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Abstract

Certificates to a linear algebra computation are additional data struc-
tures for each output, which can be used by a—possibly randomized—
verification algorithm that proves the correctness of each output. The
certificates are essentially optimal if the time (and space) complexity of
verification is essentially linear in the input size N , meaning N times a
factor No(1), i.e., a factor Nη(N) with limN→∞ η(N) = 0.

We give algorithms that compute essentially optimal certificates for
the positive semidefiniteness, Frobenius form, characteristic and minimal
polynomial of an n × n dense integer matrix A. Our certificates can be
verified in Monte-Carlo bit complexity (n2 log ‖A‖)1+o(1), where log ‖A‖
is the bit size of the integer entries, solving an open problem in [Kaltofen,
Nehring, Saunders, Proc. ISSAC 2011] subject to computational hardness
assumptions.

Second, we give algorithms that compute certificates for the rank of
sparse or structured n × n matrices over an abstract field, whose Monte
Carlo verification complexity is 2 matrix-times-vector products + n1+o(1)

arithmetic operations in the field. For example, if the n× n input matrix
is sparse with n1+o(1) non-zero entries, our rank certificate can be verified
in n1+o(1) field operations.

All our certificates are based on interactive verification protocols with
the interaction removed by a Fiat-Shamir identification heuristic. The
validity of our verification procedure is subject to standard computational
hardness assumptions from cryptography.
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1 Introduction

Suppose you want to externalize your computations to cloud services.
Prior to payment of the services, it would be desirable to verify that the
returned result has been correctly computed by the cloud servers. This
model is economically viable only if the verification process requires less
resources than the computation itself. It is therefore important to design
certificates that can be used to verify a result at a lower cost than that of
recomputing it.

For instance, a primality certificate is a formal proof that a number is
prime. In [16], primality is assessed by presenting a primitive root and the
factorization of m − 1. The latter can be checked fast by remultiplying,
and then primitivity is polynomially checkable.

In linear algebra our original motivation is related to sum-of-squares.
By Artin’s solution to Hilbert 17th Problem, any polynomial inequality
∀ξ1, . . . , ξn ∈ R, f(ξ1, . . . , ξn) ≥ g(ξ1, . . . , ξn) can be proved by a fraction
of sum-of-squares:

∃ui, vj ∈ R[x1, . . . , xn], f − g =

(

ℓ
∑

i=1

u2
i

)

/

(

m
∑

j=1

v2j

)

(1)

Such proofs can be used to establish global minimality for
g = infξv∈R f(ξ1, . . . , ξn) and constitute certificates in non-linear global

optimization. A symmetric integer matrix W ∈ SZ
n×n is positive semidef-

inite, denoted by W � 0, if all its eigenvalues, which then must be real
numbers, are non-negative. Then, a certificate for positive semidefinite-
ness of rational matrices constitutes, by its Cholesky factorizability, the
final step in an exact rational sum-of-squares proof, namely

∃e ≥ 0, W [1] � 0, W [2] � 0, W [2] 6= 0 :

(f − g)(x1, . . . , xn) · (me(x1, . . . , xn)
TW [2]me(x1, . . . , xn)) =

md(x1, . . . , xn)
TW [1]md(x1, . . . , xn), (2)

where the entries in the vectors md,me are the terms occurring in ui, vj
in (1). In fact, (2) is the semidefinite program that one solves.

Thus arose the question how to give possibly probabilistically check-
able certificates for linear algebra problems. In [13] the certificates are
restricted to those that are checkable in essentially optimal time, that
is, in bit complexity (n2 log ‖W ‖)1+o(1), where log ‖W ‖ is the bit size of
the entries in W . Quadratic time is feasible because a matrix multipli-
cation AB can be certified by the resulting product matrix C via Rusin
Freivalds’s [9] (see also [14]) probabilistic check: check A(Bv) = Cv for a
random vector v.

Note that programs that check their results from [5] have the higher
matrix-multiplication time complexity. In [13] a certificate for matrix
rank was presented, based on Storjohann’s Las Vegas rank algorithm [19],
but matrix positive semidefiniteness remained open. Also the presented
certificate for the rank did not take into account a possible structure in
the matrix.
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In the following we solve these two problems. In both cases, posi-
tive semidefiniteness and structured or blackbox matrices, our solution
is to use either interactive certificates under the random oracle model,
or heuristics under standard computational hardness assumptions from
cryptography. Removing the cryptographic assumptions remains however
a fundamental open problem. Providing certificates to other problems,
such as the determinant or the minimal and characteristic polynomial of
blackbox matrices, is also open.

In Section 2, we detail the different notions of certification that can
be used and in particular the relaxation we make over the certificates
of [13]: in the certificates presented here, we allow the verifier to provide
the random bits used by the prover, in an interactive manner. We also
present in this section the Fiat-Shamir derandomization heuristic that can
turn any interactive certificate into a non-interactive heuristic certificate.

More precisely, the idea is to devise an interactive protocol for the ran-
dom oracle model, and then to replace oracle accesses by the computation
of an appropriately chosen function h [7, 2].

Then we first present in Section 3 an interactive certificate for the
Frobenius normal form that can be verified in O(n2+ǫ(log ‖A‖)1+ǫ) binary
operations for any ǫ > 0, as in [13], but our new certificate also occupies
an optimal space of O(n2+ǫ(log ‖A‖)1+ǫ) bits. This is an order of magni-
tude improvement over [13, Theorem 4]. This certificate can then be used
as in the latter paper to certify the minimal and characteristic polyno-
mial as well as positive semidefiniteness, while keeping the lower memory
requirements. In the same section we also present another, stand-alone,
characteristic polynomial certificate, which can also be used for positive
semidefiniteness, with slightly smaller random evaluation points.

Finally in Section 4 we present a new certificate for the rank of sparse
or structured matrices.

The certificate combines an interactive certificate of non-singularity,
giving a lower bound to the rank, with an interactive certificate for an
upper bound to the rank. Overall the interactive certificate for the rank
requires only 2Ω+n1+ǫ arithmetic operations over any coefficient domain,
where Ω is the number of operations required to perform one matrix-
times-vector product. For instance, if the matrix is sparse with only n1+ǫ

non-zero elements, then the certificate verification is essentially linear.

2 Notions of certificate

The ideas in this paper arise from linear algebra, probabilistic algorithms,
program testing and cryptography.

We will in particular combine:

• the notions of certificates for linear algebra of Kaltofen et al. [13],
themselves extending program checkers of Blum and Kannan [5] and
randomized algorithms of Freivalds [9],

• with probabilistic interactive proofs of Babai [1] and Goldwasser et
al. [11],

3



• as well as Fiat-Shamir heuristic [7, 2] turning interactive certificates
into non-interactive heuristics subject to computational hardness.

We first recall some of these notions an then define in Section 2.3 what
we mean by perfectly complete, sound and efficient interactive certificates.

2.1 Arthur-Merlin interactive proof systems

A proof usually has two parts, a theorem T and a proof Π, and the validity
of the proof can be checked by a verifier V . Now, an interactive proof, or
a
∑

-protocol, is a dialogue between a prover P (or Peggy in the following)
and a verifier V (or Victor in the following), where V can ask a series of
questions, or challenges, q1, q2, . . . and P can respond alternatively with
a series of strings π1, π2, . . ., the responses, in order to prove the theorem
T . The theorem is sometimes decomposed into two parts, the hypothesis,
or input, H , and the commitment, C. Then the verifier can accept or
reject the proof: V (H,C, q1, π1, q2, π2, . . .) ∈ {accept, reject}.

To be useful, such proof systems should satisfy completeness (the
prover can convince the verifier that a true statement is indeed true) and
soundness (the prover cannot convince the verifier that a false statement
is true). More precisely, the protocol is complete if the probability that a
true statement is rejected by the verifier can be made arbitrarily small.
Similarly, the protocol is sound if the probability that a false statement
is accepted by the verifier can be made arbitrarily small. The complete-
ness (resp. soundness) is perfect if accepted (resp. rejected) statement are
always true (resp. false).

It turns out that interactive proofs with perfect completeness are as
powerful as interactive proofs [10]. Thus in the following, as we want to
prove correctness of a result more than proving knowledge of it, we will
only use interactive proofs with perfect completeness.

On the one hand, if a protocol is both perfectly complete and perfectly
sound then it is deterministic. On the other hand, if at least one of
completeness and soundness is not perfect, then the proof is probabilistic
and correspond to Monte Carlo algorithms (always fast, probably correct).

Usually, in cryptology, the prover has infinite power and the verifier is
polynomial time. In our setting, we will instead require that the verifier
has lower computational complexity than any known algorithm computing
the property.

2.2 Certificates in linear algebra

For Blum and Kannan [5] a program checker for a program P is itself
a program C. For any instance I on which program P is run, C is run
subsequently. C either certifies that the program P is correct on I or
declares P to be buggy. There, the programs can be rerun on modified
inputs, as in their matrix rank check, and thus might require more time
to check their work than to do the work itself.

On the contrary, in [12, 13], a certificate for a problem that is given by
input/output specifications is an input-dependent data structure and an
algorithm that computes from that input and its certificate the specified
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output, and that has lower computational complexity than any known
algorithm that does the same when only receiving the input. Correctness
of the data structure is not assumed but validated by the algorithm. With
respect to interactive proofs, the input/output is related to the property
to be proven together with the commitment. However, as no interaction
is possible between the prover and the verifier, this amounts to using a
single round protocol where the prover sends only the commitment and
then the verifier accepts it or not.

In this paper we use a modified version where we allow interactive ex-
changes between the prover and the verifier but preserve the requirements
on lower total complexity for the verifier. Moreover, we then can convert
back these two-rounds protocol into one round protocols via Fiat-Shamir
heuristic: hash the input and commitment with an unpredictable and uni-
versal hash function (such as a cryptographic hash function), to simulate
the random challenges proposed by the verifier.

It turns out that it seems easier to design certificates that are interac-
tive than to design directly single round certificates. This could be related
to the power of the interactive proof system complexity class (IP) and the
probabilistically checkable proofs (PCP).

2.3 Interactive certificates

As there exists ways to reduce interactive proofs with k rounds to interac-
tive proofs with perfect completeness and 2 rounds, we will limit ourselves
to these cases for our definition of interactive certificates.

More precisely, in the following we use interactive certificates of a
given property, mainly as two-rounds probabilistic

∑

-protocols with perfect
completeness:

1. The prover of a property sends a commitment to the verifier.

2. The verifier sends back a (randomly sampled) challenge, potentially
depending on both the property and the commitment.

3. The provers completes the protocol with a response convincing the
verifier of the property.

In order to become an interactive certificate, this two round
∑

-protocol
should then satisfy soundness, perfect completeness and efficiency as fol-
lows:

i. The protocol is perfectly complete: a true statement will always be
accepted by the verifier.

ii. The protocol is sound: the probability that a false statement will be
accepted by the verifier can be made arbitrarily small.

iii. The protocol is efficient: the verifier has lower computational com-
plexity than any known algorithm that computes the true statement
when only receiving the input.

The interactive certificate can also be said to be essentially optimal
when the verifier needs only time and space complexity of the same order
of magnitude as the size of the input and output to verify the latter.
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With this relaxed model, we are able in the following to improve on
some space complexities for integer linear algebra problems and also on
time complexities for some problems over generic domains, like the rank
of blackbox matrices.

2.4 Fiat-Shamir heuristic derandomization into a

single round

In a practical perspective (say when using a compiled library, rather than
an interpreter; or when posting the certificate in question) it is not always
possible for the verifier (a user wanting a result) to interact with the prover
(the program).

Then, there is always the possibility to transform an interactive certifi-
cate into a non-interactive heuristic. Here we use the strong Fiat-Shamir
heuristic [7, 2, 3], where the random challenge message of the verifier is
replaced by a cryptographic hash of the property and the commitment
message. In practice, the cryptographic hash can be used as a seed for a
pseudo-randomly generated sequence that the prover can generate a pri-
ori. For an a posteriori verification, the verifier decides whether to accept
or not the certificate, as in two rounds interactive protocols, but has also
to check that the challenge used by the prover has really been generated
using the input and commitment as seeds.

In this setting, breaking the protocol is somewhat equivalent to break-
ing the cryptographic hash function: finding a combination of input and
false commitment that will be accepted by the verifier relates to knowing
in advance some parts of the output of the hash function. See for instance
Section 4.4 where breaking the protocol is equivalent to predicting the
value of some bits in a hash, and that can for instance be used to factor
integers if Blumb-Blum-Shub hash function is used.

Note that it is important to use the strong heuristic that uses a com-
bination of both the input and the commitment for the hashing. See for
instance Section 3.2 where we need the result itself to be part of the seed
in order to obtain a correct certificate.

3 Reducing space with respect to one-

round certificates over the integers

3.1 Interactive certificate for residue systems

In [13, Theorem 5], the given certificates for the rank and determinant
of an integer matrix are essentially optimal whereas the certificates for
the Frobenius normal form, the characteristic and minimal polynomial
and positive semidefiniteness are not: they require residue systems that
occupies cubic bit space whereas the input and results are only quadratic.

Those residue systems allow the verifier to check an integer matrix
factorization (A = LU for gaussian elimination or A = SFS−1 for the
Frobenius form) where the resulting factors are in general of cubic size
(quadratic number of entries but each one with linear magnitude) via
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Freivalds’ certificate. The trick is to store these factorizations modulo
many distinct primes. Then if the integer matrix factorization is not
correct it means that A− LU (resp. A− SFS−1) is non zero. Therefore,
from a bound on the maximal possible size of this difference (roughly
cubic), it cannot be zero modulo a large number of primes. Consequently,
if the set of distinct primes is larger than the bound, selecting a random
prime p in the set and checking whether A − LU (resp. A − SFS−1) is
zero modulo p would reveal the false statement with high probability.

Our idea here is to use several rounds interactive certificates: instead
of storing the factorizations modulo many distinct primes, just compute
them on demand of the verifier. The verifier has just to select random
primes and the prover will respond with the factorization modulo these
primes.

Theorem 1. Let A ∈ Z
n×n. There exist an interactive certificate for the

Frobenius normal form, the characteristic or minimal polynomial of A.
The interactive certificate can be verified in n2+o(1)(log ‖A‖)1+o(1) time
and occupies n2+o(1)(log ‖A‖)1+o(1) bit space.

Proof. Use the same algorithm as in [13, Theorem 4] but replacing the
random choice by the verifier of a given tuple (p, Sp, Fp, Tp) (where Tp ≡
S−1
p mod p) by the choice of a random prime p by the verifier and a

response of a corresponding (Sp, Fp, Tp) modulo p by the prover.

Corollary 1. There exist a non-interactive heuristic certificate for the
Frobenius normal form, the characteristic or minimal polynomial that oc-
cupy the same space and can be verified in the same time.

Proof. We use Fiat-Shamir. The prover:

1. computes the integer Frobenius normal form F (or the characteristic
or minimal polynomial) over the integers;

2. then he chooses a cryptographic hash function and a pseudo-random
prime generator;

3. he computes the hash of the input matrix together with the result;

4. this hash is used as a seed for the pseudo-random prime generator
to generate one (or a constant number of) prime number(s);

5. the prover finally produces the Frobenius normal form and the change
of basis modulo that prime(s).

The certificate is then composed of the input, the output, the hash func-
tion, the pseudo-random prime generator, the generated prime numbers
and the associated triples (Sp, Fp, Tp).

The verifier then:

1. checks that the hash function and the pseudo-random prime gener-
ator are well-known, cryptographically secure, functions;

2. checks that he can recover the primes via hashing the combination
of the input and the output;

3. and verifies the zero equivalence modulo p of (F−Fp) mod p, (SpTp−
I) mod p and (SpFpTp − A) mod p.
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3.2 Direct interactive certificate for the charac-

teristic polynomial and positive definiteness of in-

teger matrices

In [13], the certificate for characteristic polynomial occupies roughly n3+o(1)

bit space as it requires the Frobenius matrix normal form with a similarity
residue system with primes bounded by O(n(log(n) + log ‖A‖)).

As shown in Theorem 1, with an interactive certificate and a random
oracle for the choice of prime numbers of the latter size, this yields an
interactive certificate with only n2+o(1) bit space requirements.

We propose in the following Figure 1 a simpler certificate, still relying
on the determinant certificate, but with evaluation points bounded only
by O(n). This gives a similar but smaller o(1) factor in the complexity.

Peggy V ictor

Input A ∈ Zn×n

Commitment g ∈ Z[X ] = charpolyA
1 : g(X)

// degree(g)
?
= n

Challenge
2 : λ

oo λ ∈ Z

Response δ ∈ Z = det(λI −A)
3 : δ

// δ
?
= g(λ)

C : Cert(δ = det(λI −A))
4 : C

// δ
?
= det(λI −A)

Figure 1: Interactive certificate for the characteristic polynomial

Theorem 2. For A ∈ Z
n×n, the interactive certificate of Figure 1 for the

characteristic polynomial is sound, perfectly complete and the number of
operations performed by the verifier, as well as the bit space required to
store this certificate, is bounded by n2+o(1)(log ‖A‖)1+o(1).

Proof. For the determinant certificate we use [13, Theorem 5] of which
complexity matches that of the present theorem.

If Peggy and Victor are honest then the definition of the characteris-
tic polynomial yields charpolyA = det(XI − A) and thus the protocol is
perfectly complete.

If Peggy is dishonest then g− charpolyA being of degree at most n, it
has at most n roots. Thus if Victor samples random elements among the
first say cn integers, after the commitment g, the probability that Victor
accepts the certificate is less than 1/c. If the protocol is repeated k times
with independent draws of λ, then the probability that Victor accepts it

k times is lower than
(

1
c

)k
and therefore the protocol is sound.

For the complexity, one chooses a constant c > 2 so that λ has
O(log(n)) bits. Thus δ, as the determinant of λI − A, is bounded by
Hadamard’s bound to O(n log(‖A‖ + n)) bits. With Horner evaluation

and Chinese remaindering, the check g(λ)
?
= δ can thus be performed in
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less than O(n2 log(‖A‖ + n)) operations. This is within the announced
bound.

Corollary 2. Let A be an n× n symmetric matrix having minors bound
HA of bit length log2(HA) = n1+o(1). The signature of A can be verified
by an interactive certificate in n2+o(1) binary operations with a n2+o(1)

bit space characteristic polynomial certificate. Thus the same certificate
serves for positive or negative definiteness or semidefiniteness.

Proof. We just use the certificate of [13, Corollary 1] but replace their
characteristic polynomial certificate by the interactive one of Figure 1
and Theorem 2.

4 Interactive certificate for the rank of

sparse matrices

Now we turn to matrices over any domain and count arithmetic operations
instead of bit complexity.

For the sake of simplicity we will use the notation F as for finite fields
but the results are valid over any abstract field, provided that the random
sampling is done on a finite subset S of the domain.

We improve on O(n2) certificates for the rank (given with say an LU
factorization), when the matrix is sparse, structured or given as blackbox.
That is to say when the product of the matrix by a vector is of complexity
Ω less than 2n2. If the matrix is given as a blackbox, then the only possible
operation with the matrix is the latter matrix-times-vector product.

For a matrix of rank r, if Ω is the cost of one of those matrix-times-
vector product, the blackbox certificates of [17] would also require O(nr)
extra arithmetic operations and at least O(r) extra matrix-times-vector
products for a total of O(rΩ + nr) arithmetic operations.

In the following we show that it is possible to reduce the time and
space complexity bounds of verifying certificates for the rank of blackbox
matrices to only 2Ω + n1+o(1) arithmetic operations. This is essentially
optimal, e.g. for sparse matrices, as reading and storing a matrix of
dimensions n× n should also require O(Ω + n) operations.

We proceed in two steps. First we certify that there exists an r × r
non-singular minor in the matrix. Second, we precondition the matrix so
that it is of generic rank profile and exhibit a vector in the null-space of
the leading (r + 1)× (r + 1) minor of the preconditioned matrix.

4.1 Certifying non-singularity

Theorem 3. Let S be a finite subset of F with at least two distinct el-
ements. For A ∈ F

n×n, which matrix-times-vector products costs Ω op-
erations in F, the interactive certificate of Figure 2 for non-singularity
is sound, perfectly complete and the number of arithmetic operations per-
formed by the verifier is bounded by Ω+ n.
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Proof. If Peggy and Victor are honest, then Peggy can solve the system
with an invertible matrix and provide w = A−1b to Victor. Therefore the
protocol is perfectly complete.

If Peggy is dishonest, then it means that A is singular. Therefore, it
means that the rank of A is at most n− 1.

We use, e.g., Gaussian elimination to get A = PLUQ, where P and
Q are permutation matrices, L is unit invertible lower triangular and U
is upper triangular. As the rank of A is at most n − 1, U is of the form
[

U1 U2

0 0

]

where U1 ∈ F
(n−1)×(n−1) is upper triangular. One then sees that

making the system inconsistent is equivalent to setting to zero at least the
last entry of L−1P−1b in F

n. Thus, with probability at least 1 − 1/ |S|,
the challenge vector proposed by Victor makes the system inconsistent. In
the latter case, Peggy will never be able to find a solution to the system.

Thus Victor can accept the certificate of Peggy only when he has ran-
domly found a consistent vector. The probability that this happens k
times with k independent selections of b is bounded by 1

|S|k
. Therefore,

when the matrix is singular, Victor can accept repeated applications of
the protocol only with negligible probability and the protocol is sound.

For the complexity, Victor needs to perform one matrix-times-vector
product with A, of arithmetic complexity Ω. Victor also needs to produce
a random vector of size n of elements in S.

Peggy V ictor

Input A ∈ Fn×n

Commitment
1 : non-singular

//

Challenge
2 : b

oo b ∈ Sn ⊂ Fn

Response w ∈ Fn 3 : w
// Aw

?
= b

Figure 2: Blackbox interactive certificate of non-singularity

4.2 Certifying an upper bound for the rank

For an upper bound, we precondition A ∈ F
m×n of rank r so that the

leading r × r minor of the preconditioned matrix is non-zero and then
present a non-zero vector in the nullspace of the r+ 1 leading minor. We
use the butterfly probabilistic preconditioners of [6, Theorem 6.3] that
can precondition an n× n matrix of rank r so that the first r rows of the
preconditioned matrix become linearly independent with high probabil-
ity. We denote by B

n×n
S the set of such butterfly networks composed by

less than n(log2(n)) switches of the form

[

1 α
1 1 + α

]

, for α ∈ S ⊂ F.

Choosing a random butterfly reduces to choosing an element α, a row
index and a column index for each of its switches.
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Peggy V ictor

Input A ∈ Fm×n

Commitment rank(A) ≤ r < min{m,n}
1 : r

//

Challenge
2 : U, V

oo U ∈ B
m×m

S
, V ∈ B

n×n

S
, S ⊂ F

Response w ∈ Fr+1 6= 0
3 : w

// w
?

6= 0

[Ir+1|0]UAV

[

Ir+1

0

]

w
?
= 0

Figure 3: Blackbox interactive certificate for an upper bound to the rank

Theorem 4. Let A ∈ F
m×n, which matrix-times-vector products costs Ω

operations in F and let S be a finite subset of F with |S| > 2min{m,n}(⌈log2(m)⌉+
⌈log2(n)⌉). The interactive certificate of Figure 3 proving an upper bound
for the rank of A is sound, perfectly complete and the number of arithmetic
operations performed by the verifier is bounded by

Ω + (m+ n)1+o(1).

Proof. If Peggy is honest this means that the rank of A is upper bounded

by r < min{m,n}. Thus the rank of M = [Ir+1|0]UAV

[

Ir+1

0

]

∈

F
(r+1)×(r+1) is also upper bounded by r. Therefore, there exist at least

one non-zero vector w in the nullspace of M . Hence Peggy can produce
it and the protocol is perfectly complete.

If Peggy is dishonest, this means that the rank of A is at least r + 1.
Now, from [6, Theorem 6.3], the butterfly preconditioner U ∈ B

m×m
S

will make the first r + 1 rows of UA linearly dependent with probabil-
ity less than

(r+1)⌈log
2
(m)⌉

|S|
. Similarly the butterfly preconditioner V ∈

B
n×n
S will make the first r + 1 columns of AV linearly dependent with

probability less than (r+1)⌈log
2
(n)⌉

|S|
. Overall the (r + 1) × (r + 1) lead-

ing principal minor of UAV will be non-zero with probability at least
1 −

(r+1)(⌈log
2
(m)⌉+⌈log

2
(n)⌉)

|S|
≥ 1 −

min{m,n}(⌈log
2
(m)⌉+⌈log

2
(n)⌉)

|S|
≥ 1

2
. In

this case the minor is invertible and Peggy will never be able to produce
a non-zero vector in its kernel. The only possibility for Victor to accept
the certificate is thus that the leading minor is zero and the probability
that this happens k times with k independent selections of U and V is
thus bounded by 1

2k
. Thus Victor can accept repeated applications of the

protocol only with negligible probability and the protocol is sound.

For the complexity, we know from [6, Theorem 6.2] that butterflies of
respective sizes m⌈log2(m)⌉/2 and n⌈log2(n)⌉/2 are sufficient.

Victor thus needs to produce (m⌈log2(m)⌉/2+ n⌈log2(n)⌉/2) random
elements in S and O(log2(m) + log2(n)) random bits for the row and
columns indices. Then the successive applications of U , A and V to a
vector cost no more than 3m⌈log2(m)⌉/2+Ω+ 3n⌈log2(n)⌉/2 arithmetic
operations.
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Remark 1. Over small fields,
it might not be possible to find a sufficiently large subset S. Then

one can use extension fields or change the preconditioners. For instance,
Ũ ∈ W

(r+1)×m, and respectively Ṽ ∈ W
n×(r+1), can be taken as sparse

matrix preconditioners, as in [20] (see also [6, Corollary 7.3]), and re-

place respectively [Ir+1|0]U and V

[

Ir+1

0

]

. They are randomly sampled

with the Wiedemann distribution, denoted by W, and have thus not more
than 2n(2 + log2(n))

2 non zero entries with probability at least 1/8, [20,
Theorem 1].

4.3 Blackbox interactive certificate for the rank

Now we can propose a complete certificate for the rank.
If the matrix is full rank, then it is sufficient to produce a certificate

for a maximal lower bound. Otherwise, it will use a non-singularity cer-
tificate on a sub-matrix of dimension r× r together with an upper bound
certificate: for a matrix A ∈ F

m×n,

1. Compute I(r) ∈ F
m×m and J(r) ∈ F

n×n row and column subsets of
A such that I(r)AJ(r) is non singular and use the non-singularity
certificate of Figure 2 on the latter. This provides a certified lower
bound for the rank of A.

2. Use the certificate for an upper bound r of the rank of A of Figure 3.

3. With certified lower bound r and upper bound r, the rank is certified.

Using Theorems 3 and 4, we have proven:

Corollary 3. For A ∈ F
m×n, which matrix-times-vector products costs Ω

operations in F and let S be a finite subset of F with |S| > 2min{m,n}(⌈log2(m)⌉+
⌈log2(n)⌉). The above

∑

-protocol provides an interactive certificate for
the rank of A. This interactive certificate is sound, perfectly complete and
the number of arithmetic operations performed by the verifier is bounded
by

2Ω + (m+ n)1+o(1).

4.4 Reducing breaking the random oracle to fac-

torization

Now we look at the derandomization of the previous certificates using
the strong Fiat-Shamir heuristic, see Section 2.4, where the random chal-
lenge messages of the verifier are replaced by a cryptographic hash of the
property and the commitment messages.

First, it is proven in [15] that this methodology always produces digital
signature schemes that are provably secure against chosen message attacks
in the ”Random Oracle Model” – when the hash function is modeled by
a random oracle. In other words, it is equivalent for a dishonest Peggy
to e.g. produce consistent systems for singular matrices or to break the
random oracle.

Second, we can, e.g., use the Blumb-Blum-Shub perfect random gen-
erator [4]: it transforms a seed x0 (for us the matrix) into a bit string

12



b1, . . . , bk with bi = xi mod 2; xi+1 = xe
i mod N for some RSA public

key (e,N). It is for instance shown in [8] that knowing a number of bi’s
polynomial in the size of N , say a number BN = O(logγ(N)) bits, enables
one to factor it. Now, we show next that forging a consistency certificate

Ax
?
= b is equivalent to predicting the value of at least one bit of the

random right-hand side vector b.

Lemma 1. Forging the non-singularity certificate fixes at least one bit of
the random right-hand side vector.

Proof. A singular matrix A ∈ F
n×n has rank at most n−1. Write it as A =

P [ 0 0
L ]UQ where P and Q are permutation matrices, L ∈ F

(n−1)×(n−1) is
lower triangular and U is unit invertible upper triangular. Then if Aw = b,
it means that [ 0 0

L ] z = P−1b for z = UQw. Therefore, the first entry of
P−1b must be zero.

Therefore, we fix the RSA modulus N and require as a certificate
that the consistency check is repeated BN times. When the protocol is
repeated with Fiat-Shamir derandomization, we use as successive random
vectors b, the hash of

the input and the previous iteration. If Peggy can find a matrix A of
dimension n (polynomial in the size of N) for which she can forge the BN

repeated applications of the certificate, then
she can predict BN bits of the Blumb-Blum-Shub hashes in O(BN (Ω+

n1+o(1))) operations. Thus Peggy can factor N in polynomial time.
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