such formulae are

encoded by a new predicate symbol pkx, with the intended meaning that pkx ⇔
psucck(x). The following axioms ensure that pkx have the intended interpretation:

Ak
def

= {plx ⇔ pl−1
succ(x), p

0
x ⇔ px | k ≥ l > 0}.

Notice that Ak is finite and normalized. We have the following:

Proposition 40 If I |= Ak then for every l ∈ [0, k], I |= (plx ⇔ psuccl(x)).

Proof. By a straightforward induction on l.

8.2 Encoding inequalities and equalities

The formula x+ l > ϵ.n+ k (with l, k ∈ N, ϵ ∈ {0, 1}) is encoded by a predicate
ql,ϵ,kx , whose semantics are defined by the following axioms:

A′
l′,k′ is the set of clauses of the form:

ql,ϵ,kx ⇔ q
0,ϵ,k
succl(x)

q
0,ϵ,k+1
succ(x) ⇔ q0,ϵ,kx

¬q0,ϵ,k0

q
0,0,0
succ(x)

n ̸≈ x ∨ q0,1,0
succ(x)

n ̸≈ x ∨ ¬q0,1,0x

q
0,1,0
succ(x) ∨ ¬q0,1,0x

where l ∈ [0, l′], k ∈ [0, k′] and ϵ ∈ {0, 1}.
Again, A′

l′,k′ is finite. It is not normalized due to the index succk(x) in the
first axiom, but obviously one can apply the previous transformation to obtain
an equivalent normalized formulation.

Proposition 41 Let I |= A′
l′,k′ . For every (l, k, ϵ) ∈ [0, l′]× [0, k′]× {0, 1}, we

have I |= ql,ϵ,kx ⇔ x+ l > ϵ.n+ k.

Proof. Assume that l = k = 0. If ϵ = 0 then the interpretation of ql,ϵ,k is fixed
by the third and fourth axioms and we have indeed q0,0,0

succ(x) (i.e. succ(x) > 0)

and ¬q0,0,00 (i.e. 0 ̸> 0). If ϵ = 1, then the interpretation of ql,ϵ,k is fixed by the
fifth and sixth axioms that state that we have q0,1,0

succ(x) if x = n (i.e. succ(n) > n)

and ¬q0,1,0x if x = n (i.e. n ̸> n). Furthermore, the last axiom ensures that
q0,1,0x is true (resp. false) if x > s(n) (resp. x < n).

By using the second and third axiom we can show by a straightforward in-
duction on x that q0,ϵ,kx is equivalent to q0,ϵ,k−x

0 if x < k and to false otherwise.

Then the first axiom states that ql,ϵ,kx is equivalent to q0,ϵ,kx+l .

The formulae x + l ≤ ϵ.n + k can be easily encoded as x + l + 1 ̸> ϵ.n + k.
Then x+ l ≈ ϵ.n+ l can be written as x+ l + 1 ≥ ϵ.n+ l ∧ x+ l ≤ ϵ.n+ l + 1.

21

8.3 Encoding schemata with several parameters

The restriction to one parameter only is also non restrictive. Indeed, let S be
a clause set with k parameters n1, . . . , nk. We introduce a new parameter n
(which encodes the max of the ni’s). The formula x > nl are defined by atoms
rlx, defined by the following formulae A′′:

¬rlx ∨ rl
succ(x)

¬rl0
n ̸≈ x ∨ rl

succ(x)

where l ∈ [1, k].
Notice that the obtained formula is normalized.

Proposition 42 If I |= A′′ then for every l ∈ [1, k] there is exactly one natural
number nl such that I |= rlx iff x > nl. Furthermore, nl ≤ n.

Proof. Let nl be the lowest natural number such that I |= rl
succ(nl)

. nl exists

since rl
succ(nl)

holds (by the third axiom). We have I |= ¬r0l , thus by minimality

of nl r
l
nl

cannot hold. Then by using the first axiom we show that I |= rlx for

every x > nl and that I |= ¬rlx for every x ≤ nl.

Then the formula x ≈ nl is written x+ 1 > nl ∧ x ̸> nl.

8.4 Inductive definitions

Now, consider an inductive definition: ϕ0 ⇔ B and ϕk+1 ⇔ I if k ≥ 0 where B
and I denotes formulae and where I contains atoms of the form pk or psucc(k)
or inductively defined formulae ψk (with possibly ϕ = ψ). This definition can
be easily expressed in our formalism by considering every such formula ϕ as a
predicate symbol:

ϕ0 ⇔ B

ϕsucc(x) ⇔ I.

One gets a 1-normalized clause set by translation into clausal form. More com-
plex inductive definition may be encoded in the same way. In particular, formu-
lae of the form

∨b
i=a ϕi are easily encoded by an atom ψb−a+1 =

∨b−a+1
x=1 ϕx−1+a

defined as follows:
ψ0 ⇔ false

ψx+1 ⇔ ϕx−1+a ∨ ψx.

After translation into clausal normal form and after removing the translation
as explained in Section 8.1, one gets a normalized clause set.

22

8.5 Regular schemata

Using the previous transformations it is easy to prove that every regular schema
can be encoded into a normalized clause set, i.e. that for every regular schema ϕ
one can construct a normalized clause set S such that ϕ and S are equisatisfiable
(every model of S is also a model of ϕ and every model of ϕ can be extended
into a model of S). Furthermore, the size of S is linear w.r.t. the one of ϕ (if
natural numbers are encoded as unary terms in the original schema2 and if a
structural-preserving transformation is used to compute clausal forms).

Furthermore, normalized clause sets allow one to express properties that
cannot be stated as regular schemata, for instance the formula

∧∞

i=0 pi is easily
expressed by the normalized clause set {pi} but it is not a regular schema (due
to the unbounded conjunction).

References

[1] V. Aravantinos, R. Caferra, and N. Peltier. A schemata calculus for propo-
sitional logic. In TABLEAUX 09 (International Conference on Automated
Reasoning with Analytic Tableaux and Related Methods), volume 5607 of
LNCS, pages 32–46. Springer, 2009.

[2] M. Baaz and A. Leitsch. Cut-elimination and Redundancy-elimination by
Resolution. Journal of Symbolic Computation, 29(2):149–176, 2000.

[3] H. Comon and P. Lescanne. Equational problems and disunification. Journal
of Symbolic Computation, 7:371–475, 1989.

[4] D. Cooper. Theorem proving in arithmetic without multiplication. In
B. Meltzer and D. Michie, editors, Machine Intelligence 7, chapter 5, pages
91–99. Edinburgh University Press, 1972.

[5] M. Horbach and C. Weidenbach. Superposition for fixed domains. ACM
Trans. Comput. Logic, 11(4):1–35, 2010.

[6] M. Presburger. Über die vollständigkeit eines gewissen systems der arith-
metik ganzer zahlen, in welchen die addition als einzige operation hervortritt.
In Comptes Rendus du I congrés de Mathématiciens des Pays Slaves, pages
92–101, 1929.

2Otherwise a schema as simple as p
1 0 . . . 0
︸ ︷︷ ︸

n

could not encoded in linear size).

23

