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POLYGRAPHS OF FINITE DERIVATION TYPE

YVES GUIRAUD PHILIPPE MALBOS

Abstract – In 1987, Craig Squier proved that, if a monoid can be presented by a finite convergent
string rewriting system, then it satisfies the homological finiteness condition left-FP3. Using this
result, he has constructed finitely presented decidable monoids that cannot be presented by finite
convergent rewriting systems. In 1994, he introduced the condition of finite derivation type, which
is a homotopical finiteness property on the presentation complex associated to a monoid presentation.
He showed that this condition is an invariant of finite presentations and he gave a constructive way
to prove this finiteness property based on the computation of the critical branchings: being of finite
derivation type is a necessary condition for a finitely presented monoid to admit a finite convergent
presentation. This self-contained survey presents those results in the contemporary language of
polygraphs and higher-dimensional categories, providing new proofs and relations between them.
Keywords – higher-dimensional categories, higher-dimensional rewriting, finite derivation type,
low-dimensional homotopy.
M.S.C. 2000 – 68Q42, 03D05, 18D05.
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1. Introduction

1. INTRODUCTION

Given a monoid M, a generating set Σ1 for M provides a way to represent the elements of M in the free
monoid Σ∗1, i.e., as finite words written with the elements of Σ1. But, when the monoid M is not free,
there is no reason for an element of M to have a single representative in the free monoid Σ∗1. The word
problem for M consists in finding a generating set Σ1 and a procedure that can determine whether or not
any two elements of Σ∗1 represent the same element in the monoid M.

The word problem and convergent presentations. One way to solve the word problem is to exhibit
a finite presentation Σ = (Σ1, Σ2) of M, made of a generating set Σ1 and a set Σ2 of directed relations
with a good computational property: convergence. Indeed, in rewriting theory, one studies presentations
where the relations in Σ2 are not seen as equalities between the words in Σ∗1, such as u = v, but, instead,
as rewriting rules that can only be applied in one direction, like

u⇒ v,

thus simulating a non-reversible computational process reducing the word u into the word v. In rewriting
theory, such a presentation Σ of a monoid is called a string rewriting system or, historically, a semi-Thue
system; in that case, the set Σ1 of generators is called an alphabet and the directed relations of Σ2 are
called rewriting rules. A presentation Σ is convergent if it has the following two properties:

− termination, i.e., all the computations end eventually,

− confluence, i.e., different computations on the same input lead to the same result.

The monoid presented by Σ is defined as the quotient, denoted by Σ, of the free monoid Σ∗1 over Σ1 by the
congruence generated by Σ2. By extension, we also say that Σ presents every monoid that is isomorphic
to Σ.

A finite and convergent presentation Σ of a monoid M gives a solution to the word problem, called the
normal-form procedure and defined as follows. Given an element u of the free monoid Σ∗1, convergence
ensures that all the applications of (directed) relations to u, in every possible manner, will eventually
produce a unique result: an element û of Σ∗1 where no relation applies anymore. The word û called the
normal form of u. By construction, two elements u and v of Σ∗1 represent the same element of M if,
and only if, their normal forms are equal in Σ∗1. Finiteness ensures that one can determine whether an
element of Σ∗1 is a normal form or not, by examining all the relations.

Polygraphs. The notion of string rewriting system comes from combinatorial algebra. It was introduced
by Axel Thue in 1914 in order to solve the word problem for finitely presented semigroups [Thu14]. It
is only in 1947 that the problem was shown to be undecidable, independently by Emil Post [Pos47]
and Andrei Markov [Mar47a, Mar47b]. Then in 1943, Maxwell Newman gave a general setting, the
abstract rewriting theory, to describe the properties of termination and confluence, and to show the first
fundamental result of rewriting: Newman’s lemma [New42]. Since then, rewriting theory has been
mainly developed in theoretical computer science, producing numerous variants corresponding to differ-
ent syntaxes of the formulas being transformed: string, terms, terms modulo, λ-terms, term-graphs, etc.
Rewriting is also present in other computational formalisms such as Petri nets or logical systems.
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1. Introduction

More recently, higher-dimensional rewriting has unified several paradigms of rewriting. This ap-
proach is based on presentations by generators and relations of higher-dimensional categories, indepen-
dently introduced by Albert Burroni and Ross Street under the respective names of polygraphs in [Bur93]
and computads in [Str76, Str87]. Those algebraic objects have been subsequently developed in rewriting
theory, fixing the terminology to polygraph in that field [Mét03, Gui06, Laf07, Mét08, GM09, Mim10,
GM11, GM12a, GM12b, GMM13, GGM13].

The main useful property of polygraph is to encapsulate, in the same globular object, an algebraic
structure corresponding to the syntax of the terms and to the computations on the terms, together with
a homotopical structure describing the properties of the computations. As a consequence, polygraphs
provide a natural setting to formulate Squier’s theory, based on the discovery of deep relations between
the computational, the homological and the homotopical properties of presentations by generators and
relations.

From computational to homological properties. The normal-form procedure proves that, if a monoid
admits a finite convergent presentation, then it has a decidable word problem. The converse implication
was still an open problem in the middle of the eighties:

Question. [Jan82, Jan85] Does every finitely presented monoid with a decidable word
problem admit a finite convergent presentation?

In [KN85], Deepak Kapur and Paliath Narendran consider Artin’s presentation of the monoid B+
3 of

positive braids on three strands:
ΣArt =

〈
s, t

∣∣ sts⇒ tst
〉
.

Kapur and Narendran proved that B+
3 admits no finite convergent presentation on the two generators s

and t. However, they also proved one gets a finite convergent presentation of B+
3 by adjunction of a new

generator a standing for the product st:

ΣKN =
〈
s, t, a

∣∣ ta α
=⇒ as, st

β
=⇒ a, sas

γ
=⇒ aa, saa

δ
=⇒ aat

〉
.

As a consequence, the word problem for B+
3 is solvable. The result of Kapur and Narendran shows that

the existence of a finite convergent presentation depends on the chosen generators. Thus, to provide the
awaited negative answer to the open question, one would have to exhibit a monoid with a decidable word
problem but with no finite convergent presentation on any possible set of generators: new methods had
to be introduced.

And, indeed, Craig Squier answered the question by linking the existence of a finite convergent
presentation for a given monoid M to an invariant of the monoid: the homological type left-FP3. Here,
invariant is to be taken in the sense that it is independent of the choice of a presentation of M and, in
particular, of a generating set. A monoid M is of homological type left-FP3 if there exists an exact
sequence

P3 // P2 // P1 // P0 // Z // 0

of projective and finitely generated (left) ZM-modules, where Z denotes the trivial ZM-module. From a
presentation Σ of a monoid M, one can build an exact sequence of free ZM-modules

ZM[Σ2]
d2
// ZM[Σ1]

d1
// ZM ε

// Z // 0, (1)
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1. Introduction

where ZM[Σk] is the free ZM-module over Σk. In [Squ87], Squier proved that, when Σ is convergent, its
critical branchings form a generating set of the kernel of d2, where a critical branching of Σ is a minimal
overlapping application of two relations on the same word of Σ∗1. For example, the relations α : ta⇒ as

and β : st⇒ a generate a critical branching (βa, sα) on sta:

aa

sta

βa ';

sα #7 sas

The convergence of Σ ensures that every critical branching (f, g) is confluent, that is, it can be completed
by rewriting sequences f ′ and g ′ as in the following diagram:

v f ′

�'
u

f (<

g "6

u ′

w g ′

9M (2)

For example,the presentation ΣKN of B+
3 has five critical branchings, and all of them are confluent:

aa

sta

βa (<

sα "6 sas

γ

K_ aat

sast

γt (<

saβ
"6 saa

δ

K_ aaas

sasas

γas )=

saγ !5

aata

aaαau

saaa δa

6J

aaaa aaast
aaaβey

sasaa

γaa *>

saδ
 4
saaat

δat
%9 aatat

aaαt

EY

Squier proved that the set Σ3 of critical branchings of a convergent presentation Σ extends the exact
sequence (1) by one step:

ZM[Σ3]
d3
// ZM[Σ2]

d2
// ZM[Σ1]

d1
// ZM ε

// Z // 0, (3)

where the boundary map d3 is defined on the generic branching (2) by:

d3(f, g) = [f] − [g] + [f ′] − [g ′].

Moreover, when the presentation Σ is finite, then its set of critical branchings is finite, yielding Squier’s
homological theorem.

5.3.6. Theorem [Squ87, Theorem 4.1] If a monoid admits a finite convergent presentation,
then it is of homological type left-FP3.

Finally, Squier considers in [Squ87] the family Sk of monoids, indexed by an integer k ≥ 2, presented
by

ΣSqk =
〈
a, b, t, (xi)1≤i≤k, (yi)1≤i≤k

∣∣ α, (βi)1≤i≤k, (γi)1≤i≤k, (δi)1≤i≤k, (εi)1≤i≤k 〉
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1. Introduction

with

ab
α
=⇒ 1 xia

βi
=⇒ atxi xit

γi
=⇒ txi xib

δi=⇒ bxi xiyi
εi=⇒ 1.

Each Sk is a finitely generated monoid with a decidable word problem. But, for k ≥ 2, the monoid Sk is
not of homological type left-FP3 and, as a consequence, it does not admit a finite convergent presentation.
Thus, Squier gave a negative answer to the open question: there exist finitely generated monoids with a
decidable word problem that do not admit a finite convergent presentation (for any possible finite set of
generators).

Finite derivation type. Given a monoid M with a presentation Σ, Squier considers in [SOK94] the
presentation complex of Σ, that is a cellular complex with one 0-cell, whose 1-cells are the elements of
the free monoid Σ∗1 and whose 2-cells are generated by the relations of Σ2. More precisely, the 2-cells of
the presentation complex are constructed as follows. We denote by Σ−

2 the set obtained by reversing the
relations of Σ2:

Σ−
2 =

{
v
α−

=⇒ u such that u α
=⇒ v is in Σ2

}
.

There is a 2-cell in the presentation complex between each pair of words with shape wuw ′ and wvw ′

such that Σ2tΣ−
2 contains a relation u⇒ v. Then, Squier extends this 2-dimension complex with 3-cells

filling all the squares formed by independent applications of relations, such as the following one, where
u1 ⇒ v1 and u2 ⇒ v2 are in Σ2 t Σ−

2 :

wv1w
′u2w

′′

�0

��wu1w
′u2w

′′

)=

!5

wv1w
′v2w

′′

wu1w
′v2w

′′

.B

A homotopy basis of Σ is a set Σ3 of additional 3-cells that makes Squier’s complex aspherical, i.e.,
such that every 2-dimensional sphere can be “filled” by the 3-cells of Σ3. The presentation Σ is of finite
derivation type if it admits a finite homotopy basis. Squier proved that the finite derivation type property
is an intrinsic property of the presented monoid:

4.2.3. Theorem [SOK94, Theorem 4.3] Let Σ and Υ be two finite presentations of the
same monoid. Then Σ has finite derivation type if and only if Υ has finite derivation type.

The proof given by Squier is based on Tietze transformations. In these notes, we give another proof
based on a homotopy bases transfer theorem, Theorem 4.2.2. As a consequence of Theorem 4.2.3, we
can define the condition of finite derivation type for monoids independently of a considered presentation:
a monoid is of finite derivation type if its finite presentations are of finite derivation type.

From computational to homotopical properties. In [SOK94], Squier links the existence of a finite
convergent presentation to the homotopical property of finite derivation type. He proves that, given a
convergent presentation Σ, it is sufficient to consider one 3-cell filling the diagram (2) for each critical
branching to get a homotopy basis of Σ. Such a set of 3-cells is called a family of generating confluences
of Σ.
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1. Introduction

4.3.2. Theorem [SOK94, Theorem 5.2] Let Σ be a presentation of a monoid. Every family
of generating confluences of Σ is a homotopy basis.

Moreover, if Σ is finite, the presentation Σ has finitely many critical branchings.

4.3.3. Theorem [SOK94, Theorem 5.3] If a monoid admits a finite convergent presenta-
tion, then it is of finite derivation type.

In [SOK94], Squier used Theorem 4.3.3 to give another proof that there exist finitely generated monoids
with a decidable word problem that do not admit a finite convergent presentation. Moreover, he showed
that the homological finiteness condition left-FP3 is not sufficient for a finitely presented decidable
monoid to admit a finite convergent presentation. Indeed, the monoid S1 given by the presentation

ΣSq1 =
〈
a, b, t, x, y

∣∣ atnb⇒ 1, xa⇒ atx, xt⇒ tx, xb⇒ bx, xy⇒ 1
〉

has a decidable word problem, admits a finite presentation and is of homological type left-FP3, yet it is
not of a finite derivation type (and, thus, it does not admit a finite convergent presentation). This example
is entirely developed in Section 6.1.

Refinements of Squier’s conditions. By his results, Squier has opened two different directions to ex-
plore, one homological and one homotopical, in the quest for a complete characterisation of the existence
of finite convergent presentations of monoids.

Homological and homotopical finiteness conditions are related: finite derivation type implies homo-
logical type left-FP3, as proved by several authors [CO94, Pri95, Laf95]. The converse implication is
false in general, as already noted by Squier in [SOK94]. Yet it is true in the special case of groups [CO96].
However, the invariants homological type left-FP3 and finite derivation type are not complete character-
isations of the property to admit a finite convergent presentation: they are necessary, but not sufficient
conditions, as proved by Squier in [SOK94]. Following this observation, various refinements of both
invariants have been explored.

In the homological direction, thanks to the notion of abelian resolution, one defines the more re-
strictive conditions homological type left-FPn, for every natural number n > 3, and homological type
left-FP∞: a monoid M has homological type left-FP∞ if there exists a resolution of the trivial
ZM-module by finitely generated and projective ZM-modules. In [Kob90], a notion of n-fold critical
branching is used to complete the exact sequence (3) into a resolution, obtaining the following impli-
cation: if a monoid admits a finite convergent presentation, then it is of homological type left-FP∞, the
converse implication still being false in general. The same results are also known for associative algebras
presented by a finite Gröbner basis [Ani86] and for groups [Coh92, Bro92, Gro90]. One can obtain sim-
ilar implications with the properties right-FP∞ and bi-FP∞, defined with resolutions by right-modules
and bimodules, respectively. In [GM12b], the authors give a construction of a resolution involving n-fold
critical branchings and based on the notion of normalisation strategy.

In the homotopical direction, the condition finite derivation type has been refined into FDT2, a prop-
erty about the existence of a finite presentation with a finite homotopy basis, itself satisfying a homo-
topical finiteness property [MPP05]. The condition FDT2 is also necessary for a monoid to admit a
finite convergent presentation and it is sufficient, but not necessary, for having the conditions homologi-
cal type left/right/bi-FP4. Higher-dimensional finite derivation type properties, called FDTn, are defined
in [GM12b]. They generalise in any dimension the finite derivation type given by Squier. For any n, the
property FDTn implies the homological type FPn [GM12b].
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2. Low-dimensional categories and polygraphs

Organisation of the paper and prerequisites. In Section 2, we consider presentations of monoids
(and, more generally, of categories) as 2-polygraphs, and we explain their main rewriting properties
in Section 3. In Section 4, we introduce the property of finite derivation type for categories using the
structure of 3-polygraph and, in Section 4.3, we relate convergence and finite derivation type. This survey
is self-contained, but wider categorical notions are covered in more detail by Mac Lane in [ML98] and by
Barr and Wells in [BW90]. For notions of rewriting theory, one can refer to Baader and Nipkow [BN98],
Terese [Ter03] and Book and Otto [BO93] for the special case of string rewriting. For extension of the
finite derivation type property to higher-dimensional rewriting systems, we refer the reader to [GM09].

2. LOW-DIMENSIONAL CATEGORIES AND POLYGRAPHS

2.1. Categories and functors

2.1.1. Categories. A category (or 1-category) is a data C made of a set C0, whose elements are called
the 0-cells of C, and, for every 0-cells x and y of C, of a set C(x, y), whose elements are called the
1-cells from x to y of C. Those sets are equipped with the following algebraic structure:

− for every 0-cells x, y and z of C, a map

γx,y,z : C(x, y)× C(y, z) → C(x, z),

called the composition (or 0-composition) of C,

− for every 0-cell x, a specified element 1x of C(x, x), called the identity of x.

The following relations are required to hold, where we write u : x→ y to mean u ∈ C(x, y):

− the composition is associative, i.e., for every 0-cells x, y, z and t and for every 1-cells u : x→ y,
v : y→ z and w : z→ t,

γx,z,t(γx,y,z(u, v), w) = γx,y,t(u, γy,z,t(v,w)),

− the identities are local units for the composition, i.e., for every 0-cells x and y and for every 1-cell
u : x→ y,

γx,x,y(1x, u) = u = γx,y,y(u, 1y).

A groupoid is a category where every 1-cell has an inverse, that is, for every 1-cell u : x → y, there
exists a (necessarily unique) 1-cell u− : y→ x such that

γx,y,x(u, u
−) = 1x and γy,x,y(u

−, u) = 1y.

Monoids and groups correspond exactly to categories and groupoids with only one 0-cell, respectively.
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2. Low-dimensional categories and polygraphs

2.1.2. A globular point of view. A category C can also be seen as a graph

C0 C1
t0
oo

s0
oo

where C1 is the disjoint union of all the “hom-sets” C(x, y), and the maps s0 and t0 send a 1-cell
u : x → y to its source x and its target y, respectively. We usually simply write s(u) and t(u) instead
of s0(u) and t0(u). The composition of C equips this graph with a partial function

?0 : C1 × C1 → C1

mapping a pair (u, v) of composable 1-cells (i.e., such that t(u) = s(v)) to u ?0 v (we often simply
write uv). By definition, the source and target of a composite 1-cell are given by

s(u ?0 v) = s(u) and t(u ?0 v) = t(v).

Moreover, the associativity axiom is written as

(u ?0 v) ?0 w = u ?0 (v ?0 w).

The identities define an inclusion
C0� C1

that maps each 0-cell x to the 1-cell 1x. By definition, the source and target of an identity 1-cell are

s(1x) = x and t(1x) = x.

Finally, the unit axioms become
1x ?0 u = u = u ?0 1y.

This “globular” definition of categories is equivalent to the original definition given in 2.1.1.

2.1.3. Functors. Let C and D be categories. A functor F : C→ D is a data made of a map F0 : C0 → D0
and, for every 0-cells x and y of C, a map

Fx,y : C(x, y) → D(F(x), F(y)),

such that the following relations are satisfied:

− for every 0-cells x, y and z and every 1-cells u : x→ y and v : y→ z of C,

Fx,z(u ?0 v) = Fx,y(u) ?0 Fy,z(v),

− for every 0-cell x of C,
Fx,x(1x) = 1F(x).

We often just write F(x) for F0(x) and F(u) for Fx,y(u). A functor F is a monomorphism (resp. an
epimorphism, resp. an isomorphism) if the map F0 and each map Fx,y is an injection (resp. a surjection,
resp. a bijection). Morphisms of monoids are exactly the functors between the corresponding categories
with one 0-cell.
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2.2. The word problem

2.1.4. Functors as morphisms of graphs. A functor F : C→ D can be seen as a morphism of graphs

C0

F0
��

C1
t0
oo

s0
oo

F1
��

D0 D1
t0
oo

s0
oo

where, for every 1-cell u : x→ y of C, the 1-cell F1(u) is defined as Fx,y(u).

2.2. The word problem

2.2.1. 1-polygraphs. A 1-polygraph is a graph Σ, i.e., a diagram of sets and maps

Σ0 Σ1.
t0
oo

s0
oo

The elements of Σ0 and Σ1 are called the 0-cells and the 1-cells of Σ, respectively. If there is no confusion,
we just write Σ = (Σ0, Σ1). A 1-polygraph is finite if it has finitely many 0-cells and 1-cells.

2.2.2. Free categories. If Σ is a 1-polygraph, the free category over Σ is the category denoted by Σ∗

and defined as follows:

− the 0-cells of Σ∗ are the ones of Σ,

− the 1-cells of Σ∗ from x to y are the finite paths of Σ, i.e., the finite sequences

x
u1−→ x1

u2−→ x2
u3−→ · · · un−1−→ xn−1

un−→ y

of 1-cells of Σ,

− the composition is given by concatenation,

− the identities are the empty paths.

If Σ has only one 0-cell, then the 1-cells of the free category Σ∗ form the free monoid over the set Σ1.

2.2.3. Generating 1-polygraph. Let C be a category. A 1-polygraph Σ generates C if there exists an
epimorphism

π : Σ∗ � C

that is the identity on 0-cells. In that case, the 1-polygraph Σ has the same 0-cells as C and, for every
0-cells x and y of C, the map

πx,y : Σ∗(x, y) → C(x, y)

is surjective. We usually consider that π is implicitly specified for a given generating 1-polygraph Σ and,
if u is a 1-cell of Σ∗, we just write u instead of π(u). A category is finitely generated if it admits a finite
generating 1-polygraph (in particular, the category must have finitely many 0-cells).
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2. Low-dimensional categories and polygraphs

2.2.4. The word problem for categories. Let C be a category. The word problem for C is the problem
of finding a generating 1-polygraph Σ for C together with an algorithm that decides, for any two 1-cells u
and v of Σ∗, whether or not u = v holds in C (that is, whether or not the 1-cells u and v represent the
same 1-cell of C). We note that, to have u = v, it is necessary for u and v to be parallel, i.e., they
must have the same source and the same target. The word problem is undecidable in general for a given
category C, even if it is finitely generated. However, a finite convergent presentation of C, see 3.1.7,
provides a solution to the word problem of C.

2.3. Presentations of categories

2.3.1. Spheres and cellular extensions of categories. A sphere of a category C is a pair γ = (u, v)
of parallel 1-cells of C, that is, with the same source and the same target; such a sphere is denoted by
γ : u⇒ v. The 1-cell u is the source of γ and v is its target. A cellular extension of C is a set Γ equipped
with a map from Γ to the set of spheres of C.

2.3.2. Congruences. A congruence on a category C is an equivalence relation ≡ on the parallel 1-cells
of C that is compatible with the composition of C, that is, for every 1-cells

x
w

// y

u
!!

v

== z
w ′

// t

of C such that u ≡ v, we have wuw ′ ≡ wvw ′. If Γ is a cellular extension of C, the congruence
generated by Γ is denoted by ≡Γ and defined as the smallest congruence relation such that, if γ : u⇒ v

is in Γ , then u ≡Γ v. In the literature, the congruence ≡Γ is also called the Thue congruence generated
by Γ .

2.3.3. Quotient categories. If C is a category and Γ is a cellular extension of C, the quotient of C by Γ
is the category denoted by C/Γ and defined as follows:

− the 0-cells of C/Γ are the ones of C,

− for every 0-cells x and y of C, the hom-set C/Γ(x, y) is the quotient of C(x, y) by the restriction
of ≡Γ .

We denote by πΓ : C� C/Γ the canonical projection. When the context is clear, we just write π for πΓ
and u for the image through π of a 1-cell u.

2.3.4. 2-polygraphs. A 2-polygraph is a triple Σ = (Σ0, Σ1, Σ2) made of a 1-polygraph (Σ0, Σ1), often
simply denoted by Σ1, and a cellular extension Σ2 of the free category Σ∗1. In other terms, a 2-polygraph Σ
is a 2-graph

Σ0 Σ∗1
t0
oo

s0
oo Σ2

t1
oo

s1
oo

whose 0-cells and 1-cells form a free category. The elements of Σk are called the k-cells of Σ and Σ is
finite if it has finitely many cells in every dimension.
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2.4. Two-dimensional categories

2.3.5. Presentations of categories. If Σ is a 2-polygraph, the category presented by Σ is the category
denoted by Σ and defined by

Σ = Σ∗1/Σ2.

If C is a category, a presentation of C is a 2-polygraph Σ such that C is isomorphic to Σ. In that case, the
1-cells of Σ are called the generating 1-cells of C, or the generators of C, and the 2-cells of Σ are called
the generating 2-cells of C, or the relations of C.

2.3.6. Tietze equivalence. Two 2-polygraphs are Tietze-equivalent if they present the same category. It
is a standard result that two (finite) 2-polygraphs are Tietze-equivalent if, and only if, they are related by
a (finite) sequence of elementary Tietze transformations:

− adjunction or elimination of a 1-cell x and of a 2-cell α : u ⇒ x, where u is a 1-cell of the free
category over Σ1 \ {x},

− adjunction or elimination of a 2-cell α : u⇒ v such that u ≡Σ2\{α} v.

2.4. Two-dimensional categories

2.4.1. 2-categories. A 2-category is a data C made of a set C0, whose elements are called the 0-cells
of C, and, for every 0-cells x and y of C, a category C(x, y), whose 0-cells and 1-cells are respectively
called the 1-cells and the 2-cells from x to y of C. This data is equipped with the following algebraic
structure:

− for every 0-cells x, y and z of C, a functor

γx,y,z : C(x, y)× C(y, z) → C(x, z),

− for every 0-cell x, a specified 0-cell 1x of the category C(x, x).

The following relations are required to hold:

− the composition is associative, i.e., for every 0-cells x, y, z and t,

γx,z,t ◦ (γx,y,z × IdC(z,t)) = γx,y,t ◦ (IdC(x,y)×γy,z,t),

− the identities are local units for the composition, i.e., for every 0-cells x and y,

γx,x,y ◦ (1x × IdC(x,y)) = IdC(x,y) = γx,y,y ◦ (IdC(x,y), 1y).

This definition of 2-categories is usually stated as follows: a 2-category is a category enriched in cat-
egories. A (2, 1)-category is a 2-category whose 2-cells are invertible for the 1-composition: in other
terms, it is a 2-category whose hom-categories are groupoids.

11



2. Low-dimensional categories and polygraphs

2.4.2. The globular point of view. A 2-category can, equivalently, be defined as a 2-graph

C0 C1
t0
oo

s0
oo

C2
t1
oo

s1
oo

equipped with an additional algebraic structure. The definition of 2-graph requires that the source and
target maps satisfy the globular relations:

s0 ◦ s1 = s0 ◦ t1 and t0 ◦ s1 = t0 ◦ t1.

The 2-graph is equipped with two compositions, the 0-composition ?0 and the 1-composition ?1, re-
spectively defined on 0-composable 1-cells and 2-cells, and on 1-composable 2-cells. We also have an
inclusion of C0 into C1 given by the identities of the 2-category, and an inclusion of C1 into C2 induced
by the identities of the hom-categories. In details, we have the following operations:

− for every 1-cells x u−→ y
v−→ z, a 0-composite 1-cell x

u ?0 v−→ z,

− for every 2-cells x

u

��

u ′

@@
f
��

y

v

��

v ′

BB
g
��

z , a 0-composite 2-cell x

u ?0 v

��

u ′ ?0 v
′

??
f ?0 g��

z ,

− for every 2-cells x

u

��

v //

w

DD

f��

g
��

y , a 1-composite 2-cell x

u

��

w

>>
f ?1 g��

y ,

− for every 0-cell x, an identity 1-cell x
1x−→ x,

− for every 1-cell x u−→ y, an identity 2-cell u
1u=⇒ u.

The following relations hold:

− for every 1-cells x u−→ y
v−→ z

w−→ t, (u ?0 v) ?0 w = u ?0 (v ?0 w),

− for every 1-cell x u−→ y, 1x ?0 u = u = u ?0 1y,

− for every 1-cells x u−→ y
v−→ z, 1u?0v = 1u ?0 1v,

− for every 2-cells u f
=⇒ v

g
=⇒ w

h
=⇒ x, (f ?1 g) ?1 h = f ?1 (g ?1 h),

− for every 2-cells x

u

��

u ′

@@
f
��

y

v

��

v ′

BB
g
��

z

w

��

w ′

BBh
��

t , (f ?0 g) ?0 h = f ?0 (g ?0 h),
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2.4. Two-dimensional categories

− for every 2-cell x

u

��

v

@@
f
��

y , 1x ?0 f = f = f ?0 1y,

− for every 2-cell u f
=⇒ v, 1u ?1 f = f = f ?1 1v,

− for every 2-cells x

u

��

u ′ //

u ′′

BB

f��

f ′��

y

v

��

v ′ //

v ′′

CC

g
��

g ′��

z , (f ?1 f
′) ?0 (g ?1 g

′) = (f ?0 g) ?1 (f
′ ?0 g

′).

The last relation is usually called the exchange relation or the interchange law for the compositions ?0
and ?1. This globular definition of 2-categories is equivalent to the enriched one.

The 0-composition of 2-cells with identity 1-cells defines the whiskering operations:

− for every x
w
// y

u

��

v

@@f
��

z , the left whiskering is x

w ?0 u

��

w ?0 v

??w ?0 f��
z ,

− for every x

u

��

v

??
f
��

y
w
// z , the right whiskering is x

u ?0 w

��

v ?0 w

??f ?0 w��
z .

The left and right whiskering operations satisfy the following relations:

− for every x
u
// y

v

��

v ′ //

v ′′

DD

f��

f ′��

z , u ?0 (f ?1 f
′) = (u ?0 f) ?1 (u ?0 f

′),

− for every x

u

��

u ′ //

u ′′

CC

f��

f ′��

y
v
// z , (f ?1 f

′) ?0 v = (f ?0 v) ?1 (f
′ ?0 v),
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2. Low-dimensional categories and polygraphs

− for every x
u
// y

v
// z

w

��

w ′

AAf
��

t , (u ?0 v) ?0 f = u ?0 (v ?0 f),

− for every x
u
// y

v

��

v ′

@@f
��

z
w
// t , (u ?0 f) ?0 w = u ?0 (f ?0 w),

− for every x

u

��

u ′

??
f
��

y
v
// z

w
// t , (f ?0 v) ?0 w = f ?0 (v ?0 w),

As for categories, we usually write uv and fg instead of u ?0 v and f ?0 g.

2.4.3. Free 2-categories. Let Σ be a 2-polygraph. The free 2-category over Σ is denoted by Σ∗ and
defined as follows:

− the 0-cells of Σ∗ are the ones of Σ,

− for every 0-cells x and y of Σ, the hom-category Σ∗(x, y) is defined as

– the free category over the 1-polygraph
∗ whose 0-cells are the 1-cells from x to y of Σ∗1, that is, the finite sequences a1 · · ·an of

composable 1-cells of Σ,
∗ whose 1-cells are the

x
w

// y

u
!!

v

==α�� z
w ′

// t

with α : u⇒ v in Σ2 and w and w ′ in Σ∗1,
– quotiented by the congruence generated by the cellular extension made of all the possible

αwv ?1 u
′wβ ≡ uwβ ?1 αwv

′,

for α : u⇒ u ′ and β : v⇒ v ′ in Σ2 and w in Σ∗1,

− for every 0-cells x, y and z of Σ the composition functor is given by the concatenation on 1-cells
and, on 2-cells, as follows:(

u1α1u
′
1 ?1 · · · ?1 umαmu ′m

)
?0
(
v1β1v

′
1 ?1 · · · ?1 vnβnv ′n

)
= u1α1u

′
1v1s(β1)v

′
1 ?1 · · · ?1 umαmu ′mv1s(β1)v ′1

?1 umt(αm)u
′
mv1β1v

′
1 ?1 · · · ?1 umt(αm)u ′mvnβnv ′n
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3. Rewriting properties of 2-polygraphs

− for every 0-cell x, the identity 1-cell 1x is the one of Σ∗1.

By definition of the 2-category Σ∗, for every 1-cells u and v of Σ∗, we have u = v in the quotient
category Σ if, and only if, there exists a “zig-zag” sequence of 2-cells of Σ∗ between them:

u
f1 %9 u1 v1

g1ey f2 %9 u2 (· · · )ey %9 un−1 vn−1
gn−1ey fn %9 un v.

gney

2.4.4. Free (2, 1)-categories. If Σ is a 2-polygraph, the free (2, 1)-category over Σ is denoted by Σ>

and is defined as the 2-category whose 0-cells are the ones of Σ and, for every 0-cells x and y, the
hom-category Σ>(x, y) is given as the quotient

Σ>(x, y) =
(
Σ t Σ−)∗(x, y)

/
Inv(Σ2),

where:

− the 2-polygraph Σ− is obtained from Σ by reversing the 2-cells,

− the cellular extension Inv(Σ2) contains the following two relations for every 2-cell α of Σ and
every possible 1-cells u and v of Σ∗ such that s(u) = x and t(v) = y:

uαv ?1 uα
−v ≡ 1us(α)v and uα−v ?1 uαv ≡ 1ut(α)v.

By definition of the (2, 1)-category Σ>, for every 1-cells u and v of Σ∗, we have u = v in the quotient
category Σ if, and only if, there exists a 2-cell f : u⇒ v in the (2, 1)-category Σ>.

3. REWRITING PROPERTIES OF 2-POLYGRAPHS

3.1. Convergent presentations of categories

Let us fix a 2-polygraph Σ.

3.1.1. Rewriting and normal forms. A rewriting step of Σ is a 2-cell of the free 2-category Σ∗ with
shape

x
w

// y

u
!!

v

==ϕ�� z
w ′

// t

where ϕ : u ⇒ v is a generating 2-cell in Σ and w and w ′ are 1-cells of Σ∗. A rewriting sequence of Σ
is a finite or infinite sequence

u1
f1 %9 u2

f2 %9 (· · · )
fn−1 %9 un

fn %9 (· · · )

of rewriting steps. If Σ has a non-empty rewriting sequence from u to v, we say that u rewrites into v.
Let us note that every 2-cell f of Σ∗ decomposes into a finite rewriting sequence of Σ, this decomposition
being unique up to exchange relations. A 1-cell u of Σ∗ is a normal form if Σ has no rewriting step with
source u. A normal form of u is a 1-cell v that is a normal form and such that u rewrites into v.
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3. Rewriting properties of 2-polygraphs

3.1.2. Termination. We say that Σ terminates if it has no infinite rewriting sequence. In that case, every
1-cell has at least one normal form and noetherian induction allows definitions and proofs of properties
of 1-cells by induction on the maximum size of the 2-cells leading to normal forms. A termination order
on Σ is an order relation ≤ on parallel 1-cells of Σ∗ such that the following properties are satisfied:

− the composition of 1-cells of Σ∗ is strictly monotone in both arguments,

− every decreasing family (un)n∈N of parallel 1-cells of Σ∗ is stationary,

− for every 2-cell α of Σ, the strict inequality s(α) > t(α) holds.

As a direct consequence of the definition, if Σ admits a termination order, then Σ terminates. A useful
example of termination order is the left degree-wise lexicographic order (or deglex for short) generated
by a given order on the 1-cells of Σ. It is defined by the following strict inequalities, where each xi and yj
is a 1-cell of Σ:

x1 · · · xp < y1 · · ·yq, if p < q,

x1 · · · xk−1xk · · · xp < x1 · · · xk−1yk · · ·yp, if xk < yk.

The deglex order is total if, and only if, the original order on 1-cells of Σ is total.

3.1.3. Branchings. A branching of Σ is a pair (f, g) of 2-cells of Σ∗2 with a common source, as in the
following diagram

v

u

f &:

g #7 w

The 1-cell u is the source of this branching and the pair (v,w) is its target. We do not distinguish the
branchings (f, g) and (g, f). A branching (f, g) is local if f and g are rewriting steps. Local branchings
belong to one of the three following families:

− aspherical branchings have shape

v

u

f &:

f
$8 v

where u f
=⇒ v is a rewriting step,

− Peiffer branchings have shape

u ′v

uv

fv (<

ug "6 uv ′

where u f
=⇒ u ′ and v

g
=⇒ v ′ are rewriting steps,

− overlapping branchings are the remaining local branchings.

Local branchings are compared by “inclusion”, i.e., by the order 4 generated by the relations

(f, g) 4
(
ufv, ugv)
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3.1. Convergent presentations of categories

given for any local branching (f, g) and any possible 1-cells u and v of Σ∗1. An overlapping local branch-
ing that is minimal for the order 4 is called a critical branching (or a critical pair). The terms “aspher-
ical” and “Peiffer” come from the corresponding notions for spherical diagrams in Cayley complexes
associated to presentations of groups, [LS01], while “critical” is used in rewriting theory, [BO93, BN98].

3.1.4. Confluence. A branching
v

u

f &:

g #7 w

is confluent if there exist 2-cells f ′ and g ′ in Σ∗2, as in the following diagram:

v f ′

�+
u

f ';

g #7

u ′

w g ′

5I

We say that Σ is confluent (resp. locally confluent) if all of its branchings (resp. local branchings) are
confluent. In a confluent 2-polygraph, every 1-cell has at most one normal form.

3.1.5. Theorem. A 2-polygraph is locally confluent if, and only if, all its critical branchings are conflu-
ent.

Proof. Every aspherical branching is confluent:

v 1v

�(
u

f &:

f
$8

v

v 1v

5I

We also have confluence of every Peiffer local branching:

u ′v u ′g

�-
uv

fv (<

ug "6

u ′v ′

uv ′ fv ′

3G

We note that, in the aspherical and Peiffer cases, the 2-cells f ′ and g ′ can be chosen in such a way that
f ?1 f

′ = g ?1 g
′ holds. Finally, in the case of an overlapping but not minimal local branching (f, g),

there exist factorisations f = uhv and g = ukv with

x

w

h &:

k #7 y

17



3. Rewriting properties of 2-polygraphs

a critical branching of Σ. Moreover, if the branching (h, k) is confluent, then so is (f, g):

x h ′

�,
w

h ';

k #7

w ′

y k ′

5I ;

uxv uh ′v
�/

uwv

f ';

g "6

uw ′v

uyv uk ′v

1E

The proof of the following result, also called the diamond lemma, is contained in the one of Theo-
rem 4.3.2.

3.1.6. Theorem (Newman’s lemma [New42, Theorem 3]). For terminating 2-polygraphs, local con-
fluence and confluence are equivalent properties.

3.1.7. Convergent polygraphs. We say that Σ is convergent if it terminates and it is confluent. Such
a Σ is called a convergent presentation of Σ, and of any category that is isomorphic to Σ. In that case,
every 1-cell u of Σ∗1 has a unique normal form, denoted by û, so that we have u = v in Σ if, and only
if, û = v̂ holds in Σ∗1. This defines a section Σ � Σ∗1 of the canonical projection Σ∗1 � Σ, mapping a
1-cell u of Σ to the unique normal form of its representative 1-cells in Σ∗, still denoted by û.

As a consequence, a finite and convergent 2-polygraph Σ yields a decision procedure for the word
problem of the category Σ it presents: the normal-form procedure, which takes, as input, two 1-cells u
and v of Σ∗, and decides whether u = v holds in Σ or not. For that, the procedure computes the respective
normal forms û and v̂ of u and v. Finiteness is used to test whether a given 1-cell u is a normal form or
not, by examination of all the relations and their possible applications on u. Then, the equality u = v

holds in Σ if, and only if, the equality û = v̂ holds in Σ∗.

3.2. Transformations of 2-polygraphs

3.2.1. Knuth-Bendix’s completion. Let Σ be a terminating 2-polygraph, equipped with a total termi-
nation order ≤. The Knuth-Bendix’s completion of Σ is the 2-polygraph Σ̌ obtained by the following
process. We start with Σ̌ equal to Σ and with B equal to the set of critical branchings of Σ. If B is empty,
then the procedure stops. Otherwise, it picks a branching

v

u

f &:

g #7 w

in B and it performs the following operations:

1. It computes 2-cells f ′ : v ⇒ v̂ and g ′ : w ⇒ ŵ of Σ̌∗, where v̂ and ŵ are normal forms for v

18



3.2. Transformations of 2-polygraphs

and w, respectively, as in the following diagram:

v
f ′ %9 v̂

u

f ';

g #7 w
g ′

%9 ŵ

2. It tests which (in)equality v̂ = ŵ or v̂ > ŵ or v̂ < ŵ holds, corresponding to the following three
situations, respectively:

v f ′

�.
u

f ';

g #7

v̂ = ŵ

w g ′

1E

v
f ′ %9 v̂

α

��
u

f ';

g #7 w
g ′

%9 ŵ

v
f ′ %9 v̂

u

f ';

g #7 w
g ′

%9 ŵ

α

EY

If v̂ 6= ŵ, the procedure adds the dotted 2-cell α of the corresponding situation to Σ̌ and all the
new critical branchings created by α to B.

3. It removes (f, g) from B and restarts from the beginning.

If the procedure stops, it returns the 2-polygraph Σ̌. Otherwise, it builds an increasing sequence of
2-polygraphs, whose limit is denoted by Σ̌. Note that, if the starting 2-polygraph Σ is already convergent,
then the Knuth-Bendix’s completion of Σ is Σ.

3.2.2. Theorem ([KB70]). The Knuth-Bendix’s completion Σ̌ of a 2-polygraph Σ is a convergent pre-
sentation of the category Σ. Moreover, the 2-polygraph Σ̌ is finite if, and only if, the 2-polygraph Σ is
finite and if the Knuth-Bendix’s completion procedure halts.

Indeed, by construction, the 2-polygraph Σ̌ is convergent and, since all the operations performed by the
procedure are Tietze transformations, it is Tietze-equivalent to Σ.

3.2.3. Métivier-Squier’s reduction. A 2-polygraph Σ is reduced if, for every 2-cell α : u ⇒ v of Σ,
we have that u is a normal form for Σ2 \ {α} and that v is a normal form for Σ2.

Given a 2-polygraph Σ, the Métivier-Squier’s reduction of Σ is the 2-polygraph obtained by the
procedure that successively performs the following operations:

1. The procedure replaces every 2-cell α : u⇒ v by α : u⇒ û:

u
α

%9 v

��
û

7−→ u

α
�0

v

��
û
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3. Rewriting properties of 2-polygraphs

2. If the resulting 2-polygraph contains parallel 2-cells, the procedure removes all but one:

u

α1
�.

αn

0D û 7−→ u
α

%9 û

3. Finally, the procedure removes, in the resulting 2-polygraph, every 2-cell whose source contains
the source of another 2-cell:

vwv ′
α

%9

vβv ′ �1

v̂wv
′

vŵv ′

EY
7−→ vwv ′

vβv ′ �1

v̂wv
′

vŵv ′

EY

By construction, we get the following result, originally obtained by Métivier for term rewriting and by
Squier for string rewriting:

3.2.4. Theorem ([Mét83], [Squ87, Theorem 2.4]). Every (finite) convergent 2-polygraph is Tietze-
equivalent to a (finite) reduced convergent 2-polygraph.

3.3. Normalisation strategies

3.3.1. Normalisation strategies. Let Σ be a 2-polygraph and let C denote the category presented by Σ.
We consider a section

C� Σ∗1

of the canonical projection π : Σ∗1 � C, i.e., we choose, for every 1-cell u of C, a 1-cell û that
represents u, i.e., such that π(û) = u. In general, we cannot assume that the chosen section is functorial,
i.e., that ûv = ûv̂ holds. However, we assume that 1̂x = 1x holds for every 0-cell x of C. Given a
1-cell u of Σ∗, we simply write û for û.

Such a section being fixed, a normalisation strategy for Σ is a map

σ : Σ∗1 → Σ∗2

that sends every 1-cell u of Σ∗ to a 2-cell

u
σ(u)
=⇒ û

of Σ∗, such that σ(û) = 1û holds for every 1-cell u of Σ∗1.

3.3.2. Example. We assume that Σ is a terminating 2-polygraph. We use noetherian induction to define
a section and a corresponding normalisation strategy. If u is a normal form, then we define û as u
and σ(u) as the identity. Let us assume that u is not a normal form and that, for every v such that u
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4. Finite derivation type

rewrites into v, we have built v̂ and σ(v). In that case, we choose a rewriting step f : u ⇒ v and we
define û to be v̂ and σ(u) as the following composite:

v σ(v)

!
u

f
-A

σ(u)

)= û
=

3.3.3. The leftmost and rightmost normalisation strategies. If Σ is a 2-polygraph, then, for every
1-cell u of Σ∗, the set of rewriting steps with source u can be ordered from left to right: for two rewriting
steps f = vαv ′ and g = wβw ′ with source u, we have f ≺ g if the length of v is strictly smaller than
the length of w. If Σ is finite, then the order ≺ is total and the set of rewriting steps of source u is finite.
Hence, this set contains a smallest element λ(u) and a greatest element ρ(u), respectively called the
leftmost and the rightmost rewriting steps on u. If, moreover, the 2-polygraph Σ terminates, the iteration
of λ and ρ yields normalisation strategies respectively called the leftmost and the rightmost normalisation
strategies of Σ. For example, the rightmost normalisation strategy σ is defined, on a 1-cell u of Σ∗ by:

σ(u) = ρ(u) ?1 σ(t(ρ(u))).

Moreover, we prove by noetherian induction that, for every composable 1-cells u and v, the rightmost
normalisation strategy satisfies the relation

σ(uv) = uσ(v) ?1 σ(uv̂).

The leftmost and rightmost normalisation strategies give a way to make constructive most of the results
we present here. For example, they provide a deterministic choice of a confluence diagram

v σ(v)

�)
u

f ';

g "6

û

w σ(w)

7K

for every branching (f, g).

4. FINITE DERIVATION TYPE

4.1. Coherent presentations of categories

4.1.1. Cellular extensions and homotopy bases of 2-categories. Let C be a 2-category. A 2-sphere
of C is a pair γ = (f, g) of parallel 2-cells of C, i.e., with s(f) = s(g) and t(f) = t(g); we call f the
source of γ and g its target and we denote such a 2-sphere by γ : f V g. A cellular extension of the
2-category C is a set Γ equipped with a map from Γ to the set of 2-spheres of C.
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4. Finite derivation type

A congruence on a 2-category C is an equivalence relation ≡ on the parallel 2-cells of C such that,
for every cells

x
w
// y

��##

;; EE
z

w ′
// t

h ��

f
��

g
��

k ��

of C, if f ≡ g, then
w ?0 (h ?1 f ?1 k) ?0 w

′ ≡ w ?0 (h ?1 g ?1 k) ?0 w
′.

If Γ is a cellular extension of C, the congruence generated by Γ is denoted by ≡Γ and defined as the
smallest congruence such that, if Γ contains a 3-cell γ : fV g, then f ≡Γ g. The quotient 2-category of
a 2-category C by a congruence relation ≡ is the 2-category, denoted by C/ ≡, whose 0-cells and 1-cells
are those of C and the 2-cells are the equivalence classes of 2-cells of C modulo the congruence ≡.

A homotopy basis of C is a cellular extension Γ of C such that, for every parallel 2-cells f and g of C,
we have f ≡Γ g, that is, the equality f = g holds in the quotient 2-category C/ ≡Γ . For instance, the set
of 2-spheres of C forms a homotopy basis.

4.1.2. (3, 1)-polygraphs and coherent presentations. A (3, 1)-polygraph is a pair Σ = (Σ2, Σ3) made
of a 2-polygraph Σ2 and a cellular extension Σ3 of the free (2, 1)-category Σ>2 over Σ2, as summarised in
the following diagram:

Σ0 Σ∗1
t0

oo

s0
oo Σ>2

t1
oo

s1
oo Σ3

t2
oo

s2
oo

If C is a category, a coherent presentation of C is a (3, 1)-polygraph Σ = (Σ2, Σ3) such that Σ2 is a
presentation of C and Σ3 is a homotopy basis of Σ>2 .

4.1.3. Finite derivation type. A 2-polygraph Σ is of finite derivation type if it is finite and if the (2, 1)-
category Σ> admits a finite homotopy basis. A category C is of finite derivation type if it admits a finite
coherent presentation.

4.1.4. 3-categories. The definition of 3-category is adapted from the one of 2-category by replacement
of the hom-categories and the composition functors by hom-2-categories and composition 2-functors. In
particular, in a 3-category, the 3-cells can be composed in three different ways:

− by ?0, along their 0-dimensional boundary:

x

u

��

u ′

AA
yf

��
f ′

��

A
%9

v

��

v ′

AA
zg

��
g ′

��

B
%9 7−→ x

uv

  

u ′v ′

>> zfg
��

f ′g ′

��

AB
%9
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4.2. The homotopy bases transfer theorem

− by ?1, along their 1-dimensional boundary:

x

u

��

v //

w

BB
y

f
��

f ′
��

g

��
g ′

��

A
%9

B

%9
7−→ x

u

��

v

@@
yf ?1 g

��

f ′ ?1 g
′

��

A ?1 B
%9

− by ?2, along their 2-dimensional boundary:

x

u

  

v

>>
yf

��
g

��

h
��

A
%9

B
%9 7−→ x

u

  

v

>>
yf

��
h
��

A ?2 B
%9

A (3, 1)-category is a 3-category whose 2-cells are invertible for the composition ?1 and whose 3-cells
are invertible for the composition ?2. This implies that 3-cells are also invertible for the composition ?1.

4.1.5. Free (3, 1)-categories. Given a (3, 1)-polygraph Σ, the free (3, 1)-category over Σ is denoted
by Σ> and defined as follows:

− its underlying 2-category is the free (2, 1)-category Σ>2 over Σ2,

− its 3-cells are all the formal compositions by ?0, ?1 and ?2 of 3-cells of Σ3, of their inverses and of
identities of 2-cells.

In particular, we get that Σ3 is a homotopy basis of Σ>2 if, and only if, for every pair (f, g) of parallel
2-cells of Σ>2 , there exists a 3-cell A : fV g in Σ>.

4.2. The homotopy bases transfer theorem

The objective of this section is to prove Theorem 4.2.3: given two finite presentations of the same
category, both are of finite derivation type or neither is. Towards this goal, we prove Theorem 4.2.2, that
allows transfers of homotopy bases between presentations of the same category.

4.2.1. Lemma. Let C be a category and let Σ and Υ be presentations of C. There exist 2-functors

F : Σ> → Υ> and G : Υ> → Σ>

and, for every 1-cells u of Σ> and v of Υ>, there exist 2-cells

σu : GF(u)⇒ u and τv : FG(v)⇒ v

in Σ> and Υ>, such that the following conditions are satisfied:
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4. Finite derivation type

− the 2-functors F and G induce the identity through the canonical projections onto C:

Σ>
πΣ
// //

F
��

=

C

IdC
��

Υ>
πΥ
// // C

Σ>
πΣ
// //

=

C

Υ>
πΥ
// //

G

OO

C

IdC

OO

− the 2-cells σu and τv are functorial in u and v:

σ1x = 11x , τ1y = 11y , σuu ′ = σuσu ′ and τvv ′ = τvτv ′ .

Proof. Let us define F, the case of G being symmetric. On a 0-cell x, we take F(x) = x. If a : x→ y is
a 1-cell of Σ, we choose, in an arbitrary way, a 1-cell F(a) : x → y in Υ> such that πΥF(a) = πΣ(a).
Then, we extend F to every 1-cell of Σ> by functoriality. Let α : u ⇒ u ′ be a 2-cell of Σ. Since Σ is
a presentation of C, we have πΣ(u) = πΣ(u

′), so that πΥF(u) = πΥF(u
′) holds. Using the fact that Υ

is a presentation of C, we arbitrarily choose a 2-cell F(α) : F(u) ⇒ F(u ′) in Υ>. Then, we extend F to
every 2-cell of Σ> by functoriality.

Now, let us define σ, the case of τ being symmetric. Let a be a 1-cell of Σ. By construction of F
and G, we have:

πΣGF(a) = πΥF(a) = πΣ(a).

Since Σ is a presentation of C, there exists a 2-cell σa : GF(a)⇒ a in Σ>. We extend σ to every 1-cell u
of Σ> by functoriality.

4.2.2. Theorem. Let C be a category, let Σ and Υ be two presentations of C and let F, G and τ be
chosen as in Lemma 4.2.1. If Γ is a homotopy basis of Σ>, then

∆ = F(Γ) t τΥ
is a homotopy basis of Υ>, where:

− the cellular extension F(Γ) contains one 3-cell

F(u)

F(f)

�/

F(g)

/C
F(γ)
��

F(v)

for every 3-cell γ : fV g of Γ ,

− the cellular extension τΥ contains one 3-cell

FG(v) τv

�,τα
��

FG(u)

FG(α) )=

τu #7

v

u α

1E

for every 2-cell α : u⇒ v of Υ.
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4.2. The homotopy bases transfer theorem

Proof. Let us define, for every 2-cell f of Υ>, a 3-cell τf of ∆> with the following shape:

FG(v) τv

�,τf
��

FG(u)

FG(f) )=

τu #7

v

u f

1E

We extend the notation τα in a functorial way, according to the following formulas:

τ1u = 1τu , τfg = τfτg, τf− = FG(f)− ?1 τ
−
f ?1 f

−,

τf?1g =
(
FG(f) ?1 τg

)
?2
(
τf ?1 g

)
.

One checks that the 3-cells τf are well-defined, i.e., that their definition is compatible with the relations
on 2-cells, such as the exchange relation:

τfg?1hk = τ(f?1h)(g?1k).

Now, let us consider parallel 2-cells f, g : u ⇒ v of Υ>. The 2-cells G(f) and G(g) are parallel in Σ>

so that, since Γ is a homotopy basis of Σ>, there exists a 3-cell

G(u)

G(f)

�.

G(g)

0DA
��

G(v)

in Γ>. An application of F to A gives the 3-cell

FG(u)

FG(f)

�.

FG(g)

0D
F(A)
��

FG(v)

which, by definition of ∆ and functoriality of F, is in ∆>. Using the 3-cells F(A), τf and τg, we get the
following 3-cell from f to g in ∆>:

u

f

�(τ−u %9

g

6JFG(u)

FG(f)
�*

FG(g)

3GFG(v)
τv %9 v

τ−u ?1 τ
−
f��

F(A)
��

τ−u ?1 τg��

This concludes the proof that ∆ = F(Γ)q τΥ is a homotopy basis of the (2, 1)-category Υ>.
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4. Finite derivation type

We deduce from Theorem 4.2.2 the following result.

4.2.3. Theorem ([SOK94, Theorem 4.3]). Let Σ and Υ be finite presentations of the same category.
Then Σ is of finite derivation type if, and only if, Υ is of finite derivation type.

The following proposition is useful to prove that a presentation admits no finite homotopy basis.

4.2.4. Proposition. Let Σ be a 2-polygraph and let Γ be a homotopy basis of Σ>. If Σ admits a finite
homotopy basis, then there exists a finite subset of Γ that is a homotopy basis of Σ>.

Proof. Let ∆ be a finite homotopy basis of Σ and let δ be a 3-cell of ∆. Since Γ is a homotopy basis of Σ,
there exists a 3-cell Aδ in Γ> with boundary (s(δ), t(δ)). This induces a 3-functor

F : ∆> → Γ>

that is the identity on Σ and such that F(δ) = Aδ for every 3-cell δ of ∆. Let Γ∆ be the subset of Γ that
contains all the generating 3-cells that appear in some 3-cellAδ, for δ in ∆. Since ∆ is finite and eachAδ
contains finitely many 3-cells of Γ , we have that Γ∆ is finite. Finally, let us consider a 2-sphere (f, g)
of Σ>. By hypothesis, there exists a 3-cell A in ∆> with boundary (f, g). By application of F, one gets a
3-cell F(A) in Γ> whose boundary is (f, g). Moreover, the 3-cell F(A) is a composite of cellsAδ: hence,
the 3-cell F(A) is in Γ>∆ . As a consequence, one gets f ≡Γ∆ g, so that Γ∆ is a finite homotopy basis of Σ>,
which concludes the proof.

4.3. Squier’s completion for convergent presentations

Squier’s completion provides a way to extend a convergent presentation of a category C into a coherent
presentation of C. We fix a convergent 2-polygraph Σ.

4.3.1. Squier’s completion. A family of generating confluences of Σ is a cellular extension of Σ> that
contains exactly one 3-cell

v f ′

�,

��
u

f ';

g #7

u ′

w g ′

3G

for every critical branching (f, g) of Σ. We note that, if Σ is confluent, it always admits a family of
generating confluences. However, such a family is not necessarily unique, since the 3-cell can be directed
in the reverse way and, for a given branching (f, g), we can have several possible 2-cells f ′ and g ′ with the
required shape. Normalisation strategies provide a deterministic way to construct a family of generating
confluences, see [GM12b, 4.3.2].

Squier’s completion of Σ is the (3, 1)-polygraph denoted by S(Σ) and defined by S(Σ) = (Σ, Γ),
where Γ is a chosen family of generating confluences of Σ.

4.3.2. Theorem ([SOK94, Theorem 5.2]). Let C be a category and let Σ be a presentation of C.
Squier’s completion S(Σ) of Σ is a coherent presentation of C.

26



4.3. Squier’s completion for convergent presentations

Proof. We proceed in three steps.

Step 1. We prove that, for every local branching (f, g) : u⇒ (v,w) of Σ, there exist 2-cells f ′ : v⇒ u ′

and g ′ : w⇒ u ′ in Σ∗ and a 3-cell A : f ?1 f
′ V g ?1 g

′ in S(Σ)>, as in the following diagram:

v f ′

�,
A��

u

f ';

g #7

u ′

w g ′

3G

As we have seen in the study of confluence of local branchings, in the case of an aspherical or Peiffer
branching, we can choose f ′ and g ′ such that f ?1 f ′ = g ?1 g ′: an identity 3-cell is enough to link them.
Moreover, if we have an overlapping branching (f, g) that is not critical, we have (f, g) = (uhv, ukv)
with (h, k) critical. We consider the 3-cell α : h ?1 h

′ V k ?1 k
′ of S(Σ) corresponding to the critical

branching (h, k) and we conclude that the following 2-cells f ′ and g ′ and 3-cell A satisfy the required
conditions:

f ′ = uh ′v g ′ = uk ′v A = uαv.

Step 2. We prove that, for every parallel 2-cells f and g of Σ∗ whose common target is a normal form,
there exists a 3-cell from f to g in S(Σ)>. We proceed by noetherian induction on the common source u
of f and g, using the termination of Σ. Let us assume that u is a normal form: then, by definition, both
2-cells f and g must be equal to the identity of u, so that 11u : 1u V 1u is a 3-cell of S(Σ)> from f to g.

Now, let us fix a 1-cell u with the following property: for any 1-cell v such that u rewrites into v
and for any parallel 2-cells f, g : v ⇒ v̂ = û of Σ∗, there exists a 3-cell from f to g in S(Σ)>. Let
us consider parallel 2-cells f, g : u ⇒ û and let us prove the result by progressively constructing the
following composite 3-cell from f to g in S(Σ)>:

u1

f ′1
�)

f2

�-
A
��

u

f

�$

g

:N

f1

/C

g1
�/

u ′ h %9 û

v1

g ′1

5I

g2

1E

=

=

B��

C��

Since u is not a normal form, we can decompose f = f1 ?1 f2 and g = g1 ?1 g2 so that f1 and g1 are
rewriting steps. They form a local branching (f1, g1) and we build the 2-cells f ′1 and g ′1, together with
the 3-cell A as in the first part of the proof. Then, we consider a 2-cell h from u ′ to û in Σ∗, that must
exist by confluence of Σ and since û is a normal form. We apply the induction hypothesis to the parallel
2-cells f2 and f ′1 ?1 h in order to get B and, symmetrically, to the parallel 2-cells g ′1 ?1 h and g2 to get C.
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4. Finite derivation type

Step 3. We prove that every 2-sphere of Σ> is the boundary of a 3-cell of S(Σ)>. First, let us consider a
2-cell f : u⇒ v in Σ∗. Using the confluence of Σ, we choose 2-cells

σu : u ⇒ û and σv : v ⇒ v̂ = û

in Σ∗. By construction, the 2-cells f?1σv and σu are parallel and their common target û is a normal form.
Thus, there exists a 3-cell in S(Σ)> from f ?1 σv to σu or, equivalently, a 3-cell σf from f to σu ?1 σ−v in
S(Σ)>, as in the following diagram:

u

f

�.

σu  4

v

û σ−v

<Pσf
��

Moreover, the (3, 1)-category S(Σ)> contains a 3-cell σf− from f− to σv ?1 σ−u , given as the following
composite:

û σ−v

!
v
f− %9 u

f

0D

σu
+?

v
σv %9 û

σ−u %9 uσ−f��

Now, let us consider a general 2-cell f : u ⇒ v of Σ>. By construction of Σ>, the 2-cell f can be
decomposed (in general in a non-unique way) into a “zig-zag”

u
f1 %9 v1

g−1 %9 u2
f2 %9 (· · · )

g−n−1 %9 un
fn %9 vn

g−n %9 v

where each fi and gi is a 2-cell of Σ∗. We define σf as the following composite 3-cell of S(Σ)>, with
source f and target σu ?1 σ−v :

u
f1 %9

σu �2

v1
g−1 %9

σv1
�,

(· · · ) fn %9

σun
�,

vn
g−n %9

σvn
�,

v

û

σ−v1

2F

û

σ−u2

2F

(· · · ) û

σ−vn

2F

û
σ−v

:N
σf1��

σg−1��
σfn��

σg−n��= =

We proceed similarly for any other 2-cell g : u ⇒ v of Σ>, to get a 3-cell σg from g to σu ?1 σ
−
v

in S(Σ)>. Thus, the composite σf ?2 σ−g is a 3-cell of S(Σ)> from f to g, concluding the proof.

Theorem 4.3.2 is extended to higher-dimensional polygraphs in [GM09, Proposition 4.3.4]. In the special
case of presentations of monoids, we recover the original result of Squier.

4.3.3. Theorem ([SOK94, Theorem 5.3]). If a monoid admits a finite convergent presentation, then it
is of finite derivation type.
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4.3. Squier’s completion for convergent presentations

4.3.4. Example. The standard presentation of a category C is the 2-polygraph denoted by Std2(C) and
defined as follows:

− the 0-cells and 1-cells of Std2(C) are the ones of C, a 1-cell u of C being denoted by û when seen
as a generating 1-cell of Std2(C),

− for every 1-cells u : x→ y and v : y→ z of C, one 2-cell

y
v̂

��

x

û
77

ûv

44 z

γu,v��

− for every 0-cell x of C, one 2-cell

x

1x
��

1̂x

??
xιx��

The standard coherent presentation of C is the (3, 1)-polygraph denoted by Std3(C) and obtained by
extension of Std2(C) with the homotopy basis made of the following 3-cells:

− for every 1-cells u : x→ y, v : y→ z and w : z→ t of C, one 3-cell

ûvŵ γuv,w
�.

ûv̂ŵ

γu,vŵ (<

ûγv,w
"6

ûvw

ûv̂w γu,vw

2Fαu,v,w
��

− for every 1-cell u : x→ y of C, two 3-cells

1̂xû
γ1x,u

�"
û

ιxû
.B

û

λu
��

û1̂y
γu,1y

�"
û

ûιy
/C

û

ρu
��

Let us prove that Std+(C) is, indeed, a coherent presentation of C. The standard presentation Std(C) is
not terminating: indeed, for every 0-cell x of C, the 2-cell ιx creates infinite rewriting sequences

1x ⇒ 1̂x ⇒ 1̂x1̂x ⇒ 1̂x1̂x1̂x ⇒ · · ·
However, we get a convergent presentation of C by reversing all the 2-cells ιx into ι−x . Indeed, for
termination, we consider the size of the 1-cells (the number of generators they contain) and we check
that each 2-cell γu,v has source of size 2 and target of size 1, while each 2-cell ι−x has source of size 1
and target of size 0. As a consequence, for every non-identity 2-cell f : u⇒ v of the free 2-category, the
size of u is strictly greater than the size of v. For confluence, we study the critical branchings, divided
into three families:
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4. Finite derivation type

− for every 1-cells u : x → y, v : y → z and w : z → t, one critical branching (γu,vŵ, ûγv,w),
giving the 3-cell

ûvŵ γuv,w
�.

γu,v,w
��

ûv̂ŵ

γu,vŵ (<

ûγv,w
"6

ûvw

ûv̂w γu,vw

2F

− for every 1-cell u : x → y of C, two critical branchings (γ1x,u, ι
−
x û) and (γu,1y , ûι

−
y ), producing

the 3-cells

1̂xû

γ1x,u

�*

ι−x û

5Iλu�� û û1̂y

γu,1y

�*

ûι−y

5Iρu�� û

Since considering the 2-cells ιx or ι−x as generators does not change the generated (2, 1)-category, we
get that those three families of 3-cells form a homotopy basis for Std2(C). We replace λu by ιxû ?1 λu
and ρu by ûιy ?1 ρu to get the result.

One can reduce Std3(C) into the smaller reduced standard coherent presentation Std ′3(C) of C. It is
obtained from Std2(C) by coherently removing all the cells about units:

− the 3-cells γ1x,u,v, γu,1y,v and γu,v,1z , since they are parallel to composites of λs and ρs,

− the 2-cells γ1x,u and the 3-cells λu,

− the 2-cells γu,1x and the 3-cells ρu,

− the 1-cells 1̂x and the 2-cells ιx.

The resulting coherent presentation is detailed in [GM12b, 4.1.6].

4.3.5. Example. Let us consider the monoid M presented by the 2-polygraph

Σ =
〈
x, y

∣∣ xyx α
=⇒ yy

〉
.

We prove that Σ terminates with the deglex order generated by x < y. The 2-polygraph Σ has one, non
confluent critical branching (αyx, xyα). Knuth-Bendix’s completion Σ̌ of Σ is obtained by adjunction
of the following 2-cell β : yyyx⇒ xyyy:

yyyx

β

��

xyxyx

αyx )=

xyα !5 xyyy
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5. A homological finiteness condition

Then, Squier’s completion S(Σ̌) extends Σ̌ with the following two 3-cells:

yyyx

β

��

xyxyx

αyx )=

xyα !5

A
��

xyyy

xyyyyx xyβ

�,
B
��

yyyxyx

βyx *>

yyyα !5

xyxyyy

αyyyi}
yyyyy

In fact, the 3-cell A is sufficient to get a homotopy basis of Σ̌, as witnessed by the following 3-sphere of
the (3, 1)-category S(Σ̌)>:

yyyxyx

yyyα

�%
βyx

��

yyyxyx

yyyα

�%
xyxyxyx

αyxyx
(<

xyαyx %9

xyxyα "6

xyyyyx

xyβ

��

B

Ayx

xyA

yyyyy
ω
�? xyxyxyx

αyxyx
,@

1αyα

xyxyα �3

yyyyy

xyxyyy

αyyy

8L

yyyxyx

αyyy

8L

Indeed, the 3-sphere ω proves that the boundary of B is also the boundary of a 3-cell of the (3, 1)-
category (S(Σ̌) \ {A})>. This elimination mechanism, based on the study of the triple critical branchings
of Σ̌ is part of the homotopical reduction procedure introduced in [GGM13]. This construction coher-
ently eliminates pairs of redundant cells of a coherent presentation. On this particular example, it yields
that the (2, 1)-category Σ> admits an empty homotopy basis, i.e., that the (3, 1)-polygraph (Σ, ∅) is a
coherent presentation of the monoid M.

4.3.6. Polygraphic resolutions from convergent presentations. Polygraphic resolutions have been in-
troduced in [Mét03] as a natural generalisation of coherent presentations in every dimension. In [GM12b,
Theorem 4.5.3], Squier’s completion is extended to higher dimensions to compute, from a reduced con-
vergent presentation Σ of a category C, a polygraphic resolution of C whose n-cells are indexed by the
critical (n − 1)-fold branchings of Σ (the minimal nontrivial overlaps of n − 1 copies of 2-cells of Σ).
In particular, the critical triple branchings induce a homotopy basis of Squier’s completion S(Σ): all the
parallel 3-cells of S(Σ)> are equal up to the 4-cells generated by the triple critical branchings [GM12b,
Proposition 4.4.4]. This implies the following result:

4.3.7. Proposition. Let Σ be a reduced convergent 2-polygraph with no triple critical branching. Then
all the parallel 3-cells of the free (3, 1)-category S(Σ)> are equal.

5. A HOMOLOGICAL FINITENESS CONDITION

5.1. Monoids of finite homological type

5.1.1. Resolutions. Let M be a monoid. We denote by ZM the ring generated by M, that is, the free
abelian group over M, equipped with the canonical extension of the product of M:(∑

u∈M

λuu
)(∑
v∈M

λvv
)
=
∑
u,v∈M

λuλvuv =
∑
w∈M

∑
uv=w

λuλvw.
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5. A homological finiteness condition

Given a (left) ZM-moduleM, a resolution ofM is an exact sequence of ZM-modules

(· · · ) //Mn
dn
//Mn−1

// (· · · ) //M2
d2
//M1

d1
//M0

d0
//M // 0

that is, a sequence (Mn)n∈N of ZM-modules, together with a sequence (dn)n∈N of morphisms of
ZM-modules, called the boundary maps, such that d0 is surjective and

Imdn+1 = Kerdn

holds for every natural number n. In particular, the sequence (Mn, dn)n∈N is a (chain) complex of
ZM-modules, that is, we have the inclusion Imdn+1 ⊆ Kerdn or, equivalently, the relation dndn+1 = 0
holds for every natural number n. Such a resolution is called projective (resp. free) if all the modulesMn

are projective (resp. free).
Given a natural number n, a partial resolution of length n of M is defined in a similar way but with

a bounded sequence (Mk)0≤k≤n of ZM-modules.

5.1.2. Contracting homotopies. Given a complex of ZM-modules

(· · · ) //Mn+1
dn+1

//Mn
dn
//Mn−1

// (· · · ) //M1
d1
//M0

d0
//M // 0

a method to prove that such a complex is a resolution of M is to construct a contracting homotopy, that
is a sequence of morphisms of Z-modules

(· · · ) Mn+1
oo Mn

sn+1
oo Mn−1

sn
oo (· · · )oo M1

oo M0
s1
oo M

s0
oo

such that d0s0 = IdM and, for every n ≥ 1, we have

dn+1sn+1 + sndn = IdMn .

Indeed, in that case, we have that d0 is surjective. Moreover, for every natural number n and every x in
Kerdn, the equality dn+1sn+1(x) = x holds, proving that x is in Imdn+1, so that Kerdn ⊆ Imdn+1
holds. As a consequence, the considered complex is a resolution ofM.

5.1.3. Homological type left-FPn. If M is a monoid, the trivial ZM-module is the abelian group Z
equipped with the trivial action un = n, for every u in M and n in Z. A monoid M is of homolog-
ical type left-FPn, for a natural number n, if there exists a partial resolution of length n of the trivial
ZM-module Z by projective, finitely generated ZM-modules:

Pn
dn
// Pn−1

dn−1
// (· · · )

d2
// P1

d1
// P0

d0
// Z // 0.

A monoid M is of homological type left-FP∞ if there exists a resolution of Z by projective, finitely
generated ZM-modules.

5.1.4. Lemma. Let M be a monoid and let n be a natural number. The following assertions are equiv-
alent:
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5.2. Monoids of homological type left-FP2

i) The monoid M is of homological type left-FPn.

ii) There exists a free, finitely generated partial resolution of the trivial ZM-module Z of length n

Fn // Fn−1 // (· · · ) // F0 // Z // 0.

iii) For every 0 ≤ k < n and every projective, finitely generated partial resolution of the trivial
ZM-module Z of length k

Pk
dk
// Pk−1

dk−1
// (· · · ) // P0

d0
// Z // 0,

the ZM-module Kerdk is finitely generated.

This lemma is a consequence of the following generalisation of Schanuel’s lemma. Let us consider two
exact sequences

0 // Pn+1 // Pn // (· · · ) // P0 // Z // 0

and
0 // P ′n+1

// P ′n // (· · · ) // P ′0
// Z // 0

of projective ZM-modules, with Pi and P ′i finitely generated for every 0 ≤ i ≤ n. Then the
ZM-module Pn+1 is finitely generated if, and only if, the ZM-module P ′n+1 is finitely generated.

5.2. Monoids of homological type left-FP2

5.2.1. Presentations and partial resolutions of length 2. Let M be a monoid and letΣ be a presentation
of M. Let us define a partial resolution of length 2 of Z by free ZM-modules

ZM[Σ2]
d2
// ZM[Σ1]

d1
// ZM ε

// Z // 0.

The ZM-modules ZM[Σ1] and ZM[Σ2] are the free ZM-modules over Σ1 and Σ2, respectively: they
contain the formal sums of elements denoted by u[x], where u is an element of M and x is a 1-cell of Σ1
or a 2-cell of Σ2. Let us note that ZM is isomorphic to the free ZM-module over the singleton Σ0. The
boundary maps are defined, on generators as follows:

ZM ε−→ Z
u 7−→ 1

ZM[Σ1]
d1−→ ZM

[x] 7−→ x− 1
ZM[Σ2]

d2−→ ZM[Σ1]
[α] 7−→ [s(α)] − [t(α)]

The maps ε and d2 are respectively called the augmentation map and the Reidemester-Fox Jacobian of Σ.
In the definition of d2, the bracket [·] is extended to the 1-cells of Σ∗1 thanks to the relation:

[uv] = [u] + u[v],

for any 1-cells u and v in Σ1. In particular, this relation implies that [1] = 0 holds.
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5.2.2. Proposition. Let M be a monoid and let Σ be a presentation of M. The sequence of ZM-modules

ZM[Σ2]
d2
// ZM[Σ1]

d1
// ZM ε

// Z // 0

is a partial free resolution of length 2 of Z.

Proof. We first note that the sequence is a chain complex. Indeed, the augmentation map is surjective by
definition. Moreover, we have

εd1[x] = ε(x) − ε(1) = 1− 1 = 0,

for every 1-cell x of Σ1. In order to check that d1d2 = 0, we first prove, by induction on the length, that
we have d1[u] = u− 1 for every 1-cell u of Σ∗1. For the unit, we have d1[1] = d1(0) = 0 and 1− 1 = 0.
Then, for a composite 1-cell uv such that the result holds for both u and v, we get

d1[uv] = d1[u] + ud1[v] = u− 1+ uv− u = uv− 1.

As a consequence, we have

d1d2[α] = d1[s(α)] − d1[t(α)] = s(α) − t(α) = 0,

for every 2-cell α of Σ2, where the last equality comes from the fact that s(α) = t(α) since Σ is a
presentation of M.

The rest of the proof consists in defining contracting homotopies s0, s1, s2:

ZM[Σ2]
d2
// ZM[Σ1]

d1
//

s2
oo ZM

ε
//

s1
oo Z

s0
oo

We choose a representative û in Σ∗1 for every element u of M and we fix a corresponding normalisation
strategy σ. Then we define the morphisms of abelian groups s0, s1 and s2 by their values on generic
elements

s0(1) = 1, s1(u) = [û], s2(u[x]) = [σ(ûx)],

where the bracket [·] is extended to every 2-cell of Σ> thanks to the relations

[ufv] = u[f] and [f ?1 g] = [f] + [g],

for any 1-cells u and v and 2-cells f and g such that the composites ufv and f ?1 g are defined. For every
u in M, we have s0ε(u) = 1 and

d1s1(u) = d1[û] = u− 1.

Thus d1s1 + s0ε = IdZM. Then we have, on the one hand,

s1d1(u[x]) = s1(ux− u) = [ûx] − [û]

and, on the other hand,

d2s2(u[x]) = d2[σ(ûx)] = [ûx] − [ûx] = u[x] + [û] − [ûx].

For this equality, we check that d2[f] = [s(f)] − [t(f)] holds for every 2-cell f of Σ> by induction on the
size of f. Hence d2s2 + s1d1 = IdZM[Σ1], thus concluding the proof.
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5.3. Squier’s homological theorem

From Proposition 5.2.2, we deduce the following result:

5.2.3. Theorem. The following properties hold.

i) Every monoid is of homological type left-FP0.

ii) Every finitely generated monoid is of homological type left-FP1.

iii) Every finitely presented monoid is of homological type left-FP2.

5.2.4. Remark. The property left-FP2 implies left-FP1, yet the converse implication fails to hold. In-
deed, let us consider the monoid M presented by the following 2-polygraph:

Σ =
〈
a, c, t | atn+1

αn=⇒ ctn , n ∈ N
〉
.

The monoid M is finitely generated and, thus, it is of homological type left-FP1. However, for every
natural number n, we have

d2[αn+1] = [atn+2] − [ctn+1],

= [atn+1] + atn+1[t] − [ctn] − ctn[t],

= d2[αn] + (atn+1 − ctn)[t].

The equality atn+1 = ctn holds in M by definition, yielding d2[αn+1] = d2[αn]. As a consequence, the
ZM-module Kerd2 is generated by the elements [αn+1]−[αn]: it is not finitely generated, proving that M
is not of homological type left-FP2. As a consequence, the monoid M does not admit a presentation by
a finite 2-polygraph.

5.3. Squier’s homological theorem

5.3.1. Coherent presentations and partial resolutions of length 3. Let M be a monoid and let Σ be a
coherent presentation of M. Let us extend the partial resolution of 5.2.2 into the resolution of length 3

ZM[Σ3]
d3
// ZM[Σ2]

d2
// ZM[Σ1]

d1
// ZM ε

// Z // 0,

where the ZM-module ZM[Σ3] is the free ZM-module over Σ3, formed by the linear combination of
elements u[γ], with u is in M and γ is a 3-cell of Σ. The boundary map d3 is defined, for every 3-cell γ
of Σ, by

d3[γ] = [s2(γ)] − [t2(γ)].

The bracket [·] is extended to 3-cells of Σ> thanks to the relations

[uAv] = u[A], [A ?1 B] = [A] + [B], [A ?2 B] = [A] + [B],

for any 1-cells u and v and 3-cellsA and B such that the composites are defined. We check, by induction
on the size, that d3[A] = [s2(A)] − [t2(A)] holds for every 3-cell A of Σ>.
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5.3.2. Proposition. Let M be a monoid and let Σ be a coherent presentation of M. The sequence of
ZM-modules

ZM[Σ3]
d3
// ZM[Σ2]

d2
// ZM[Σ1]

d1
// ZM ε

// Z // 0

is a partial free resolution of length 3 of Z.

Proof. First, we have d2d3 = 0 because s1s2 = s1t2 and t1s2 = t1t2. Then, we define the following
morphism of groups

ZM[Σ2]
s3−→ ZM[Σ3]

u[α] 7−→ [σ(ûα)]

where σ(ûα) is a 3-cell of Σ> with the following shape, with v = s(α) and w = t(α):

ûw
σ(ûw)

�$
ûv

ûα
-A

σ(ûv)

(< ûv
σ(ûα)��

Let us note that such a 3-cell necessarily exists in Σ> because Σ3 is a homotopy basis of Σ>. Then we
have, on the one hand,

s2d2(u[α]) = s2(u[v] − u[w]) = [σ(ûv)] − [σ(ûw)]

and, on the other hand,

d3s3(u[α]) = [ûα ?1 σ(ûw)] − [σ(ûv)],

= u[α] + [σ(ûw)] − [σ(ûv)].

Hence d3s3 + s2d3 = IdZM[Σ2], concluding the proof.

5.3.3. Remark. The proof of Proposition 5.3.2 uses the fact that Σ3 is a homotopy basis to produce,
for every 2-cell α of Σ and every u of M, a 3-cell σ(ûα) with the required shape. The hypothesis on
Σ3 could thus be modified to only require the existence of such a 3-cell in Σ>: however, it is proved
in [GM12b] that this implies that Σ3 is a homotopy basis.
From Proposition 5.3.2, we deduce the following result.

5.3.4. Theorem ([CO94, Theorem 3.2], [Laf95, Theorem 3], [Pri95]). Let M be a finitely presented
monoid. If M is of finite derivation type, then it is of homological type left-FP3.

5.3.5. The case of a convergent presentation. Let Σ be a reduced convergent 2-polygraph equipped
with its leftmost normalisation strategy σ. Since Σ is reduced, every critical branching of Σ has the
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5.3. Squier’s homological theorem

following form

û
//

u ′

��ŵ
//

v ′

BB
v̂
//

α
EY

β��

where α and β are 2-cells of Σ and where û, ŵ and v̂ are non-identity normal forms. Let us note that αv̂
is the leftmost reduction step of ûŵv̂ and that ûβ is its rightmost reduction step. In particular, we have

σ(ûŵv̂) = αv̂ ?1 σ(u
′v̂).

We define Σ3 as the cellular extension of Σ> made of one 3-cell with the following shape, for every
critical branching b = (αv̂, ûβ) of Σ:

ûv ′
σ(ûv ′)

�&
ûŵv̂

ûβ ,@

σ(ûŵv̂)

(< ûwv

ωb��

Since Σ3 is a family of generating confluences of Σ, it is a homotopy basis of Σ>, so that, by Proposi-
tion 5.3.2, the following sequence is a partial free resolution of length 3 of Z:

ZM[Σ3]
d3
// ZM[Σ2]

d2
// ZM[Σ1]

d1
// ZM ε

// Z // 0.

In particular, if Σ is finite, it has a finite number of critical branchings, so that the monoid M is of
homological type left-FP3.

5.3.6. Theorem ([Squ87, Theorem 4.1]). If a monoid admits a finite convergent presentation, then it is
of homological type left-FP3.

5.3.7. Example. Let us consider the monoid M with the following convergent presentation:〈
1, a

∣∣ aa µ
=⇒ a

〉
.

We use “string diagrams” to write the 2-cell aa
µ
=⇒ a. With the leftmost normalisation strategy σ,

we get:
σ(a) = 1a σ(aa) = σ(aaa) = µa ?1 µ = .

The presentation has exactly one critical branching, whose corresponding generating confluence can be
written in the following two equivalent ways:

aa

�%
aaa

)=

!5

a

aa

8L %9
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5. A homological finiteness condition

The ZM-module Kerd2 is generated by:

d3
[ ]

=
[ ]

−
[

]

=
[ ]

+
[ ]

−
[ ]

−
[ ]

= a
[ ]

−
[ ]

.

5.3.8. Resolutions from convergent presentations. In [GM12b], the results presented here are gener-
alised to produce a free resolution

(· · · )
dn+1

// ZM[Σn]
dn
// ZM[Σn−1]

dn−1
// (· · · )

d2
// ZM[Σ1]

d1
// ZM[Σ0]

ε
// Z // 0

of the trivial ZM-module Z from a convergent presentation of a monoid M. For k ≥ 4, the ZM-module
ZM[Σk] is defined as the free ZM-module over a family Σk of k-cells obtained from the (k − 1)-fold
critical branchings. For example, the 4-cell

%9

�-

1E

 4

*>��

is the only element of Σ4 in the case of the monoid of Example 5.3.7.

5.3.9. Other homological finiteness conditions. In the definition 5.1.3 of homological type left-FPn
for a monoid M, the replacement of left-modules by right-modules, bimodules or natural systems gives
the definitions of the homological types right-FPn, bi-FPn and FPn, for every 0 ≤ n ≤ ∞. We refer
the reader to [GM12b, Section 5.2] for the relations between these different finiteness conditions. In
particular, for n = 3, all of these homotopical conditions are consequences of the finite derivation type
property. The proof is similar to the one for left-FP3 in Section 5.3. For example, in the case of right-
FP3, we consider right-modules and, to get the contracting homotopy, we construct a left normalisation
strategy σ by defining a 3-cell σ(αû) with shape

wû
σ(wû)

�$
vû

αû
-A

σ(vû)

(< v̂u
σ(αû)��

for any generating 2-cell α : v⇒ w and u in the monoid.
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6. Squier’s example and variant

6. SQUIER’S EXAMPLE AND VARIANT

6.1. Squier’s example

In [Squ87], Squier defines, for every k ≥ 1, the monoid Sk presented by

ΣSqk =
〈
a, b, t, x1, . . . , xk, y1, . . . , yk

∣∣ (αn)n∈N, (βi)1≤i≤k, (γi)1≤i≤k, (δi)1≤i≤k, (εi)1≤i≤k
〉

with

atnb
αn=⇒ 1, xia

βi
=⇒ atxi, xit

γi
=⇒ txi, xib

δi=⇒ bxi, xiyi
εi=⇒ 1.

In [SOK94], Squier proves the following properties for S1. With similar arguments, the result extends to
every monoid Sk, for k ≥ 1.

6.1.1. Theorem ([SOK94, Theorem 6.7, Corollary 6.8]). For every k ≥ 1, the monoid Sk satisfies the
following properties:

i) it is finitely presented,

ii) it has a decidable word problem,

iii) it is not of finite derivation type,

iv) it admits no finite convergent presentation.

In [Squ87], Squier had already proved that the monoids Sk satisfy the following homological properties.

6.1.2. Proposition ([Squ87, Example 4.5.]). For k ≥ 2, the monoid Sk is not of finite homological type
left-FP3 and, as a consequence, it does not admit a finite convergent presentation.

Proposition 6.1.2 does not hold for S1. Indeed, this monoid is of homological type left-FP∞, [Squ87,
Example 4.5.]. This proves that, if finite derivation type implies left-FP3, the reverse implication does not
hold for general monoids. However, in the special case of groups, the property of having finite derivation
type is equivalent to the homological finiteness condition left-FP3 [CO96]. The latter result is based on
the Brown-Huebschmann isomorphism between homotopical and homological syzygies [BH82].

6.2. Proof of Theorem 6.1.1

Let us prove the result in the case of the monoid S1, with the following infinite presentation:

ΣSq1 =
〈
a, b, t, x, y

∣∣ (αn)n∈N, β, γ, δ, ε
〉

with

atnb
αn=⇒ 1, xa

β
=⇒ atx, xt

γ
=⇒ tx, xb

δ
=⇒ bx, xy

ε
=⇒ 1.

In what follows, we denote by γn : xtn ⇒ tnx the 2-cell of (ΣSq1)∗ defined by induction on n as
follows:

γ0 = 1x and γn+1 = γtn ?1 tγn.
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6. Squier’s example and variant

For every n, we write fn : xatb ⇒ atn+1bx the 2-cell of (ΣSq1)∗ defined as the following composite:

xatnb
βtnb %9 atxtnb

atγnb %9 atn+1xb
atn+1δ %9 atn+1bx.

We note that fn contains no 2-cell αk.

6.2.1. Proposition. The monoid S1 admits the following finite presentation:

Υ =
〈
a, b, t, x, y

∣∣ α0, β, γ, δ, ε 〉.
Proof. For every natural number n, we consider the following 2-sphere of (ΣSq1)>:

atn+1bxy
atn+1bε %9 atn+1b

αn+1

�&
xatnby

fny
.B

xαny "6

1

xy
ε

.B
(4)

Thus, the 2-cell αn+1 is parallel to the composite 2-cell

atn+1bε− ?1 f
−
ny ?1 xαny ?1 ε. (5)

Since fn contains no αk, this proves by induction on n that the monoid S1 admitsΥ as a presentation.

6.2.2. Proposition. The 2-polygraph ΣSq1 is convergent and Squier’s completion of ΣSq1 contains a
3-cell An for every natural number n with the following shape:

atn+1bx
αn+1x

�)
xatnb

fn
+?

xαn

(<
An
��

x

Proof. Let us prove that ΣSq1 terminates. For that, we build a termination order based on derivations,
similar to the method of [GM09, Theorem 4.2.1] for 3-polygraphs. We associate, to every 1-cell u of
(ΣSq1)∗, two maps

u∗ : N → N and ∂(u) : N → N

as follows. First, we define them on the 1-cells of ΣSq1 :

x∗(n) = n+ 1, a∗(n) = b∗(n) = t∗(n) = y∗(n) = n,

∂(a)(n) = 3n, ∂(b)(n) = ∂(y)(n) = 2n, ∂(t)(n) = ∂(x)(n) = 0.

Then, we extend the mappings to every 1-cell of (ΣSq1)∗ thanks to the following relations:

1∗(n) = n, (uv)∗(n) = v∗(u∗(n)), ∂(1)(n) = 0, ∂(uv)(n) = ∂(u)(n) + ∂(v)(u∗(n)).
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6.2. Proof of Theorem 6.1.1

We compare parallel 1-cells of (ΣSq1)∗ by the order generated by u < v if u∗ ≤ v∗ and ∂(u) < ∂(v).
The defining relations of (·)∗ and ∂ imply that the composition of 1-cells of (ΣSq1)∗ is strictly monotone
in both arguments. The natural order on N implies that every decreasing family of parallel 1-cells of
(ΣSq1)∗ is stationary. To get a termination order, hence the termination of ΣSq1 , there remains to check
that u > v for every 2-cell u ⇒ v of ΣSq1 . Indeed, we check that the following (in)equalities are
satisfied:

(atkb)∗(n) = n = 1∗(n), (xa)∗(n) = n+ 1 = (atx)∗(n), (xt)∗(n) = n+ 1 = (tx)∗(n),

(xb)∗(n) = n+ 1 = (bx)∗(n), (xy)∗(n) = n+ 1 > n = 1∗(n),

and

∂(atkb)(n) = 3n + 2n > 0 = ∂(1)(n), ∂(xa)(n) = 3n+1 > 2n + 3n = ∂(atx)(n),

∂(xt)(n) = 2n+1 > 2n = ∂(tx)(n), ∂(xb)(n) = 2n+1 > 2n = ∂(bx)(n),

∂(xy)(n) = 2n+1 > 0 = ∂(1)(n).

Let us prove that ΣSq1 is confluent and compute Squier’s completion of ΣSq1 . The 2-polygraph ΣSq1

has exactly one critical branching (βtnb, xαn) for every natural number n, and each of those critical
branchings is confluent, yielding the 3-cell An. We conclude thanks to Theorem 4.3.2.

6.2.3. Proposition. The monoid S1 has a decidable word problem.

Proof. The convergent presentation ΣSq1 of S1 is infinite, so that the normal-form procedure cannot be
applied directly. Indeed, one cannot check whether or not a 1-cell u is a normal form by inspecting all
the possible applications of the 2-cells of ΣSq1 . However, the sources of the 2-cells αn are exactly the
elements of the regular language at∗b: thus, a finite automaton can check, in finite time, whether or not
a 1-cell of (ΣSq1)∗ can be reduced by any of the 2-cells αn. As a conclusion, the normal-form procedure
can be adapted to decide the word problem with the convergent presentation ΣSq1 .

6.2.4. Proposition. The monoid S1 is not of finite derivation type.

Proof. By Theorem 4.2.3, it is sufficient to check that the finite presentation Υ of S1 given in Proposi-
tion 6.2.1 admits no finite homotopy basis. We denote by

π : (ΣSq1)> −→ Υ>

the projection that sends the 2-cells β, γ, δ and ε to themselves and whose value on αn is given by
induction thanks to (5), i.e.,

π(α0) = α and π(αn+1) = g−n ?1 xπ(αn)y ?1 ε

where
gn = fny ?1 at

n+1bε.

41
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We apply the homotopy bases transfer theorem 4.2.2 to ΣSq1 and Υ, with F the canonical inclusion of Υ>

into (ΣSq1)>, with G = π and with τ mapping each 1-cell u to 1u. We obtain that the following family
of 3-cells (π(An))n∈N forms a homotopy basis of Υ>:

atn+1bx
π(αn+1)x

�)
xatnb

fn
+?

xπ(αn)

(<
π(An)
��

x

We note that the 3-cell Any ?1 ε of S(ΣSq1)> has the 2-sphere (4) as boundary:

atn+1bxy
atn+1bε %9

αn+1xy

�$

atn+1b
αn+1

�&
xatnby

fny
.B

xαny "6

Any
�� 1

xy
ε

.B
=

As a consequence, for every natural number n, the 3-cell g−n ?1 Any ?1 ε has source αn+1 and target
g−n ?1 xαny ?1 ε. We define the 3-cell Bn of S(ΣSq1)> by induction on n as

B0 = 1α0 and Bn+1 =
(
g−n ?1 Any ?1 ε

)
?2 Bn

so that Bn has source αn and target π(αn), by definition of π. As a consequence, the 3-cell π(An),
when seen as a 3-cell of S(ΣSq1)> through the canonical inclusion, is parallel to the following composite
3-cell:

atn+1bx
π(αn+1)x

��

αn+1x

�/

B−
n+1x

v


xatnb

fn
+?

xαn %9

xπ(αn)

4H

An��

xBn��

x (6)

We observe that the convergent 3-polygraph is reduced and has no critical triple branching. Thus, as a
consequence of Proposition 4.3.7, all the parallel 3-cells of S(ΣSq1)> are equal. This implies that π(An)
is equal to the composite (6). Expanding the definition of Bn+1, we get:

π(An) =
(
fn ?1 B

−
nx
)
?2
(
fn ?1 g

−
nx ?1 A

−
nyx ?1 εx

)
?2 An ?2 xBn. (7)

Now, let us assume that Υ admits a finite homotopy basis. By Proposition 4.2.4, there exists a natural
number n such that the 3-cells π(A0), . . . , π(An) form a homotopy basis of Υ>. In particular, the 3-cell
π(An+1) is parallel to a compositeW of the 3-cells π(A0), . . . , π(An), hence it is equal toW in (ΣSq1)>.
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Thus, on the one hand, by application of (7) to each of π(A0), . . . , π(An) and by definition of
B0, . . . , Bn, we get that π(An+1) is a composite of the 3-cells A0, . . . , An. But, on the other hand, the
relation (7) tells us that π(An+1) is equal to a composite

π(An+1) = C ?2 (h ?1 A
−
n+1yx ?1 k) ?2 An+1 ?2 D (8)

where C and D contain A0, . . . , An only.
To prove that this leads to a contradiction, let us consider the free right-ZS1-module ZS1[Υ3] over

the homotopy basis Υ3 = (π(An))n∈N. We define a map

[·] : Υ>3 −→ ZS1[Υ3]

thanks to the relations

[uAv] = [A]v, [A ?1 B] = [A] + [B], [A ?2 B] = [A] + [B],

for any 1-cells u and v and 3-cells A and B such that the composites are defined. From (8), we deduce
that

[π(An+1)] = [C] − [An+1]yx+ [An+1] + [D] (9)

holds in ZS1[Υ3]. Since the 3-cell π(An+1) is a composite of the 3-cells A0, . . . , An, we have that
[π(An+1)] is a linear combination of [A0], . . . , [An]. Since the right-module ZS1[Υ3] is free, it follows
from (9) that

yx = 1

holds in S1. However, the 1-cells yx and 1 are distinct normal forms of the convergent presentation ΣSq1

of S1. This means that yx is distinct from 1 in S1 and, thus, leads to a contradiction, so that we conclude
that Υ does not admit a finite homotopy basis.

Finally, by Theorem 4.3.3, we get:

6.2.5. Corollary. The monoid S1 admits no finite convergent presentation.

6.3. A variant of Squier’s example

Let us consider the monoid M presented by the following 2-polygraph from [LP91, Laf95]:

ΣLP =
〈
a, b, c, d, d ′

∣∣ ab α0=⇒ a, da
β
=⇒ ac, d ′a

γ
=⇒ ac

〉
.

The monoid M has similar properties to Squier’s example: it admits a finite presentation, it has a decid-
able word problem, yet it is not of finite derivation type and, as a consequence, it does not admit a finite
convergent presentation.

To prove these facts, the 2-polygraph ΣLP is completed, by Knuth-Bendix’s procedure, into the infi-
nite convergent 2-polygraph

Σ̌LP =
〈
a, b, c, d, d ′ | (acnb

αn=⇒ acn)n∈N, da
β
=⇒ ac, d ′a

β ′
=⇒ ac

〉
.
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Squier’s completion of Σ̌LP has two infinite families of 3-cells:

acn+1b
αn+1

�*
An
��

dacnb

βcnb ,@

dαn �3

acn+1

dacn βcn

5I

acn+1b
αn+1

�*
Bn
��

d ′acnb

β ′cnb ,@

d ′αn �3

acn+1

d ′acn β ′cn

5I

Moreover, the 2-polygraph Σ̌LP has no triple critical branching. In a similar way to the case of Squier’s
monoid S1, we get that the (decidable and finitely generated) monoid M is not of finite derivation type:
we prove that the 3-cells Bn induce a projection π of (Σ̌LP)> onto (ΣLP)>, so that the family (π(An))n∈N
is an infinite homotopy basis of (ΣLP)>. Then we prove that no finite subfamily of (π(An))n∈N can be a
homotopy basis of (ΣLP)>.
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