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Abstract This paper considers the task of establishing periodic linguis-
tic summaries of the form �Regularly, the data take high values�, enriched
with an estimation of the period and a linguistic formulation. Within the
framework of methods that address this task testing whether the dataset
contains regularly spaced groups of high and low values with approx-
imately constant size, it proposes a mathematical morphology (MM)
approach based on watershed. It compares the proposed approach to
other MM methods in an experimental study based on arti�cial data
with di�erent forms and noise types.

Keywords: Fuzzy linguistic summaries, Periodicity computing, Math-
ematical Morphology, Temporal data mining, Watershed

1 Introduction

Linguistic summaries aim at building human understandable representations
of datasets, thanks to natural language sentences. They take di�erent forms
representing di�erent kinds of patterns [27,28,12]. In this paper we consider this
task in the case of time series for which regularity is looked for, more precisely
summaries of the form �Regularly, the data take high values�. If the data are
membership degrees to a fuzzy modality A, the sentence can be interpreted as
�regularly, the data are A�. Moreover, if the sentence holds, a candidate period is
computed and an appropriate linguistic formulation is generated, based on the
choice of a relevant time unit, approximation and adverb. The �nal sentence can
for instance be �Approximately every 20 hours, the data take high values�.

The Detection of Periodic Events (DPE) methodology [21] de�nes a frame-
work to address this task relying on the assumption that if a dataset contains
regularly spaced high and low value groups of approximately constant size, then
it is periodic. It consists in 3 steps: clustering, cluster size regularity and linguis-
tic rendering. In [21], the �rst step is based on the calculation of an erosion score
based on Mathematical Morphology [24]. In this paper, we propose to apply the
DPE methodology using a new clustering method depending on a watershed
approach [4] and to compare it in an enriched experimental protocol.

Section 2 presents an overview of related works. A reminder about the eval-
uation of periodic protoforms is given in Section 3. The proposed watershed
method is described in Section 4. Lastly, Section 5 presents experimental results
on arti�cial data comparing the two approaches as well as a baseline method.
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2 Related Works

This section brie�y describes the principles of linguistic summaries, temporal
data mining and period detection in signal processing, at the crossroads of which
the considered DPE methodology lies. To the best of our knowledge, DPE is the
�rst approach combining these �elds.

2.1 Linguistic Summaries

Linguistic summaries aim at building compact representations of datasets, in
the form of natural language sentences describing their main characteristics.
Besides approaches based on natural language generation techniques, they can
be produced using fuzzy logic, in which case they are called fuzzy linguistic
summaries (see [5,13] for a comparison between these two areas).

Introduced in the seminal papers [11,27,28], they are built on sentences
called �protoforms�, such as �QX are A� where Q is a quanti�er (e.g. �most� or
�around 10�), A a linguistic modality associated with one of the attributes (e.g.
�young� for the attribute �age�) and X the data to summarise. The relevance of
a candidate protoform, measured by the truth degree of its instantiation for the
considered data, depends on the Σ-count of the dataset according to the chosen
fuzzy modality. Extensions have been de�ned to handle the temporal nature of
data, using a �Trend� attribute [10] or considering fuzzy temporal propositions
[6] to restrict the truth value of a summary to a certain period of time, but they
do not cope with periodicity.

2.2 Temporal Data Mining

Temporal data mining is a domain that groups various issues related to data min-
ing taking into account the temporal aspect of the data (see [8,15] for exhaustive
states of the art). Some methods aim at discovering frequent patterns, using ex-
tensions of the Apriori algorithm [1], possibly dedicated to long sequences [19]
or with time-window or duration constraints [16,20]. Although mining recurring
events, these approaches are not concerned with periodicity. Cyclic association
rules [22] are satis�ed on a �xed periodic basis: the time axis is split into constant
length segments against which association rules are tested. So as to automati-
cally compute a candidate period, extensions based on a Fourier transform [3]
or a statistical test over the average interval between events [17] can be used.

2.3 Signal Processing for Period Detection

Period detection is a well known problem in signal processing and several meth-
ods have been proposed to address it.

The most straightforward one is based on an analysis in the time domain,
and computes the period by measuring the distance between two successive zero-
crossings [14]. It is very sensitive to noise.



The two most common methods are autocorrelation [9] in the time domain
and spectral analysis with Fourier transform [23] in the frequency domain. They
are e�cient on speci�c data, namely sinusoidal and stationary signals, in which
the period remains constant. The short-time Fourier [2] and wavelet [18] trans-
forms are more sophisticated methods in the time-frequency domain able to deal
with non stationary signals. However, the former needs a window size parame-
ter to be e�cient, and the latter is non parametric but very sensitive to time
shifts, which is a bias to be avoided in the context of a high-level linguistic
interpretation of the data.

Statistical methods have also been proposed, applying to the speci�c case
where the data is sinusoidal with a Gaussian noise [7].

Lastly, cross-domain approaches have been developed, adding further com-
plexity: in [3], as already mentioned, a fast Fourier transform is used on top of
cyclic association rule extraction to build a list of candidate periods. In [26],
both autocorrelation and a periodogram are used.

3 Evaluation of Periodic Protoforms

The principle of the Detection of Periodic Events methodology (DPE) [21] relies
on the assumption that if a dataset contains regularly spaced high and low value
groups of approximately constant size, then it is periodic. This assumption guides
the truth evaluation of sentences of the form �Every p, values are high�. DPE is
a modular methodology which can be seen as a general framework to evaluate
periodic protoforms. This section describes its general architecture of the DPE
methodology as well as its instanciation proposed in [21]. Section 4 presents a
new watershed based method for its clustering step.

3.1 Input and Output

The input dataset, denoted X, is temporal and contains N normalised values
(xi), i.e. X = {xi, i = 1, ..., N} such that ∀i, xi ∈ [0, 1]. The data are considered
to be regularly sampled, i.e. at date ti = t1 + (i− 1)×∆t where t1 is the initial
measurement time and ∆t is the sampling rate.

The outputs of the DPE methodology are a periodicity degree π, a candidate
period pc and a natural language sentence. The periodicity degree π indicates
the extent to which the dataset is periodic: 1 means it is absolutely periodic and
the value decreases as the dataset is less periodic. The sentence is a linguistic
description of the period found in the dataset, designed for human understand-
ing. It has the form �M every p unit, the data take high values�, where M is an
adverb as �roughly�, �exactly�, �approximately�, p is the approximate value based
on the candidate period pc, and unit is a unit considered the most appropriate
to express the period [21].



3.2 Architecture

The DPE methodology works in four steps : �rst, it clusters the data into groups
of successive high or low values, second it computes the regularity of the group
sizes and the periodicity degree, third it computes a candidate period and �nally
it returns a natural language sentence. In the following, more details are given
regarding these 4 steps.

High and Low Value Detection The �rst step of DPE aims at detecting
groups of high/low consecutive values. To this aim, a prediction function g re-
turning the group type (H or L) of xi is de�ned. Successive values classi�ed H
are gathered in high value groups, and conversely for low values.

A baseline function gBL relies on a user-de�ned threshold tvalue to distinguish
high and low values :

gBL (xi) =

{
H if xi > tvalue

L otherwise
(1)

A function gES exploiting mathematical morphology tools is proposed in [21],
based on the erosion score es de�ned as:

x0i = xi xji = min
(
xj−1i−1 , x

j−1
i , xj−1i+1

)
esi =

z∑
j=1

xji

where z is the smallest integer such that ∀i = 1...N, xzi = 0. This erosion score
transform, classically used to identify the skeleton of a shape, has the following
characteristics: high xi in high regions have high es, low xi in high regions have
quite a high es, isolated high xiin low regions have low es. Thus, erosion scores
provide an automatic adaptation to the data level.

Computing the erosion score on the data complement X where xi = 1 − xi
allow to symmetrically identify low regions. We propose the prediction function:

gES (xi) =

{
H if esi > esi

L otherwise
(2)

Groups are de�ned as successive values of the same type as returned by g.

Periodicity computing The second step of DPE consists in evaluating the
regularity of the sizes of the high and low value groups. If these sizes are regular,
then the dataset is considered periodic according to the assumption de�ned at
the beginning of this section.

First, the size of each group is computed, setting sHj =
∣∣GH

j

∣∣ for the jth high

value group and sLj =
∣∣GL

j

∣∣ for the jth low value group. Experiments with fuzzy
cardinalities have showed no signi�cant di�erence [21].



The regularity ρ is then determined for high and low value groups based on
the average value µ and the deviation d of their size (see [21] for justi�cation):

ρ = 1−min

(
d

µ
, 1

)
µ =

1

n

n∑
j=1

sj d =
1

n

n∑
j=1

|sj − µ| (3)

both for high and low value groups n denotes the number of groups. The size
dispersion is thus measured using the coe�cient of variation CV = d/µ: d is
more robust to noise than standard deviation and the quotient with µ makes it
relative and allows to adapt to the value level.

Finally, with the regularities of high value groups ρH and low value groups
ρL, the periodicity degree π is returned as their average, i.e. π =

(
ρH + ρL

)
/2.

Candidate Period Computation For a perfectly regular phenomenon, the
period is de�ned as the time elapsed between two occurrences of an event, in
this paper, �high value�. Therefore the candidate period pc is approximated as
the sum of the average size of high and low value groups, i.e. pc = µH + µL. pc
is relevant only if π is high enough, i.e. if the dataset is considered as periodic.

Linguistic Rendering The last step yields a linguistic periodic summary of
the form �M every p unit, the data take high values�, signi�cant only if π is high.
As described in [21], the unit used to describe the data is calculated �rst on a
set of units entered as prior knowledge. Then the period pc is rounded in order
to make it more natural for a human being. Lastly, an adverb is chosen based
on the approximation error between the computed and the rounded value.

4 Watershed Based Method

We propose a new method to identify high and low value groups based on another
Mathematical Morphology tool, namely watershed. It can be seen as a variant
of gBL where the threshold is automatically derived from the data: it reduces
the required expert knowledge and automatically adapts to the data.

4.1 Principle

Watershed in Mathematical Morphology has been introduced in [4] to perform
2D image segmentation. Its underlying intuition comes from geography: the im-
age greyscale levels are seen as a topographic relief which is �ooded by water.
Watersheds are the divide lines of the domains of attraction of rain falling over
the region. An e�cient implementation has been proposed in [25] based on an
immersion process analogy: as illustrated in Fig. 1, when the level of water rises,
basins appear. When it rises more, new ones are created while others merge. At
the end, all basins merge into a single one.
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Figure 1. Illustration of the immersion of a dataset for the watershed calculation

We propose to apply watershed to detect groups, de�ning them from the
identi�ed basins for a given water line: low value groups are de�ned as the
basins, i.e. consecutive values below the divide line, and high value groups as
consecutive values above the divide line.

Furthermore, we propose to base the identi�cation of the relevant water line,
i.e. the threshold to separate high and low value groups, on the evolution of the
basin structure. Indeed, the desired threshold should lead to a group identi�ca-
tion that is robust to small local noise, i.e. making it a little greater or lower
should not modify the number of identi�ed groups. As water rises, basins appear
(resp. disappear), when a gap (resp. a peak) crosses the water line: the threshold
should be located at a level where no peak and gap, that represent local noise,
are present. As formalised below, we propose to set the water line at the middle
of the largest interval separating two consecutive basin structure changes.

4.2 Implementation

The changes of the basin structure are easily identi�ed as they correspond to local
peaks and gaps, i.e. values resp. greater or lower than their direct neighbours
(previous and next values): when a peak or gap is identi�ed, its level is recorded
as a level where a basin structure change occurs. This principle is formalised
below after the description of the pre-processing steps applied to the data.

Preprocessing Before �nding the peaks and gaps, 2 preprocessing steps are
applied: �rst, a moving average on a window whose size w is chosen by expert
knowledge is calculated to smooth the curve and to avoid oversegmentation.

Second the consecutive equal values are removed. Indeed, basin structure
changes could occur in con�gurations named �plateaux� which are di�erent from
gaps and peaks. A plateau is a collection of consecutive equal points surrounded
with points of lesser (convex plateaux) or greater (concave plateaux) values.
So as to ease the structure change detection and once the data are smoothed,
consecutive equal points are removed from the dataset, so that convex plateaux
become peaks, and concave plateaux become gaps. Thus, all basin structure
changes can be detected with a simple peak/gap analysis.

Processing With the preprocessed data W , the determination of the levels
where the basin structure changes is done with a single scan to detect local
peaks and gaps. The levels at which the changes occur are stored in L:

L = {wi ∈W/ (wi > wi+1 ∧ wi > wi−1) ∨ (wi < wi+1 ∧ wi < wi−1)}



Then the adaptable watershed-based threshold tW is computed as:

tW = 1
2 (Lm + Lm+1) m = argmax

i∈{1...|L|−1}
Li+1 − Li (4)

where Lj are the elements of L sorted in ascending order. Finally, the clustering
function is de�ned as:

gW (xi) =

{
H if xi > tW

L otherwise
(5)

5 Experimental Results

This section presents results obtained with arti�cial data, to compare the base-
line, erosion score and watershed methods de�ned by (1), (2) and (5).

5.1 Data Generation

The datasets are generated as noisy series of periodic shapes, either rectangles
or sines. They are created as a succession of high and low value groups, of size
pH and pL respectively, on which two types of noise are applied: the group size
noise νs randomly modi�es the size values pH and pL, the value noise νy changes
the values taken by the data within the groups. In the �rst step, the sizes of the
high and low value groups are randomly drawn, adding some noise to the ideal
values pH and pL: p∗ generally denoting one of these two values, the size of each
group is de�ned as:

sj = d1 + sgn (0.5− ε1)× νs × ε2e p∗

where ε1 and ε2 are uniform random variables U(0, 1). This distribution ran-
domly increases or decreases the reference group size, through the sgn(0.5− ε1)
coe�cient, in a proportion de�ned as νs× ε2. The size of a group thus varies be-
tween (1−νs)p∗ and (1+νs)p

∗. Group sizes are generated until their cumulative
sum reaches the total desired number of points N .

After the group sizes have been determined for the rectangle shape, if the jth

group spans from index a to b, X∗ is set as:

∀k ∈ {a, . . . , b} x∗k =

{
1 if group j is high

0 otherwise

For the sine shape, if the jth group spans from index a to b, X∗ is set as:

∀k ∈ {a, ..., b} x∗k =
1

2
+
λ

2
sin

(
π
k − a
b− a

)
λ =

{
1 if group j is high
−1 otherwise

This calculation for the sine shape creates a discontinuous break around 0.5.
It does not seem to introduce biases in the results though.
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Figure 2. Four examples of generated datasets

In the third step the value noise νy is added to X∗ leading to X̂. The noise
is applied downward for high value groups and upward for low value groups:

x̂i =

{
x∗i − νyε if x̂i is in a high value group

x∗i + νyε otherwise

where ε is a uniform random variable U(0, 1).
Finally, the dataset X results from the normalisation of X̂ to [0, 1]. Fig. 2

illustrates 4 examples of generated datasets.

5.2 Experimental protocol

As shown in Table 1, 16 test scenarios are implemented where the data series
are generated with an increasing value noise νy and group size noise νs from 0
to 1 at a 0.05 pace (21 values) with a di�erent combination of high / low value
groups size, shape, group size noise and value noise.

The periodicity degree π, the candidate period pc, the error in period eval-
uation ∆p and the clustering accuracy Acc are computed with the 3 meth-
ods, baseline (BL), watershed (W) and erosion score (ES): ∆p is de�ned as
∆p = |pc − p| /p. The period p to compare the candidate period with is com-
puted as the sum of the average sizes of the two types of generated groups.

Table 1. The 16 test scenarios. The noise speci�ed in the header is the constant one
in the scenario, the not mentioned one is the increasing one.

Size (pH/pL) Shape νs = 0 νy = 0 νs = 0.5 νy = 0.3

Balanced (25/25)
Square S1 S2 S9 S10

Sine S3 S4 S11 S12

Thin (10/40)
Square S5 S6 S13 S14

Sine S7 S8 S15 S16



To compute Acc, the accuracy in the classi�cation into high and low value
groups, the labels are the group membership de�ned in the generation step. Acc
is weighted so as to take into account the bias in the group size, for the �Thin
(10/40)� scenarios.

5.3 Result interpretation

General results From the results obtained with the 16 scenarios and not de-
tailed here, it appears that the noise type (group size or value) is the most
important parameter: all methods exhibit similar behaviours for the 3 measures
π, ∆p and Acc for a given noise type. The shape is the second most important
parameter, since di�erences appear between squares and sines, especially with
increasing νy. Other parameters, as the size of the groups (balanced or thin) or
the combination of noises, do not seem to bear an important in�uence.

The results also show that all 3 methods return a periodicity of 1 when the
data has no noise and are decreasing functions of the noise parameters.

In the following, we focus on scenarios 5 to 8. Figure 3 illustrates the outcomes
of the experiments. Nevertheless, the results mentioned below are valid for all
considered scenarios.

Baseline approach The comparison between methods shows that the baseline
curve is very sensitive to noise. Indeed, with squares (Fig. 3a, b), π falls sharply
and ∆p rises sharply as soon as νy reaches 0.5. This is due to the fact that from
this level of noise, some points labelled as high have a value smaller than 0.5 and
are classi�ed as low. Since very few points are misclassi�ed, accuracy is still high
but small groups are created within larger ones, generating a high deviation in
the group size, yielding poor periodicity degree and period evaluation precision.

This behaviour appears for lower values of νy with sines (Fig. 3g, h) since
this kind of misclassi�cation is possible as soon as νy > 0.

Interestingly, the baseline Acc is always comparable to the one obtained with
the other methods (Fig. 3c, f, i, l). Indeed, the phenomenon just described slightly
a�ects the clustering accuracy. Moreover, as νy increases, the accuracy decreases
in approximately the same amount for all methods, so BL remains comparable
with the others. This is why the Acc measure is not very relevant here to choose
a method, whereas ∆p is much more discriminant.

Erosion score vs. watershed Generally speaking, erosion score is smoother
than watershed in the sense that it varies less abruptly, ensuring steadiness in
the evaluation. Moreover, it is generally more or equally precise in calculation of
the period (11 scenarios out of 16) and in clustering accuracy (12 scenarios out of
16). Furthermore, the erosion score is also more precise over several experiences
since it has a lower standard deviation than the watershed.

Regarding group size noise, watershed gives wrong period estimation when
νg > 0.7 (Fig. 3e). This is due to the fact that the moving average makes small
peaks disappear. On the other hand, ES keeps these small peaks especially with
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Figure 3. Mean and standard deviation for π, ∆p and Acc for scenarios 5 to 8

3 graphs per scenario: top is periodicity degree, middle candidate period estimation
error ∆p, bottom clustering accuracy Acc.
3 curves per graph: the cross/red is the baseline BL, triangle/green is the erosion
score ES and diamond/blue is the watershed W.



rectangles, which is a context where data are highly contrasted (0 or 1). With less
contrasted data like sines, the di�erence is attenuated and all methods perform
very well (Fig. 3k).

As for νy, the period computation becomes wrong as it increases, especially
with sines (Fig. 3h). However, ES seems to be more robust to νy than water-
shed since the latter increases sharply from νy = 0.5. This can be linked with
the erosion score not using a constant threshold to cluster the data as opposed
to the watershed method. Since the groups are processed individually with ES,
a misclassi�cation for one group does not necessarily propagate to the others,
whereas a threshold not chosen appropriately with the watershed leads to mis-
classi�cation throughout the dataset, resulting in a bad evaluation of the period.

6 Conclusion

A new watershed clustering method is proposed as an alternative to assess the
relevance of linguistic expression of the form �M every p unit, the data take
high values� and tested within the framework of the DPE methodology [21].
Experimental results obtained with di�erent shapes (rectangle and sine) and
noises (value and group size) prove to be relevant. The DPE methodology is a
good approach to classify the data in high and low value groups and to estimate
the period of the dataset. The erosion score method seems more precise than the
watershed one, due to its adaptable threshold for classi�cation.

Future works aim at developing new fuzzy quanti�ers as �from time to time�,
�often�, �rarely�, and detect periodicity in sub-parts of the dataset, which both
can be developed with the high and low values clustering in DPE. Another
direction is the de�nition of a quality measure to compare the di�erent methods,
among themselves as well as to existing approaches.
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