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Cooperative Control Design for Time-Varying

Formations of Multi-Agent Systems

Lara Briñón-Arranz, Alexandre Seuret, and Carlos Canudas-de-Wit

Abstract

This paper deals with cooperative control design for nonlinear multi-agent systems. The control

objective is to ensure that a group of agents reaches a formation characterized by external time-varying

parameters. Firstly, a translation control design is presented to stabilize the multi-agent system to a circular

motion tracking a time-varying center. Then, we propose a new framework based on affine transformations

to extend previous results to more complex time-varying formations. Moreover, both control laws are

improved adding a cooperative term to distribute the agents uniformly along the formation.

I. INTRODUCTION

Cooperative control problems and multi-agent systems have received much attention in recent years.

The field includes consensus algorithms for multi-agent systems [1], [2], distributed sensor networks

[3] and autonomous systems as autonomous underwater and unmanned air vehicles (AUVs and UAVs)

[4], [5]. Formation control is an important issue in coordinated control for multi-agent systems. A

formation is defined as a group of autonomous agents with communication capacities, forming a particular

configuration (i.e., desired positions and orientations), in which the agents collaborate to achieve a

common goal [6]. A particular class of motion coordination for multi-agent systems considering several

constraints is studied in [3], [7]. These previous works studied the problem of design feedback control

laws that stabilize a set of agents to circular and parallel formations. These interesting results deal with

time-invariant circular formations which have a fixed center and a constant radius. Some extensions
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based on these works have been developed: three-dimensional motion coordination in a flow-field [8]

and stabilization of a fleet to fixed convex forms [9], for instance.

A relevant problem is to relax these constraints and to consider time-varying formations, i.e. allowing

the center and radius of a circular formation to be time-varying. Indeed, time-varying configurations are

appropriate to some applications where the agents perform collaborative tasks requiring the formation

to displace towards an a priori unknown direction and to adapt to some particular form. For instance,

in source seeking applications, the formation is driven following the source gradient direction [4], [10].

Target tracking problems also require to consider time-varying formations. Some cooperative approaches

to achieve this challenge using a fleet of vehicles have been studied in the literature [11]. A circular

formation encircling a time-varying target seems appropriate to approach target tracking problems, see

[12]. On the other side, changing the shape of a formation can be useful in several situations. For instance,

it can be seen as a collision avoidance method such that, a circular formation of vehicles reduces its

radius in order to go through a narrow place.

In both recent papers [13], [14] a vector field control approach is presented in order to enforce a simple

integrator vehicle to converge to time-varying target curves. In this paper, we propose novel cooperative

control laws to stabilize a fleet of vehicles to large classes of time-varying formations considering a

unicycle model for the dynamics. Firstly, based on previous circular formation control results studied in

literature [3], [7], [15], a new control design to make the vehicles converge to a circular motion following

a time-varying reference of its center is provided. A new control strategy using an autonomous stable

exosystem and a tracking control design is proposed. Contrary to our previous work [16], the resulting

control law does not depend on initial agents’ states. The main contribution of this paper is to generalize

this control law to larger class of formations, not only circular. Using the three affine transformations

(rotation, translation and scaling) a general time-varying formation control law will be expressed in a

generic and compact way. An additional feature of the control adds the possibility to distribute uniformly

the agents along the formation in a collaborative way.

II. PROBLEM FORMULATION

A. Model of the agents

Consider a group of N identical vehicles modeled with unicycle kinematics subject to a simple non-

holonomic constraint such that, the dynamics of agent k = 1, . . . , N is defined by:
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ṙk =vk [cos θk sin θk]
T

(1a)

θ̇k =uk (1b)

where rk ∈ R
2 is the position vector of agent k, θk is its heading angle and vk, uk are the control inputs.

B. Exosystem

Our approach is based on the previous results exposed in [3], [7] to obtain time-invariant circular

formations and the beacon control law from [15] dealing with circular motions. In these works, the

vehicles are represented by (1) with unit linear velocity, i.e. vk = 1, ∀k. In order to exploit these previous

results, we introduce an exosystem represented by the following multi-agent dynamics:

˙̂rk =v0 [cosψk sinψk]
T

(2a)

ψ̇k =ûk (2b)

where v0 > 0, ψk represents the angular orientation of the velocity vector ˙̂rk and ûk is the control input.

We can design different control laws ûk in order to obtain an autonomous stable exosystem. For instance,

the circular control law presented in [15], [7] defined by following equation

ûk = ω0(1 + κ ˙̂rTk r̂k)−
∂U

∂ψk
(3)

ensures that the exosystem represented by (2) is stabilized to a circular motion centered at the origin of the

coordinates frame and with radius R = v0/|ω0|, where ω0 6= 0 is the angular velocity. Moreover, the agents

of the exosystem are uniformly distributed due to the cooperative term U(ψ) which includes information

of others agents, as shown in Fig. 1. The communication protocol assumed in this paper depends on

the distances between the vehicles. This collaborative approach will be discussed in Section IV. The

exosystem can be used to generate the desired trajectories for the multi-agent system (1), see Fig. 1. The

main advantage of using an autonomous exosystem is that elegant and effective distributed control laws

can be easily applied to the multi-agent dynamics (2).

C. Control Objectives

The following assumptions are considered in the sequel:

• Each vehicle knows its absolute vector position rk with respect to the global inertial frame.

• The time-varying references which define the parameters of the formation (e.g. the center and radius

of a circular formation) are known to all the vehicles.
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MODEL
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−εkTRANSFORMATION Gr̂k
G
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distance-dependent

L(rk, rj)

r̂j, ψj

Fig. 1. Structure for the feedback design including a decentralized exosystem. Each agent k computes its own exosystem which

communicates with other exosystems by means of a communication protocol depending on the distance between the agents (the

Laplacian matrix L depends on the agents’ states rk).

Under these assumptions, the main objective is to design control laws (vk, uk) such that the fleet of agents

represented by system (1) converges to a particular formation defined by a few number of time-varying

given parameters. Moreover, we consider a cooperative approach to distribute the vehicles in a desired

pattern along the formation.

Several time-varying formations can be obtained deforming a unit circle, as we will present in Sec-

tion V. The main idea here is thus to deform a circular formation applying a general transformation

G composed of rotations, translations and scaling, which will be mathematically defined in Section V.

For instance, an ellipsis results from applying a non-uniform scaling to the unit circle. Thanks to this

transformation G, the desired trajectories of the agents are defined by a few number of parameters which

could be time-varying. Our idea is to transform the exosystem circular trajectories via a transformation

G in order to design new time-varying curves. The resulting transformed trajectories will be considered

as a reference to the multi-agent states, see Fig. 1. The error between the reference and the multi-agent

state is defined by:

εk = rk − Gr̂k, ∀k = 1, . . . , N. (4)

Our problem is to design control laws (vk, uk) for the multi-agent system (1) such that the error εk

converges to zero.

III. TRANSLATION OF A CIRCULAR MOTION

Firstly, in order to stabilize a fleet of agents to a time-varying circular motion, we propose a new

control strategy. This new strategy follows three phases:

Transformation: the desired formation is expressed as result of a sequence of transformations applied

to the unit circle and defined by a few number of parameters.
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Exosystem: we define a global stable exosystem (2), for instance, stabilized to a circular motion with

fixed center thanks to the beacon control law from [15].

Tracking control design: we design the control inputs (vk, uk) of the multi-agent system (1) in order to

track the reference defined by the transformed circular trajectories of the exosystem, i.e., enforcing the

error (4) to converge to zero.

A. Transformation

As a first step, we present the case of a circular motion tracking a time-varying center c(t). The

transformation applied in this case to the exosystem is a translation by a vector c(t) ∈ R
2. In this

situation, the desired trajectories are defined by the position vector of the exosystem and the external

parameter c. Therefore, the error becomes:

εk = rk − (r̂k + c) ∀k = 1, . . . , N. (5)

B. Design a global stable exosystem

The exosystem will be stabilized to converge to a circular motion with radius R. According to the

relation between linear and angular velocities satisfied during a circular motion, the linear velocity

is imposed to be v0 = R|ω0|. In this section no collaborative approach is considered, consequently

the control input for the exosystem does not include cooperative terms. The circular control law (3)

with U(ψ) = 0 enforces the exosystem defined by (2) to converge to a circular motion. In order to

clarify this result, we present here a sketch of the proof. Consider the notation r̂ = (r̂T1 , . . . , r̂
T
N )

T ,

ψ = (ψ1, . . . , ψN )
T , and the following Lyapunov function

S(r̂, ψ) =
1

2

N∑

k=1

∥
∥
∥
˙̂rk − ω0Rπ

2

r̂k

∥
∥
∥

2
≥ 0 (6)

where Rπ

2

=

[

0 −1

1 0

]

denotes a rotation matrix through an angle π
2 counterclockwise around the

origin. At the equilibrium points of the previous Lyapunov function, i.e., S(r̂, ψ) = 0, the dynamics

of the exosystem (2) satisfies ˙̂rk − ω0Rπ

2

r̂k = 0. Thus, the position vector and its velocity vector are

perpendicular, i.e., ˙̂rTk r̂k = 0. This condition leads to the kinematic relation for the rotation of a rigid

body. In other words, the vectors r̂k are turning around the frame origin at the equilibrium. Considering

the proposed control law (3) with U(ψ) = 0 and evaluating the derivative of S(r̂, ψ) along the solutions

of the resulting closed-loop system (2) leads to:
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Ṡ(r̂, ψ) =

N∑

k=1

(

ûkRπ

2

˙̂rk − ω0Rπ

2

˙̂rk

)T (
˙̂rk − ω0Rπ

2

r̂k

)

=

N∑

k=1

ω0r̂Tk
˙̂rk(ω0 − ûk) = −κ

N∑

k=1

(ω0r̂Tk
˙̂rk)

2 ≤ 0.

In conclusion, S(r̂, ψ) is a suitable Lyapunov function for the exosystem (2), and by the LaSalle Invariance

Principle the solutions converge to the largest invariant set Λ, for which Ṡ = 0. Consequently, the

dynamics of the exosystem satisfies ˙̂rk = ω0Rπ

2

r̂k which corresponds to a circular motion.

C. Translation control design

In order to enforce the convergence of the multi-agent system to the transformed trajectories generated

by the exosystem, a tracking control design is proposed. The following theorem presents the first

contribution of this paper.

Theorem 1 Consider a twice differentiable function c(t) : R → R
2, with bounded first and second time-

derivatives. Let ω0 6= 0, κ > 0, α > 0, β ≥ 2
√
α be four control parameters, R > 0 be the radius of the

desired circular motion and the following condition is satisfied:

‖ċ(t)‖ < R|ω0| ∀t. (7)

Then, for all initial conditions r(0), θ(0), the control law

v̇k =− βvk +
ṙ
T
k

vk

[

ûkRπ

2

˙̂rk + c̈ + β(˙̂rk + ċ) + α(r̂k + c − rk)
]

(8a)

uk =
ûk
v2k

ṙ
T
k
˙̂rk +

ṙ
T
k R

T
π

2

v2k

[

c̈ + β(˙̂rk + ċ) + α(r̂k + c − rk)
]

(8b)

where ˙̂rk and ûk are respectively defined by (2) with v0 = R|ω0| and (3) with U(ψ) = 0, makes all the

agents defined by (1) converge to a circular motion of radius R, and whose center tracks the time-varying

reference c(t). The direction of rotation is determined by the sign of ω0.

Proof: The first step is to ensure the convergence of the exosystem defined by (2) to a fixed circular

motion, as presented before. The second step corresponds to a tracking strategy. In order to achieve the

objective rk → r̂k + c, the tracking error is defined by (5). With a view to make the error converge to

zero, we wish to impose the error dynamics ε̈k = −βε̇k − αεk, where α > 0, β ≥ 2
√
α. Thus, the

error converges exponentially to zero. The dynamics of the error equation determines the control law for

system (1) since:

ε̈k = r̈k − ¨̂rk − c̈ =
v̇k
vk

ṙk + ukRπ

2

ṙk − ûkRπ

2

˙̂rk − c̈.
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According to the error dynamics and multiplying this last equation by ṙTk and by ṙTk RT
π

2

, both following

expressions hold:

v̇kvk =− βv2k + ṙTk

[

ûkRπ

2

˙̂rk + c̈ + β( ˙̂rk + ċ) + α(r̂k + c − rk)
]

ukv
2
k =ûkṙTk

˙̂rk + ṙTk RT
π

2

[

c̈ + β( ˙̂rk + ċ) + α(r̂k + c − rk)
]

.

By definition, this control law enforces exponential convergence of the tracking error dynamics away

from the singularity vk = 0. Thanks to previous definition of the error when t → ∞, rk = r̂k + c and

thus ṙk = ˙̂rk+ ċ, ∀k = 1, . . . , N . Taking into account the circular control law (3), the exosystem converge

to ˙̂rk = ω0Rπ

2

r̂k, hence, the closed-loop dynamics of multi-agent system (1) describes a time-varying

circular motion since for all k = 1, . . . , N :

ṙk = ω0Rπ

2

(rk − c)
︸ ︷︷ ︸

circular motion

+ ċ
︸︷︷︸

translation

.

In this situation, the singular point vk = ‖ṙk‖ = 0 is equivalent to ‖ω0Rπ

2

(rk − c) + ċ‖ = 0 and can

be rewritten as ω0Rπ

2

(rk − c) = −ċ. If condition (7) is satisfied then ‖ċ(t)‖ 6= ‖ω0Rπ

2

(rk − c)‖, ∀t.
Therefore, the singular point vk = 0 is avoided and the control inputs (8) are respectively obtained.

It is important to stress that this control law is robust to uncertainties in the initial conditions of the

agents’ states rk(0), θk(0) which represents the main difference with respect to our previous work [16].

IV. UNIFORM DISTRIBUTION ALONG A CIRCULAR FORMATION

The previous control law does not take into consideration communication between agents and each

vehicle converges independently to the desired circular motion. Therefore, the phase arrangement of the

particles is arbitrary. In other words, to stabilize the agents to a circular formation, the translation control

law must include a cooperative term to distribute the agents along the same circle following a particular

pattern.

A. Communication topology

Let G = (V,E) be an undirected graph and L its Laplacian matrix. The set of agents is denoted by

V = {1, . . . , N}, Nk = {j ∈ V : (k, j) ∈ E} represents the set of neighbors of agent k and |Nk| denotes

its number of neighbors. In the sequel, ⊗ denotes the Kronecker product and, for simplicity, we define

L̄ = L ⊗ I2 where IN ∈ R
N×N is the identity matrix.

January 17, 2014 DRAFT
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ρ
2 R

‖rk − rj‖ ≤ ρ

agent k

agent j

2π
N

Fig. 2. Geometrical condition to assure a circulant communication graph for a group of agents in a circular formation with

communication radius ρ.

Based on the ideas from synchronization of coupled oscillators, the authors from [7] introduced a

potential function depending on the relative headings which induces a repulsion force to enlarge the

angular distance between two connected agents in the circle

U(ψ) =
K

N

⌊N/2⌋
∑

m=1

1

2m2
BTmL̄Bm,

where Bm = (cosmψ1, sinmψ1, . . . , cosmψN , sinmψN )
T and ⌊N/2⌋ is the largest integer less than or

equal to N/2. The splay state corresponding to the uniform distribution of the agents along the circle

is a critical point of U(ψ). Applying this method to the translation control law is straightforward in

the case of fixed communication graph. Nevertheless, the uniform distribution is only locally stable for

fixed circulant graphs, see [7], and others configurations could be stabilized depending on the initial

conditions. Moreover, considering fixed communication is not realistic because the distance between two

linked agents is not considered, [1], [2]. Therefore, it might be more interesting to consider distance-

dependent communication graphs. This means that each agent can only receive information from its

closed neighbors. In this situation, a communication area for each vehicle is introduced, defined by the

critical communication distance ρ, see Fig. 2, which depends on the characteristics of the communication

devices and the environment of the agents. The distance-dependent communication graph (also called

proximity graph in literature [17]) is now time-varying because the position of vehicles is changing in

time. Based on graph theory, the distance-dependent Laplacian matrix L(r(t)) is defined as follows:

Lk,j =







|Nk|, if k = j

−1, if ‖rk − rj‖ ≤ ρ

0 otherwise

. (10)
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B. Uniform Distribution Control Design

The cooperative translation control for the distance-dependent communication assumption is presented

in the following corollary:

Corollary 1 Consider a twice differentiable function c(t) : R → R
2, with bounded first and second

time-derivatives. Let ω0 6= 0, κ > 0, α > 0, β ≥ 2
√
α and K > 0 be five control parameters, R > 0 be

the radius of the desired circular motion and condition (7) is satisfied. Let G(t) be the communication

graph, L be its corresponding Laplacian matrix defined by (10) and the critical communication distance

ρ satisfies:

ρ > 2R sin
π

N
(11)

Then the control law (8) where ˙̂rk is defined by (2) with






ûk = ω0

(

1 + κ ˙̂rTk r̂k

)

− ∂U
∂ψk

∂U
∂ψk

= − K
|Nk|

∑

j∈Nk

∑⌊N/2⌋
m=1

sinmψkj

m

(12)

where ψkj = ψk − ψj , makes all the agents defined by (1) converge to a circular formation of radius

R and whose center tracks the time-varying reference c(t). The uniform distribution of the angles ψk is

achieved, therefore, the agents are distributed uniformly along the time-varying circular formation.

Proof: The stability of the exosystem is analyzed by the composed Lyapunov function V (r̂, ψ) =

κS(r̂, ψ) + U(ψ). Thanks to the control law (12) then, V̇ (r̂, ψ) = −∑N
k=1(κω0r̂Tk

˙̂rk +
∂U
∂ψk

)2 ≤ 0 and

thus, applying the LaSalle Invariance Principle the exosystem converges to a fixed circular motion with

the phase arrangement defined by a critical point of U(ψ). Following the same tracking control design

presented in Theorem 1 the control law (8) is obtained and thus ṙk → ˙̂rk + ċ, ∀k exponentially. It is

important to enhance that thanks to this translation control law all the vehicles converge independently

to the same circular motion tracking the time-varying center c. Therefore, after some time tf all the

agents describe the same time-varying circular motion. Due to the geometric properties of the circle,

the distance between two adjacent agents can be expressed as ‖rk − rj‖ = 2R sin φkj

2 where φkj is the

angular distance between agents k, j, see Fig. 2. If the agents are not uniformly distributed along the circle

then, the angular distance between at least two adjacent agents satisfies φkj < 2π/N . Therefore, due

to condition (11), the distance between those agents satisfies ‖rk − rj‖ < 2R sin π
N < ρ. Consequently,

thanks to the distance-dependent communication graph defined by the Laplacian matrix (10), the agents

are connected. The gradient term − ∂U
∂ψk

enforces agent k to move away from its adjacent agents until

the communication between them is broken, i.e., ‖rk − rj‖ ≥ ρ. Due to condition (11), the previous

January 17, 2014 DRAFT
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inequality is equivalent to ‖rk − rj‖ ≥ 2R sin π
N and then φkj ≥ 2π

N . We can repeat the same reasoning

for each pair of adjacent agents in the circle and we conclude that the agents will be connected in a

circulant graph (each agent will have at least two neighborgs). In this situation, we study the minimum

of U(ψ). This potential function can be rewritten as

U(ψ) =
K

N

⌊N/2⌋
∑

m=1

1

2m2

N∑

k=1

Ukm

where Ukm =
∑

j∈Nk
1+cosmψkj ≥ 0, which is discontinuous because of the definition of the Laplacian

matrix L. In order to reach its minimum, the potential function enforces convergence to the splay state

because ψkj → π, ∀j ∈ Nk. According to [7], the other critical points of U(ψ) for a fixed circulant graph

imply at least two agents in the same position. Mathematically, if two agents are in the same position

then φkj = 0 ⇒ ψkj = 0 and due to the distance-dependent graph that implies a positive contribution

1+cosψkj = 2 to Um. Therefore, U(ψ) increases instead to decrease towards the minimum. In conclusion,

considering a distance-dependent communication graph, the only minimum of the potential function is

the splay state, because all of the other configurations imply two agents in the same position.

V. ELASTIC FORMATION CONTROL

This section focuses on the design of a general formation control law using a new framework. The

objective is to extend the previous translation control law employing affine transformations. In the sequel,

a new general formation control law is proposed to stabilize a group of vehicles to a richer class of time-

varying configurations, not only circular. The shape of the formation is defined by a general transformation

matrix.

A. Affine Transformations

The three affine transformations are the translation, the scaling and the rotation. To express these affine

transformations in a matrix way the homogeneous coordinates are introduced, see [18]. The homogeneous

coordinates of a vector z ∈ R
2 can simply be defined as the new vector zh = (zx, zy, 1)

T . The affine

transformations, translation, scaling and rotation are respectively defined by the following matrices:

Tc =








1 0 cx

0 1 cy

0 0 1








S =








sx 0 0

0 sy 0

0 0 1








Rφ =








cosφ − sinφ 0

sinφ cosφ 0

0 0 1
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where sx, sy > 0. The translation in the plane of z by a vector c = (cx, cy)
T can be expressed in a

matrix multiplication of the form z′ = Tcz
h where z′ is expressed in homogeneous coordinates. A non-

uniform scaling is a transformation such that z′ = Szh. A rotation through an angle φ counterclockwise

around the origin can be written as z′ = Rφzh.

B. Definition of Elastic Formation

Roughly speaking, the main idea is to deform the unit circle using the affine transformations in order

to obtain a desired elastic formation. In this context, the unit circle C0 is defined as a circumference

centered at the origin of the frame and with unit radius. A general sequence of affine transformations is

defined as follows:

G =

n∏

i=1

Ai A ∈ {S,Rφ,Tc} (13)

where n is the number of transformations applied to C0. Note that the combination of affine transforma-

tions is not commutative. Thus, the order of the sequence of matrices in (13) is important to characterize

a particular formation. These affine transformations are invertible, therefore the inverse matrix of G

exists and is denoted by G−1. Thanks to previous definitions, G is differentiable if its parameters are

differentiable.

Definition 1 An elastic formation F is a curve which results of applying a sequence of affine transfor-

mations G defined by (13) to the unit circle C0 such that, F = G ◦ C0.

The elastic formation can be time-varying if at least one element of the transformation matrices is time-

varying. The final formation depends on the sequence used to define G. The term elastic denote the

capability of the formation to move and change its shape in order, for instance, to avoid an obstacle (see

Fig. 3), to delimit a polluted region, or to avoid unnecessary energy waste.

C. Control Design for Elastic Formations

In the sequel, in order to apply the affine transformations, all the vectors are expressed in homogeneous

coordinates. The position vector of the agent k in homogeneous coordinates is now defined as rk =

(xk, yk, 1)
T . Using previous definitions of elastic formation and the general transformation matrix, the

following theorem presents the main result of this paper.

Theorem 2 Let G be a twice differentiable matrix function with bounded derivatives resulting of a

sequence of affine transformations as defined in (13) and F = G ◦ C0 be the desired elastic formation.
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Let ω0 6= 0, κ > 0, α > 0, β ≥ 2
√
α and K > 0 be five control parameters and the following condition

is satisfied:

‖Ġ(t)r̂k‖ 6= |ω0|‖G(t)r̂k‖ ∀t. (14)

Let G(t) be a communication graph and L(t) be its corresponding Laplacian matrix. Then, for all initial

conditions r(0), θ(0), the control law:

v̇k =− βvk +
ûk
vk

ṙ
T
k GRπ

2

˙̂rk +
ṙ
T
k

vk

[

G̈r̂k + 2Ġ ˙̂rk + β(Ġr̂k + G ˙̂rk) + α(Gr̂k − rk)
]

(15a)

uk =
ûk
v2k

ṙ
T
k R

T
π

2

GRπ

2

˙̂rk +
ṙ
T
k R

T
π

2

v2k

[

G̈r̂k + 2Ġ ˙̂rk + β(Ġr̂k + G ˙̂rk) + α(Gr̂k − rk)
]

(15b)

where ˙̂rk and ûk are defined by (2) with v0 = |ω0| and (12) respectively, makes all the agents defined by

(1) converge to the elastic formation defined by F . Moreover, the uniform distribution of the angles ψk

along C0 is achieved. Therefore, the agents are distributed along the formation F , taking into account

the transformation G.

Proof: The proof follows the same steps that in Theorem 1 taking into account the formulation based

on homogeneous coordinates. The convergence of the exosystem (2) where r̂k = (x̂k, ŷk, 1)
T is expressed

in homogeneous coordinates, to a uniform distributed circular formation is proved in Corrollary 1. Then,

the same tracking control design is proposed to enforce the error defined by (4) to converge to zero.

Imposing the error dynamics as previously, i.e., ε̈k = −βε̇k−αεk, the control inputs (15) are determined

since:

ε̈k =r̈k − G¨̂rk − 2Ġ ˙̂rk − G̈r̂k

−βε̇k − αεk =
v̇k
vk

ṙk + ukRπ

2

ṙk − ûkGRπ

2

˙̂rk − 2Ġ ˙̂rk − G̈r̂k.

Therefore, rk → Gr̂k when t→ ∞ and the closed-loop dynamics of system (1) converges to the desired

elastic formation F because for all k = 1, . . . , N :

ṙk = ω0GRπ

2

G−1r̄k
︸ ︷︷ ︸

transformation of the unit circle

+ ĠG−1rk
︸ ︷︷ ︸

time-varying motion

.

In this situation, the singular point vk = ‖ṙk‖ = 0 can be rewritten as ω0GRπ

2

r̂k = −Ġr̂k. If condition

(14) is satisfied then ‖Ġ(t)r̂k‖ 6= ‖ω0G(t)Rπ

2

r̂k‖, ∀t. Therefore, the singular point vk = 0 is avoided

and the control inputs (15) are respectively obtained.

Unlike in our previous work [19], this control law is robust to uncertainties in the initial conditions of

the agents’ states.
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Fig. 3. Simulation of five agents governed by control law (15) with G(t) = Tc(t)SR(t). The figure shows four snapshots:

the initial conditions (blue void agents), a transient state at t = 40s and the stable uniformly distributed circular formation at

t = 200s and t = 350s.

VI. SIMULATION RESULTS

The new formulation presented in this paper makes possible the combination of several transformations

to define a complex time-varying formation in a compact and elegant manner. A possible application is a

combined motion in which a circular formation with time-varying radius tracks a time-varying center. In

this case the transformation matrix defined by (13) becomes G(t) = Tc(t)SR(t). Applying Theorem 2, the

agents converge to a circular formation which follows the time-varying parameters of the transformation

G(t).

Fig. 3 shows the simulation of five agents governed by (15) where G(t) = Tc(t)SR(t). The control law

parameters are ω0 = κ = 0.6, α = 1, β = 2 and K = 0.1. The time-varying reference of the radius is

R(t) = 4 + 2 cos 2π
500 t and the reference tracked by the center corresponds to c(t) = ( 1

10 t, 3 sin
2π
300 t)

T .

The agents converge to the time-varying circular formation for any random initial conditions (position

and heading of the agents) represented in the figure by the blue void agents. The trajectory of one

agent is represented by the blue dotted line. The communication radius considered here ρ = 8 satisfies

the geometrical condition ρ > 2Rmax sin
π
N from Theorem 2, where Rmax = 6 is the up-bound of the

reference of the radius. Consequently, the agents are uniformly distributed along the time-varying circular

formation. Videos showing more simulations are accessible through Web1.

1
Simulations are accessible in https://sites.google.com/site/lbrinonarranz/videos
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VII. CONCLUSIONS

This paper presents a new control strategy to stabilize a group of vehicles to time-varying formations.

The main idea is to transform the circular trajectories of a stable autonomous exosystem and to enforce the

multi-agent system to track these transformed trajectories. Firstly, we presented a simple case dealing with

the translation of a circular motion. In this case, all the agents converge to a circular motion whose center

tracks a given time-varying reference. Then, a new framework based on affine transformations (translation,

rotation and scaling) is proposed to stabilize the fleet to more complex time-varying formations, not only

circular. The main advantage of this approach is that the desired formation is parametrized by a few

number of parameters. Moreover, a cooperative term is included to uniformly distribute the agents along

the formation taking into account the communication topology between agents.

Future works will focus on designing a general time-varying formation control law in a more coopera-

tive way, using only relative information between agents. Another research direction copes with extending

this control strategy including some additional constraints such as the presence of currents and adding

potential terms to ensure obstacle avoidance.
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