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Linguistic summaries for periodicity detection based

on mathematical morphology
Gilles Moyse, Marie-Jeanne Lesot and Bernadette Bouchon-Meunier, Fellow, IEEE

Abstract—The paper presents a methodology to evaluate the
periodicity of a temporal data series, neither relying on assump-
tion about the series form nor requiring expert knowledge to
set parameters. It exploits tools from mathematical morphology
to compute a periodicity degree and a candidate period, as
well as the fuzzy set theory to generate a natural language
sentence, improving the result interpretability. Experiments on
both artificial and real data illustrate the relevance of the
proposed approach.

Index Terms—Linguistic summaries, Mathematical morphol-

ogy, Temporal data mining, Temporal quantifier, Periodicity
computing, Natural language generation

I. INTRODUCTION

L
INGUISTIC summaries aim at building human under-

standable representations of data sets, thanks to natural

language sentences and can take different forms representing

different kind on patterns [16]. This paper considers this task

in the case of time series for which regularity is looked for,

more precisely summaries of the form “Regularly, the data take

high values”. If the data are membership degrees to a fuzzy

modality A, the sentence can be interpreted as “regularly,

the data are A”. Moreover, if the sentence indeed holds, a

candidate period is looked for, and an appropriate linguistic

formulation is defined, based on the choice of a relevant time

unit, approximation and adverb. The final sentence can for

instance be “Approximately every 20 hours, the data take high

values”.

This issue lies at the cross-roads of three main domains,

namely linguistic summaries [29], [30], temporal data mining

[9], [18], and signal processing [3], as detailed in Section II.

The method proposed in this paper, called Detection of

Periodic Events (DPE), does not require assumption about

the type of the time series (e.g. a specific generator function)

nor expert knowledge to set parameters. It exploits tools from

mathematical morphology to compute a periodicity degree and

a candidate period, as well as the fuzzy set theory to generate a

natural language sentence, improving the result interpretability.

The paper is organized as follows: Section II gives a brief

overview of related works. Section III gives an overall view

of the proposed methodology for detecting periodic event, and

Sections IV, V and VI detail its successive steps, namely

data grouping, periodicity computing and linguistic rendering.

Lastly, Section VII presents experimental results on both

artificial and real data.

Gilles Moyse, Marie-Jeanne Lesot and Bernadette Bouchon-Meunier are
with the LIP6 laboratory, UPMC Univ. Paris 06, CNRS UMR 7606, LIP6 4
place Jussieu 75252 Paris cedex 05, France (e-mail: gilles.moyse@lip6.fr).

II. RELATED WORKS

This section briefly describes the principles of Linguistic

Summaries and Temporal Data Mining, at the crossroads of

which the DPE lies. Besides, since DPE is designed to com-

pute periodicities, the main corresponding Signal Processing

methods are presented as well.

To the best of our knowledge, DPE is the first approach

combining these fields and periodic mining more specifically.

A. Linguistic Summaries

Linguistic summaries aim at building compact represen-

tations of given data sets, in the form of natural language

sentences describing the main characteristics of the data. They

are produced either using fuzzy logic, in which case they

are called Fuzzy Linguistic Summaries, or based on Natural

Language Generation techniques. Only the former is discussed

in this paper; the reader is refered to [5] for a comparison

between these two areas.

Fuzzy linguistic summaries, introduced in the seminal pa-

pers [29], [30], [15], are built on sentences called “proto-

forms”, such as “QX are A” where Q is a quantifier (e.g.

“most”, “less than half”, or “around 10”), A a linguistic

modality associated with one of the attributes (e.g. “young”

for the attribute “age” or “tall” for the attribute “height”)

and X the data to summarize. The relevance of a candidate

protoform, measured by the truth degree of its instantiation for

the considered data, is the Σ-count of the data set according

to the chosen linguistic modality.

In the seminal papers, “QAX are B” is also considered, and

its truth degree is computed as the quotient of the Σ-count

according to A and B with the Σ-count according to B. Other

protoforms can be evaluated [16].

Other extensions define and evaluate protoforms considering

the temporal nature of data sets [13], [14]. Trend attributes are

computed from the original data set in a pre-processing step,

and then included in the summaries, leading for example to

“Most slowly decreasing trends are of a very low variability”

or “Trends that took most of the time are constant” [14]. Fuzzy

Temporal Propositions [6] allow to represent knowledge and

rules which are true at certain times, as exemplified by the

sentences “Temperature was high in the last 30 minutes” or

“Pressure was high a little before temperature was low at some

point during the last half an hour”. This method also relies on

fuzzy logic and allows the computation of a truth degree [6].

B. Temporal Data Mining

Temporal Data Mining groups various issues related to data

mining when considering the temporal aspect of the data

mailto:gilles.moyse@lip6.fr
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(see [9], [18] for exhaustive states of the art). Among the

various tasks addressed by this field, we focus here on pattern

detection.

Its objective is to discover patterns of interest in the frame-

work of unsupervised learning, i.e. with unlabeled data. To

this aim, an extension of the Apriori algorithm for temporal

data has been proposed [1]. While these approaches work with

databases over different sequences, frequent episodes mining

allows to find patterns in one long sequence [22]. In the

same context, other algorithms offer the possibility to mine

sequential patterns within a given time-window, or having a

given duration [19], [23].

On the other hand, rules which are verified on a fixed pe-

riodic basis, known as cyclic association rules, are introduced

in [25]: the time axis is split into constant length segments,

valid association rules are searched on each segment. This

approach looking for exactly periodic patterns has been ex-

tended to search for partial periodicities, i.e. partially matching

patterns, like “A?C”, instead of “ABC” [11], [12]. In the latter

though, the user has to provide a pattern to the algorithm.

Therefore a further extension identifies a list of candidate

time periods and patterns to discover, using a Fast Fourier

Transform [4]. Yet this method requires the periodic event

to be present throughout the data set. Lastly, the p-pattern

concept, introduced in [20], extends the partial periodicity to

not only accept incomplete patterns but to also allow irregular

periodicities, through the use of a Chi-squared test.

Other approaches have been developed, not to mine patterns,

but to help working with these methods. For instance, the

approach proposed in [2] automatically determines upper and

lower thresholds for the algorithm of frequent episodes search

[22]. In order to compare the different methods, a benchmark

is designed based on the general Bayes error rate, which is

known to be the lowest achievable average error rate [7].

C. Signal period measurement

Signal processing is a wide area covering numerous topics,

period measurement among others. Different methods have

been designed in order to compute the periodicity of a sig-

nal [3].

Among them, one consists in approximating the original

signal as a sine curve with optimal parameters, best matching

the original data [17], [21]. Another relies on the principle of

zero-crossing to estimate the period as the gap between two

successive zero-crossings with same sign of slope [3].

Other methods more robust to noise have been designed,

as those based on the analysis in frequency domain. Some

of them are based on signal analysis after a Fast Fourier

Transform [26]. In [8], the periodicity is estimated with a

combination of spectral analysis and resampling techniques.

Lastly, wavelets can also be used to compute the signal’s

periodicity, as in [24].

The method presented in the next section is simpler these

latter two last and proposes a new approach of calculating

periodicity with Mathematical Morphology.

III. DETECTION OF PERIODIC EVENTS (DPE)

The aim of the proposed method is to determine frequent

periodic events, based on the computation of a relevance

degree for sentences of the form “M every p unit, the data

take high values”, called periodicity degree. It is based on the

principle that can be stated as follows: “if a measurement is

repeatedly high for an approximately constant duration, and

the gaps between these high values have approximately the

same size, then the statement “M every p unit, the data take

high values” holds”.

The sentence can be seen as “Q data are high” in a linguistic

protoform context where Q quantifies “M every p unit”.

This section gives a global overview of the Detection of Pe-

riodic Events (DPE) methodology, making its input and output

explicit and describing its global architecture. Its components

are then detailed in Sections IV to VI.

A. Input

The input is a temporal data set denoted X containing

normalized values (xi), i.e.:

X = {xi, i = 1, ..., N} such that ∀i xi ∈ [0, 1]

The data are considered to be sampled at regularly spaced

dates, i.e. xi is obtained at date ti = t1 + (i− 1)×∆t where

t1 is the initial measurement time and ∆t is the sampling rate.

The input data can in particular be membership degrees,

e.g. resulting from the fuzzification of collected data through

a linguistic variable. In this case, the proposed summaries

can be interpreted in the protoform framework [13], [14] (see

Section II).

B. Output

The proposed DPE method outputs a periodicity degree π,

a period p and a describing sentence “M every p unit, the data

take high values”. The latter allows to illustrate the figures,

and can be used in an automatic text generation system for

instance.

The periodicity degree π is a numerical value in the interval

[0,1]. It is not a membership to a fuzzy set, so it is not a truth

degree as in the fuzzy linguistic summary paradigm. It must

be interpreted as a quality measure.

In the sentence, p is the estimated dataset period in a

numerical form, M is an adverb like “exactly”, “approxi-

mately”, “roughly”, and unit is a time unit like “hour”, “week”,

“second”.

C. Architecture

The global architecture of the proposed DPE method con-

sists in 3 steps: a first module, described in Section IV,

performs data grouping so as to identify groups of consecutive

high values and low values. Then, as described in Section

V, the groups are processed in a “periodicity computing”

step based on mathematical morphology that yields both a

periodicity degree and a candidate period. Finally, the result

is transformed into a sentence during the linguistic rendering

phase detailed in Section VI.
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IV. HIGH AND LOW VALUE DETECTION

The first DPE step aims at identifying groups of respectively

consecutive high and low values, so as to later estimate the

regularity of their sizes. In this section, after briefly presenting

a baseline naive method that requires user set parameters, we

describe the proposed grouping method based on functional

mathematical morphology.

A. Baseline Grouping

The baseline method requires the user to set a threshold

tvalue to define what is a high value. Groups are defined

as consecutive values higher than tvalue with a maximality

constraint. More formally, a subset Gfl = {xi, i ∈ [f, l]} is

a high value group iff ∀i ∈ [f, l] xi ≥ tvalue, xf−1 < tvalue
and xl+1 < tvalue.

In order to make the method more robust, we propose

to merge such groups if they are separated by only a few

low values: indeed, groups could be split because of noisy

low values. Thus the baseline method also requires a second

parameter tmerge so that groups separated by less than tmerge

low values are merged.

More formally, if Gfl and Gf ′l′ are such that |f ′ − l| <
tmerge they are merged with all values between them, leading

to the new group Gfl′ .

B. Mathematical Morphology Grouping

The proposed grouping method based on functional math-

ematical morphology operators does not depend on user-set

parameters and automatically adapts to the considered data.

We first briefly recall the principles of functional mathematical

morphology and then describe its application to high value

grouping.

1) Functional Mathematical Morphology Reminder: Math-

ematical Morphology (hereafter MM) [28] defines a set of

tools for the analysis of spatial structures as the shape and size

of objects. It has been extensively used for image processing,

where these structures are defined as homogeneous regions of

the image (e.g. connected sets of pixels with the same color).

Mathematical morphology is based on two basic operators,

erosion and dilatation, combined in various ways to define

more complex composed operators. In functional MM, given

a function f : X → Y and a structuring element B defined as

a subset of X of a known shape, e.g. an interval centered at

the origin, the erosion is the function ǫB(f) : X → Y defined

as:

[ǫB(f)](x) = inf
b∈B

f(x+ b)

Dilatation is defined in a similar way, using a sup operator.

These two basic operations can be used repeatedly or alterna-

tively, leading to different type of composed operators, such

as opening, closing or alternated filters. The interested reader

is referred to [28] for a more detailed presentation.

2) Exploitation for High Value Grouping: In the considered

application that aims at identifying sets of consecutive high

values, f is the function that associates each time stamp with

the observed value at this date, i.e. f(ti) = xi.

0.0 

0.5 

1.0 

Figure 1. Successive erosions. The original dataset is the outer line in orange,
and the successive erosions are the purple lines turning inward.

The chosen operators are successive erosions with a struc-

turing element defined as B = (−1, 0, 1), so as to take into

account the previous, current and next time stamp, i.e.:

[ǫB(f)](ti) = min(f(ti−1), f(ti), f(ti+1))

x1
i = min(xi−1, xi, xi+1) (1)

denoting x1
i the value obtained after one erosion step. On the

edge of the data set, we set x1
1 = 0 and x1

N = 0. The result of

k successive erosions is denoted by xk
i and x0

i is the ith data

point from the original dataset.

Since erosion allows to slim the data progressively, we

propose to perform a full erosion, that is successive erosions

for all k = 1..z until all values equal 0, i.e. xz
i = 0 for all i.

Figure. 1 illustrates a data set being eroded.

We exploit the erosion history, computing for each data

point the erosion score:

esi =
z∑

k=0

xk
i (2)

As illustrated on Fig. 2, these scores can be used to define

a robust method to detect high values, even for highly noisy

data: indeed, high values in homogeneous high regions are

the last ones to be set to 0, so the ones with high es erosion

scores. So it makes it possible to identify high values with

an automatic adaptation to the data level, without requiring a

user-set threshold as tvalue in the baseline method. Moreover,

it automatically ignores small areas of low values within high

value groups, so the user does not have to set a merging

threshold, as tmerging in the baseline method. Isolated low

values, which are considered as noise, are partially ignored

since they become zero after a few erosions.

We propose to symmetrically compute erosion scores from

the complement of the data, i.e. xi = 1 − xi for all i = 1..n,

leading to the score esi.
Lastly, groups of high values are automatically defined

as sets of consecutive values for which esi ≥ esi with a

maximality constraint, and groups of low values conversely.

The proposed mathematical morphology grouping is illus-

trated in Fig. 2 which shows the considered data set, the

erosion scores es and es and the limits of the groups.

In the following, we respectively denote GH
j , j = 1..nH

and GL
j , j = 1..nL the identified high and low value groups.

V. PERIODICITY COMPUTING

Once groups of high and low values have been identified,

the periodicity computing step estimates if they alternate in a

regular manner, i.e. if a regularity in sizes can be observed.
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Figure 2. Considered data set X (solid purple line), the erosion scores es

(small dash orange line) and es (large dash green line) and the group marks
(red vertical line topped with a dot representing the beginning of a group and
green line topped with a triangle indicating its end).

Indeed, in such a case, it means that the data alternatively and

regularly contain high and then low values, thus presenting the

periodicity property defined earlier.

In this section we describe the definition of the computed

periodicity degree and candidate period.

A. Size Computation

Each group, containing high or low values, is characterized

by its size. This size is computed either in a crisp or in a fuzzy

way, i.e. using a crisp or a fuzzy cardinality, leading to:

Crisp size Fuzzy size

GH
j sHj =

∑
x∈GH

j
1 s̃Hj =

∑
x∈GH

j
x

GL
j sLj =

∑
x∈GL

j
1 s̃Lj =

∑
x∈GL

j
1− x

These values computed for all groups, respectively for j =
1..nH and j = 1..nL, define the sets SH , S̃H , SL and S̃L.

B. Periodicity Degree Computation

As described in the two following subsections, regularity

is then computed separately for each type of group (high/low

values); the two regularity scores are then merged into the

periodicity degree.

1) Regularity Score: For each type of group, the regularity

ρ is defined as the opposite of a statistical dispersion measure.

For the dispersion measure, we propose to consider the

coefficient of variation CV , defined as the quotient of the

mean absolute deviation and the average. Indeed, as a devia-

tion measure, the mean absolute deviation is more robust to

noise than the more usual standard deviation (for a detailed

discussion, see [10]). Moreover, comparing this mean absolute

deviation to the average defines a relative deviation, which

makes it possible to adapt to the value level: a deviation of

1 for instance must be considered small when the average is

1,000 but important if the average value is 0.1.

More formally, for a set of sizes si, i = 1..n, where n can

be nH for high values groups and nL for low values groups,

we define the regularity score as:

ρ = 1−min (CV, 1) (3)

CV =
d

µ
µ =

1

p

n∑

j=1

sj d =
1

p

n∑

j=1

|sj − µ| (4)

The min in the expression of ρ ensures that the result is in

[0, 1]. Indeed CV can be greater than 1 when the deviation is

important. The theoretical upper bound of CV increases with

the number of data and may take very high values, leading

to a possibly drastic reduction if used for normalisation. Now

CV values higher than 1 mean that the deviation is high, i.e.

that no periodicity holds. So using the min to “cut” CV when

it becomes too large is relevant.

Applying the regularity score to each of the 4 possible

size types, SH , S̃H , SL and S̃L, yields 4 regularity measures,

respectively denoted ρH , ρ̃H , ρL and ρ̃L.

2) Aggregation to the Periodicity Degree: These measures

are then aggregated to define the periodicity degree π. The

used aggregation operator is the average since it leads to

results robust to noise. Moreover, it is close to the principle of

periodicity developed in this paper which combines the size

regularity scores of the high and low value groups.

Since two ways of calculating the size are used, two

periodicity degrees are computed:

π =
ρH + ρL

2
and π̃ =

ρ̃H + ρ̃L

2
(5)

where µ is defined by (4) for each of the 4 sets

SH , S̃H , SL and S̃L.

C. Candidate Period Computation

Lastly a candidate period can be computed from the average

sizes. Indeed, for a perfectly regular phenomenon, the period

is defined as the time elapsed between two occurrences of an

event. In this paper, the event is “high value”.

The period is thus approximated as the sum of the average

size of high value groups and the average size of low value

groups. As for the calculation of π, since two ways of calcu-

lating sizes are proposed, two candidate periods are derived:

p = µH + µL and p̃ = µ̃H + µ̃L (6)

It must be underlined that the candidate period is relevant

only if the periodicity degree π is high enough.

VI. LINGUISTIC RENDERING

To enrich the periodicity degree π and candidate period

p, the final linguistic rendering step builds an interpretable

sentence, relevant only if π is high enough, as for the candidate

period.

A. Considered Issues

The linguistic rendering stage is based on the way human

usually express time. In this paper, three interconnected as-

pects of the time formulation are taken into account: the choice

of a relevant time unit so as to avoid periods expressed as very

large or very small numbers, the selection of an approxima-

tion to favor integers rather than decimals and among these,

multiples of 5, and the enrichment with an appropriate adverb

to quantify the precision of the approximation, as illustrated

below.

Indeed, based on general observations, it seems that speak-

ers prefer using small numbers and thus adapt the used unit.

For instance, the statement “I meet her every week” seems
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preferable to “I meet her every 168 hours”. The usually

desired approximation can be illustrated by the fact that one

would rather say “This happens every 45 minutes” than “This

happens every 44.2 minutes”, even though this appreciation

is highly dependent on the context in which it is produced. It

can happen that a precise time has to be used, e.g. for sportive

events or auctions. However, since the present method is not

bound to any specific environment, the previous postulate is

retained here.

Lastly, the third feature of adverb selection makes it possible

to define the level of accuracy of statements. In a context of

time expression, it can be a linguistic expression as “exactly”,

“approximately”, “nearly”, “roughly”, “around”. For instance,

one would not say “the game lasted 1 hour and 7 minutes”,

but rather “the game lasted approximately 1 hour”, adding the

adverb to indicate that this period is not exact.

The aim of the linguistic rendering step is to generate a

sentence taking these constraints into account. The format of

the resulting formulation is “Adverb every approximatePeriod

unit, the data take high values”. It is generated in three steps:

unit determination, period approximation and adverb selection.

B. Unit Determination

In order to find the most appropriate representation, a set

of considered units is defined, for example {seconds, minutes,

hours, days, weeks}. The equivalence between them is also

specified (60min = 1 h, 24 h = 1 day...). Lastly, the interval

in which the value is to be expressed is fixed. Setting it to

[1,60] for instance imposes the period to be represented as a

number between 1 and 60.

The candidate period computed in Section V-C is then

expressed in all possible units. The unit leading to a number

in the desired interval is retained. In the case where two units

may apply, then the smallest value is selected.

It must be remarked that the interval must be chosen so that

all period values have an expression. For instance, if [1,10] is

picked, then 45min can not be formulated, since it is too large

to be expressed in minutes, and too small to be expressed in

hours. This is why the lower bound should be set to 1, and

the upper bound to the largest conversion factor, here 60.

For instance, if the computed candidate period is 3,708 s,
then the conversions are 3,708 s = 61.80m = 1.03 h =
0.04 d = 0.006w. As 1.03 is the only value in [1,60], the

selected unit is h.

C. Period approximation

The obtained expression of the candidate period is then

approximated to a value that must be a compromise between

a natural, user-friendly value, and a relevant approximation.

As illustrated with the previous examples, it is assumed that

a user-friendly representation of time is usually an integer,

multiple of 5 if possible. The relevance of the approximation

is determined from a user-set linguistic threshold tling defining

the maximal acceptable difference between the initial and the

approximated values.

Thus to find the best suitable representation, the value is

first rounded to the nearest multiple of 5. If the difference with

Figure 3. The linguistic variable Precision with tling = 5%.

the initial value is greater than tling , the value is rounded to

its integer value. If the difference is still greater than tling ,

then the value is rounded to one or more decimals. Formally,

the approximated period pling used for the generation of the

sentence is computed as

pling =




RM (p, 5) if |RM (p, 5)− p| /p < tling

min
d∈{0,...,dmax}

|R (p, d)− p| /p < tling otherwise

where RM(p, 5) is the rounding of p to the nearest multiple

of 5, R(p, d) the rounding to d decimals, and R(p, 0) the

rounding to the nearest integer. The objective is thus to

find the smallest decimal rounding verifying the acceptability

condition. d can be up to dmax which is the maximum allowed

number of decimals. It directly depends on tling and can be

defined as dmax = ⌈|log (tling)|⌉.

Considering the previous example of 1.03 h, and using

tling = 5%, one gets pling = 1h since RM(1.03, 5) = 1
and |1− 1.03|/1.03 = 0.03 < tling .

D. Adverb Selection

The last step of linguistic rendering aims at selecting an

adverb describing the quality of the approximation to enrich

the period formulation. This adverb M is a modifier based on

the linguistic variable “Precision” illustrated in Fig. 3.

The error err made during the previous period approxima-

tion and computed as:

err =
|p− pling|

p
(7)

The most relevant modality, denoted by m∗, is computed as

the one to which err belongs the most, i.e.

M = argmax
m∈Precision

µm (err) (8)

With the previous example, p = 1.03 h and pLing =
1.00 h, so err = 3.0%. Therefore µExactly (err) = 0,

µApproximately (err) = 0.3 and µRoughly = 0.7. As a result,

M = Roughly and the final sentence is “Roughly each hour

the data take high values”.

VII. EXPERIMENTAL RESULTS

This section presents experimental results obtained both

with artificial and real data. The aim is to compare the

proposed methods, to study their behaviors, and to evaluate

the quality of the generated sentences.
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Figure 4. No noise data set, νx = 0, νy = 0, pH = 35 and pL = 15.
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Figure 5. Data set with noise on the time axis, νx = 0.5, νy = 0, pH = 35

and pL = 15.

A. Artificial data

1) Data Generation: The data are generated as series of

noisy periodic “rectangles”, where noise applies either to the

period (time axis) or to the values (value axis). The rectangles

high values are pH long, and the low ones are pL long.

Therefore a noiseless signal has a period p = pH + pL and

can be generated as x̂∗
i = 1[0;pH [

(
(i− 1) mod (pH + pL)

)
.

Given two noise parameters νx and νy , a noisy series is

generated as:

x̂i = 1[0;pH [

(
(i− 1 + νxǫt) mod (pH + pL)

)

yi =

{
νyǫv if x̂i < 0.5

−νyǫv otherwise

xi = min (max (x̂i + yi, 0) , 1)

where ǫt ∼ U (0, p) and ǫv ∼ U(0, 1), denoting U the uniform

distribution.

x̂i is obtained by randomly shifting the noiseless signal on

the time axis, thus creating high values in low values groups

and vice versa as compared to the noiseless signal x̂∗
i .

yi adds vertical noise to the rectangle signal, downward

if the signal is in its high part, and upward otherwise. The

min/max transformation applied to x̂i+yi ensures final values

in [0,1] for xi.

When νx = νy = 0, then yi = 0 and xi describes a noiseless

rectangle signal; when νx 6= 0 and νy = 0, the period is

randomly changed, but xi ∈ {0, 1} holds; when νx = 0 and

νy 6= 0, the period is not changed but xi ∈ {0, 1} does not

hold, and only xi ∈ [0, 1] does. Fig. 4 to 6 show examples of

such data with different noise levels.

2) Experimental Protocol: 40 data series are generated with

an increasing noise value from 0 to 1 at a 0.05 pace (21 values)

with pH = 35 and pL = 15. The periodicity degree π, the

candidate period pC , and the error in period evaluation ∆p
are computed. ∆p is defined as ∆p = |pC − p| /p.

They are computed with 4 methods, according to the group-

ing method, that can be baseline or mathematical morphology

based, and to the cardinality definition, that can be crisp or

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

Figure 6. Data set with noise on the value axis, νx = 0, νy = 0.5, pH = 35

and pL = 15.

Table I
EXPERIMENTAL SETUP

Test code Parameters
Crisp Fuzzy tvalue tmerge tling

Baseline B ~B 0.8 2% 5%
MM M ~M - - 5%

fuzzy. The notations and values of the parameters are displayed

in Table I. The linguistic rendering parameters (considered

units, expression interval and modifier) are described in Sec-

tion VI.

The average and standard deviation of π is computed on

40 runs with increasing time noise νx (Fig. 7) and value

noise νy (Fig. 8). The average and standard deviation of

∆p is computed on 40 runs with increasing time noise νx
(Fig. 9) and value noise νy (Fig. 10). Lastly, some examples

of the generated sentences along with the computed period are

presented in Table II.

3) Result Interpretation:

a) Periodicity Degree: It can be observed from Fig. 7

and Fig. 8, that in all cases when the noise parameters are 0,

the periodicity degree equals 1. Moreover it globally decreases

when noise increases, presenting the expected behavior.

Yet, for νx ≥ 0.3 the baseline method produces a periodicity

degree equal 0: for such noise levels, illustrated e.g. on Fig. 5,

the method fails to identify relevant groups and actually

merges them all. This is due to the fact that the groups of

low values are 15 points wide, and the tmerge parameter

used in this grouping is 10 points wide. Thus, groups tend to

be merged excessively, leading to a disruption in the groups

construction. The following regularity assessment step then

fails to give relevant results. This raises the issue of the

parameter selection for the baseline approach, that requires

expert knowledge about the data. On the contrary, the MM

grouping method decreases as expected.

Regarding increasing noise in values νy (Fig. 8), it can be

seen that the baseline grouping has less amplitude than the

MM approach. More precisely, it makes no difference as long

as νy < 1 − tvalue. Indeed, all values above 1− tvalue = 0.2
are considered as high. On the contrary, the MM method

automatically adapts to the data characteristics, and starts

decreasing as soon as noise is detected.

It can also be observed that the group size definition, crisp

or fuzzy, makes no significant difference for a given grouping

method.

b) Periodicity Evaluation: It can be noted on Fig. 9

and 10 that in all cases the error in the estimation of the period

increases with noise. The baseline method leads to higher
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Figure 7. Periodicity degree π with increasing νx for νy = 0.
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Figure 8. Periodicity degree π with increasing νy for νx = 0.

errors, which is due to the fact that the groups it identifies

are erroneous. Whether noise applies to time or values, the

MM method leads to errors lower than 5% for noise levels

lower than 0.25, which is a very satisfying result. High errors

for high noise levels are not an issue, as in such cases the

periodicity degree is low, indicating that the candidate period

is not relevant.

It can also be observed that a significant difference appears

between the different cardinalities: the crisp one returns sig-

nificantly lower errors than the fuzzy one. This is due to the

fact that the fuzzy cardinality takes into account the values

whereas the period is computed only on time axis, whatever

the values. So the crisp approximation made by ignoring the

actual values of the groups is relevant in this case.

B. Real Data

1) Data Presentation: The RATP is the main public trans-

port operator company in Paris and it monitors the quality of

the air underground. It released measurements from several

sensors in different metro stations on an hourly basis from

Jan, 1st 2012 to Apr, 1st 2012, available on its website [27].

For the test, we use one week of normalized amount of

CO2 in the station Châtelet, from Jan, 16th 2012 to Jan, 21st

2012. Fig. 11 show the dataset used for the tests.

Visual inspection indicates that the data are indeed periodic,

matching the a priori knowledge of public transportation: there

are two major rush hours in the tube, a smaller one around

9am and a larger one around 6pm.

2) Experimental Protocol: We apply the proposed DPE

method, setting the baseline parameters as tvalue = 0.7 and
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Figure 9. Error in period evaluation ∆p with increasing νx for νy = 0.
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Figure 10. Error in period evaluation ∆p with increasing νy for νx = 0..

tmerge = 10. The linguistic rendering parameters are the ones

described in Section VI. Table III lists the obtained results.

3) Result Interpretation: It can be observed that all methods

compute a high periodicity degree, the highest one being

obtained for the MM grouping with fuzzy cardinality. These

high degrees are compatible with the expectations.

Regarding the period evaluation, the crisp MM approach

returns the expected result, indicating a period of 24.2h,

linguistically rendered as “exactly one day”.

These results are compatible with the observations made

on artificial data, showing that a crisp evaluation is more

appropriate for the period evaluation and that the baseline

grouping method is less relevant than the MM approach for

the periodicity degree.

VIII. CONCLUSIONS AND FUTURE WORK

The proposed DPE method for the generation of linguistic

summaries of the form “M every p unit, the data take high

values” where M is a precision adverb, exploits tools from

mathematical morphology to identify groups of high values

in an automatically adaptive manner that does not require

assumption about the data series or knowledge about its

characteristics to set parameters. It also exploits the fuzzy set

theory to generate a relevant linguistic formulation illustrating

the numerical candidate period. Experiments performed on

artificial and real data illustrate the relevance of the proposed

DPE method.

Future works aim at generalizing the experimental analy-

sis, in particular considering other types of data series, and

defining a quality measure to compare the different methods,

among themselves as well as to existing approaches, especially
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Table III
RESULTS WITH REAL DATA WITH BEST RESULTS IN BOLD

Method π Period Generated sentence

B 0.73 20.60 h The period is approximately 20 hours.

~B 0.72 17.05 h The period is exactly 17 hours.

M 0.82 24.20 h The period is exactly 1 day.

~M 0.86 17.05 h The period is exactly 17 hours.

Table II
LINGUISTIC GENERATION RESULTS

Candidate period Generated sentence

62.50min The period is approximately 1 hour.
42.60min The period is roughly 45 minutes.
58.17 s The period is approximately 1 minute.
55.44 s The period is exactly 55 seconds.
49.15 h The period is approximately 2 days.
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Figure 11. Quantity of CO2 per hour from 01/16/2012 to 01/21/2012 in the
station Châtelet.

those from the signal processing area. Furthermore, new

fuzzy quantifiers as “from time to time”, “often”, “rarely”

can be defined with this method. Using other mathematical

morphology operators like watershed or SKIZ should also be

considered. Finally the detection of period over a subset of

data would be interesting as well.
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