N

N

Complexity of SAT Problems, Clone Theory and the
Exponential Time Hypothesis

Peter Jonsonn, Victor Lagerkvist, Gustav Nordh, Bruno Zanuttini

» To cite this version:

Peter Jonsonn, Victor Lagerkvist, Gustav Nordh, Bruno Zanuttini. Complexity of SAT Problems,
Clone Theory and the Exponential Time Hypothesis. Proc. 24th Symposium on Discrete Algorithms
(SODA 2013), Jan 2013, France. hal-00932797

HAL Id: hal-00932797
https://hal.science/hal-00932797

Submitted on 17 Jan 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00932797
https://hal.archives-ouvertes.fr

Complexity of SAT Problems, Clone Theory and the
Exponential Time Hypothesis

Peter Jonsson!, Victor LagerkvistQ, Gustav Nordh!, and Bruno Zanuttini®

! Department of Computer and Information Science, Linkopings Universitet, Sweden
{peter.jonsson, gustav.nordh}@liu.se
2 Department of Computer and Information Science, Link&pings Universitet, Sweden, (Corresponding author)
vicla605@student.liu.se
3 GREYC, Université de Caen Basse-Normandie, France
bruno.zanuttini@unicaen. fr

Abstract. The construction of exact exponential-time algorithms for NP-complete prob-
lems has for some time been a very active research area. Unfortunately, there is a lack of
general methods for studying and comparing the time complexity of algorithms for such
problems. We propose such a method based on clone theory and demonstrate it on the SAT
problem. Schaefer has completely classified the complexity of SAT with respect to the set
of allowed relations and proved that this parameterized problem exhibits a dichotomy:
it is either in P or NP-complete. We show that there is a certain partial order on the NP-
complete SAT problems with a close connection to their worst-case time complexities; if a
problem SAT(S) is below a problem SAT(S’) in this partial order, then SAT(S’) cannot be
solved strictly faster than SAT(S). By using this order, we identify a relation R such that
SAT(R) is the computationally easiest NP-complete SAT problem. This result may be in-
teresting when investigating the borderline between P and NP since one appealing way of
studying this borderline is to identify problems that, in some sense, are situated close to it
(such as a ‘very hard’ problem in P or a ‘very easy’ NP-complete problem). We strengthen
the result by showing that SAT(R)-2 (i.e. SAT(R) restricted to instances where no variable
appears in more than two clauses) is NP-complete, too. This is in contrast to, for exam-
ple, 1-in-3-SAT which is in P under the same restriction. We then relate SAT(R)-2 to the
exponential-time hypothesis (ETH) and show that ETH holds if and only if SAT(R)-2 is
not sub-exponential. This constitutes a strong connection between ETH and the SAT prob-
lem under both severe relational and severe structural restrictions, and it may thus serve as
a tool for studying the borderline between sub-exponential and exponential problems. In
the process, we also prove a stronger version of Impagliazzo et. al’s sparsification lemma
for k-SAT; namely that all finite, NP-complete Boolean languages can be sparsified into
each other. This should be compared with Santhanam and Srinivasan’s recent negative
result which states that the same does not hold for all infinite Boolean languages.

1 Introduction

This paper is concerned with the SAT(S) class of problems: given a finite set of Boolean relations .S,
decide whether a conjunction of constraints (where only relations from S are used) is satisfiable or not.
This class of problems is very rich and contains many problems that are highly relevant both theoret-
ically and in practice. Since Schaefer’s seminal dichotomy result [27], the computational complexity
of SAT(S) is completely known: we know for which S that SAT(S) is polynomial-time solvable and
for which it is NP-complete, and these are the only possible cases. On the other hand, judging from the
running times of the many algorithms that have been proposed for different NP-complete SAT(.S) prob-
lems, it seems that the computational complexity varies greatly for different S. As an example, 3-SAT
(S consists of all clauses of length at most 3) is only known to be solvable in time O(1.3334") [22]
(where n is the number of variables), and so it seems to be a much harder problem than, for instance,
positive 1-in-3-SAT (.S consists only of the relation {(0, 0, 1), (0, 1,0), (1,0, 0)}), which can be solved
in time O(1.0984"™) [32]. It is fair to say that we have a very vague understanding of the time complexity
of NP-complete problems, and this fact is clearly expressed in [6]].

What the field of exponential-time algorithms sorely lacks is a complexity-theoretic framework
for showing running time lower bounds.

In this paper, we initiate a systematic study of the relationships between the worst-case complex-
ity of different SAT(S) problems, where we measure the complexity as a function of the number of
variables. Ultimately, one would like to have a ‘table’ that for each NP-complete SAT(S) problem con-
tains a number ¢ such that SAT(.S) can be solved in ©(c") time. It seems that we are very far from
this goal, unfortunately. Let us imagine a weaker qualitative approach: construct a table that for every
two problems SAT(.S) and SAT(S’) tells us whether SAT(.S) and SAT(.S”) can be solved equally fast,
whether SAT(.S) can be solved strictly faster than SAT(S’), or vice versa. That is, we have access to
the underlying total order on running times but we cannot say anything about the exact figures. Not
surprisingly, we are far from this goal, too. However, this table can, in a sense, be approximated: there
are non-trivial lattices that satisfy this property whenever S and S’ are comparable to each other in the
lattice. To obtain such lattices, we exploit clone theory [18130]. This theory has proven to be very pow-
erful when studying the complexity of SAT(S) and its multi-valued generalization known as constraint
satisfaction problems (CSP) [3]]. However, it is not clear how this theory can be used for studying the
worst-case running times for algorithms. We show how to use it for this purpose in Section 3] and our
basic observation is that the lattice of partial clones [213] has the required properties. We would like
to emphasize that this approach can be generalized in different ways; it is not restricted to Boolean
problems and it is applicable to other computational problems such as counting and enumeration.

As a concrete application of this method, we identify the computationally easiest NP-complete
SAT(S) problem in Section |} by ‘computationally easiest’, we mean that if any NP-complete SAT(S)
problem can be solved in O(c") time, then the easiest problem can be solved in O(c") time, too.
This easiest NP-complete SAT(S) problem is surprisingly simple: S consists of a single 6-ary relation
RT/’? which contains the three tuples (1,0,0,0,1,1), (0,1,0,1,0,1), and (0,0, 1,1, 1,0). This result
is obtained by making use of Schnoor and Schnoor’s [28] machinery for constructing weak bases. We
note that there has been an interest in identifying extremely easy NP-complete problems before. For
instance, van Rooij et. al have shown that the PARTITION INTO TRIANGLES problem restricted to
graphs of maximum degree four can be solved in O(1.02445™) time [31]]. They argue that practical
algorithms may arise from this kind of studies, and the very same observation has been made by, for
instance, Woeginger [33]]. It is important to note that our results give much more information than just
the mere fact that SAT(RT/ff) is easy to solve; they also tell us how this problem is related to all other
problems within the large and diverse class of finite SAT problems. This is one of the major advantages
in using the clone-theoretical approach when studying these kind of questions. Another reason to study
such problems is that they, in some sense, are ‘close’ to the borderline between problems in NP that are
not complete and NP-complete problems (here we tacitly assume that P % NP). The structure of this
borderline has been studied with many different aims and many different methods; two well-known
examples are the articles by Ladner [17] and Schoning [29].

We continue by studying the complexity of SAT(Rff;;’é) and general SAT problems in greater detail
by relating them to the EXPONENTIAL TIME HYPOTHESIS (ETH) [13], i.e. the hypothesis that k-SAT
cannot be solved in sub-exponential time for ¥ > 3. The ETH has recently gained popularity when
studying the computational complexity of combinatorial problems, cf. the survey by Lokshtanov et
al. [19].

We first note (in Section that SAT(Rf/?éf) restricted to instances where no variable appears more
than twice (the SAT(RZ%#)—Z problem) is still NP-complete (in contrast to, for instance, positive 1-in-
3-SAT which is in P under the same restriction). We prove this by using results by Dalmau and Ford

[8] combined with the fact that Rfff is not a A-matroid relation. We then show (in Section @) that

the exponential-time hypothesis holds if and only if SAT(RT;?)—Z cannot be solved in sub-exponential

time, i.e. SAT(RT/’;’E)—Z is ETH-hard. By using this result, we show the following consequence: if ETH
does not hold, then SAT(S)-k is sub-exponential for every £ whenever S is finite. Impagliazzo et al.
[13] have proved that many NP-complete problems in SNP (which contains the SAT problems) are
ETH-hard. Thus, we strengthen this result when restricted to SAT problems. In the process, we also
prove a stronger version of Impagliazzo et. al’s [13]] sparsification lemma for k-SAT; namely that all
finite, NP-complete Boolean languages can be sparsified into each other. This can be contrasted with
Santhanam’s and Srinivasan’s [26] recent negative result which states that the same does not hold for
the unrestricted SAT problem and, consequently, not for all infinite Boolean languages.

2 The Boolean SAT problem

We begin by introducing the notation and basic results that will be used in the rest of this paper. The set
of all n-tuples over {0, 1} is denoted by {0, 1}". Any subset of {0, 1}" is called an n-ary relation on
{0,1}. The set of all finitary relations over {0, 1} is denoted by BR. A constraint language over {0, 1}
is a finite set S C BR.

Definition 1. The Boolean satisfiability problem over the constraint language S C BR, denoted
SAT(S), is defined to be the decision problem with instance (V,C'), where V' is a set of Boolean vari-
ables, and C' is a set of constraints {C1, ..., Cy}, in which each constraint C; is a pair (s;, R;) with
s; a list of variables of length m;, called the constraint scope, and R; an m;-ary relation over the set
{0, 1}, belonging to S, called the constraint relation.

The question is whether there exists a solution to (V,C'), that is, a function from V to {0, 1} such
that, for each constraint in C, the image of the constraint scope is a member of the constraint relation.

Example 2. Let Ry x, be the following ternary relation on {0, 1}: Ryax = {0,1}3\{(0,0,0), (1,1,1)}.
It is easy to see that the well known NP-complete problem NOT-ALL-EQUAL 3-SAT can be expressed
as SAT({ Rxag})-

Using negation needs some extra care: let the sign pattern of a constraint y(z1,...,xy) be the
tuple (s1,...,sk), where s; = + if z; is unnegated, and s; = — if z; is negated. For each sign
pattern we can then associate a relation that captures the satisfying assignments of the constraint. For
example, the sign pattern of Ryag(x, 7y, —z) is the tuple (+,—, —), and its associated relation is

R{) = {0,133\ {(1,0,0), (0,1,1)}. More generally, we use I'%,, to denote the corresponding
language of not-all-equal relations (with all possible sign patterns) of length k. If ¢ is a SAT(/%,)
instance we use Y&, ,(x1,...,z)) to denote a constraint in ¢, where each z; is unnegated or negated.
In the same manner we use [, to denote the language consisting of all k-SAT relations of length k.

When explicitly defining relations, we often use the standard matrix representation where the rows
of the matrix are the tuples in the relation. For example,

001
010
100
011
101
110

RNAE =

Note that the order of the rows in the matrix representation does not matter since this only corre-
spond to a different order of the variables in a constraint.

3 Partial clones and the complexity of SAT

We will now show that the time complexity of SAT(S) is determined by the so-called partial polymor-
phisms of S. For a more in-depth background on SAT and algebraic techniques, we refer the reader to

[4] and [18]], respectively. Note that most of the results in this section hold for arbitrary finite domains,
but we present everything in the Boolean setting. We first note that any k-ary operation f on {0, 1} can
be extended in a standard way to an operation on tuples over {0, 1}, as follows: for any collection of k
tuples, t1,ta,...,t; € R, the n-tuple f(t1,t2,...,tx) is defined as follows:

f(t17t27 v 7tk) = (f(t1[1]7t2[1]7 s 7tk[1])7 f(t1[2]7t2[2]7 s 7tk[2])7 s f(tl[n]th[nL s 7tk[n]))7
where t;[i] is the i-th component in tuple ¢;. We are now ready to define the concept of polymorphisms.

Definition 3. Ler S be a Boolean language and R an arbitrary relation from S. If f is an operation
such that for all t1,to, ..., t, € R it holds that f(t1,ts,...,t;x) € R, then R is closed (or invariant)
under f. If all relations in S are closed under f then S is closed under f. An operation f such that
S is closed under f is called a polymorphism of S. The set of all polymorphisms of S is denoted by
Pol(S). Given a set of operations F, the set of all relations that are closed under all the operations in
F is denoted by Inv(F).

Sets of operations of the form Pol(.S) are referred to as clones. The lattice (under set inclusion) of
all clones over the Boolean domain was completely determined by Post [24] and it is usually referred
to as Post’s lattice. It is visualized in Figure[I] (see Appendix [C). The following result forms the basis
of the algebraic approach for analyzing the complexity of SAT, and, more generally, of constraint
satisfaction problems. It states that the complexity of SAT(S) is determined, up to polynomial-time
reductions, by the polymorphisms of S.

Theorem 4. [[[5|] Let S1 and Sy be finite non-empty sets of Boolean relations. If Pol(S2) C Pol(Sh),
then SAT(S1) is polynomial-time reducible to SAT(Ss).

Schaefer’s classification of SAT(S) follows more or less directly from this result together with Post’s
lattice of clones. It is worth noting that out of the countably infinite number of Boolean clones, there
are just two that corresponds to NP-complete SAT(.S) problems. These are the clone /5 consisting of
all projections (i.e. the operations of the form ff(a:l, ...,x) = x;), and the clone Ny consisting of
all projections together with the unary negation function n(0) = 1, n(1) = 0. It is easy to realize that
Inv(I7) is the set of all Boolean relations (i.e., BR) and we denote Inv(N2) by IN,.

Theorem []is not very useful for studying the complexity of SAT problems in terms of their worst-
case complexity as a function of the number of variables. The reason is that the reductions do not
preserve the size of the instances and may introduce large numbers of new variables. It also seems that
the lattice of clones is not fine grained enough for this purpose. For example, 1-in-3-SAT and k-SAT
(for k > 3) both correspond to the same clone Is.

One way to get a more refined framework is to consider partial operations in Definition [3] That is,
we say that R is closed under the (partial) operation f if f applied componentwise to the tuples of R
always results in a tuple from R or an undefined result (i.e., f is undefined on at least one of the compo-
nents). The set of all (partial) operations preserving the relations in .S, i.e., the partial polymorphisms
of S is denoted pPol(.S) and forms a partial clone. Unlike the lattice of Boolean clones, the lattice of
partial Boolean clones consists of an uncountable infinite number of partial clones, and despite being a
well-studied mathematical object [[18]], its structure is far from being completely understood.

Before we show that the lattice of partial clones is fine-grained enough to capture the complexity
of SAT(.S) problems (in terms of the worst-case complexity as a function of the number of variables)
we need to present a Galois connection between sets of relations and sets of (partial) functions.

Definition 5. For any set S C BR, the set (S) consists of all relations that can be expressed (or imple-
mented) using relations from S U {=} (where = denotes the equality relation on {0,1}), conjunction,
and existential quantification. We call such implementations primitive positive (p.p.) implementations.
Similarly, for any set S C BR the set (S)3 consists of all relations that can be expressed using relations
from S'U{=} and conjunction. We call such implementations quantifier-free primitive positive (q.p.p.)
implementations.

Sets of relations of the form (S) and (S)4 are referred to as relational clones (or co-clones) and partial
relational clones, respectively. The lattice of Boolean co-clones is visualized in Figure [2] (see Ap-
pendix [C). There is a Galois connection between (partial) clones and (partial) relational clones given
by the following result.

Theorem 6. [2|3925] Let Sy and Sy be constraint languages. Then S; C (S3) if and only if
Pol(S2) C Pol(S1), and S1 C (S2)4 if and only if pPol(S2) C pPol(Sh).

Finally, we show that the complexity of SAT(S), in terms of the worst-case complexity as a function
of the number of variables, is determined by the lattice of partial clones.

Theorem 7. Let Sy and Ss be finite non-empty sets of Boolean relations. If pPol(S2) C pPol(S1) and
SAT(S3) is solvable in time O(c"™), then SAT(S1) is solvable in time O(c").

Proof. Given an instance I of SAT(S7) on n variables we transform I into an equivalent instance I’
of SAT(S2) on at most n variables. Since S is fixed and finite we can assume that the quantifier-free
primitive positive implementations of every relation in S by relations in S has been precomputed and
stored in a table (of fixed constant size). Every constraint R(x1, ..., x,) in I can be represented as

Rl(wn, - ,l‘lnl) A=A Rk(wkl, L. ,xknk)

where Ry,..., R, € SsU{=}and z11,..., 2k, € {21,22,...,2,}. Replace the constraint R(x1, ..., z,)
with the constraints Ry, .. ., Rj. If we repeat the same reduction for every constraint in [it results in an
equivalent instance of SAT(S2 U {=}) having at most n variables. For each equality constraint z; = x;
we replace all occurrences of x; with ; and remove the equality constraint. The resulting instance I’
is an instance of SAT(S2) having at most n variables. Also, note that since .S is finite, there cannot be
more than O(nP) constraints in total, where p is the highest arity of a relation in S;. Thus, if SAT(.S2)
is solvable in time O(c™), then SAT(S}) is solvable in time O(c™). O

4 The easiest NP-complete SAT problem

In this section we will use the theory and results presented in the previous section to determine the
easiest NP-complete SAT(S) problem. Recall that by easiest we mean that if any NP-complete SAT(.S)
problem can be solved in O(c™) time, then the easiest problem can be solved in O(c") time, too.
Following this lead we say that SAT(S) is easier than SAT(S) if SAT(S) is solvable in O(c") time
whenever SAT(S’) is solvable in O(c") time. A crucial step for doing this is the explicit construction
of Schnoor and Schnoor [28]] that, for each relational clone X, gives a relation R such that X = ({R})
and R has a q.p.p. implementation in every constraint language S such that (S) = X. Essentially,
this construction gives the bottom element of the interval of partial relational clones contained in each
relational clone.

Let {0,1}-COLS,, denote the Boolean relation with arity 2" that contains all Boolean tuples from

0 to 2" — 1 as columns. Given two relations R = {ry,...,r,} and Q@ = {q1,...,q,} (of the same
cardinality), then R o) denotes the relation that for each r; = (aq,...,ax) and ¢; = (S1,...,5)
contains the tuple (a1, ..., ag, 51, .-, 3;). Assume that a set of Boolean functions F and a relation

R C {0,1}" are given. The F-closure of R, denoted F(R), is the relation (¢ 1,7, rc pr 12+ Define

the extension of a Boolean relation R, RI**!], to be the relation F(R o {0,1}—COLS,,). Finally, define

the irreduntant core R of R[ewt]_ to be the relation obtained when identical columns are removed. In
order to unambiguously define R"", we assume that the first occurrence of each column in Rlext] jg
keptin R"".

Theorem 8. /28] Let R be a Boolean relation. Then R'*™ and R™™ have q.p.p. implementations
in R. Furthermore, any language S such that (S) = ({R}) implements Rl*™ and R via q.p.p.
implementations.

We are now in the position to define the easiest NP-complete SAT(.S) problem. In the sequel, we use
by ... Dby as a shorthand for the tuple (b1, ..., bx). Define the relation R, ,; = {001,010, 100} and note
that SAT({R, 5 }) corresponds to the 1-in-3-SAT problem. The relation R} 7” = {001110,010101,100011}

is formed by taking R, ,; and adding the negation of each of the columns, i.e., RT;;?E can be defined as

R1/3(x1,x2, xg) A (1‘1 %+ x4) A (1‘2 =+ 335) A (:L'3 =+ 1‘6).

Lemma 9. Let S be a language such that (S) = BR. Then R?;g has a q.p.p. implementation in S.

Proof. We first construct the extension of R, ;. Since the arity of 12, 5 is 3 we must augment the matrix
representation of 2, ,; with the binary numbers from 0 to 7 as columns and close the resulting relation
under every polymorphism of BR. However, the projection functions are the only polymorphisms of
BR so the relation is left unchanged. Hence,

00100001111
R“!— (01000110011
10001010101

The irredundant core is then obtained by removing identical columns.

, 00001111
Rﬁ;:<00110011>
01010101
O

The relation Rf/“g is nothing else than Rfj’;# with the two constant columns adjoined, and there

is a trivial reduction from SAT(RT;;#) to SAT(RZZ) introducing only 2 extra variables (one for each
constant). Combining this with Theorem[7]and 0] we immediately obtain the following result:

Lemma 10. Ler S be a language such that (S) = BR. Then SAT(R7[,”) is not harder than SAT(S).

We are left with the relational clone IN» and need to make sure that the bottom partial relational

clone in INy is not (strictly) easier than Rf/ﬁ;’é. We proceed in an analogous manner to the derivation of

Rfff, and define a maximal extended relation which is then pruned of superfluous columns. Let Ryx

be defined as in Section Analogously to the relation Rﬁ;¢ in BR, we consider the relation Rf/ﬁ# =

{00111100,01011010,10010110, 11000011,10100101, 01101001} in IN,. The proof can be found in
Appendix [A]

Lemma 11. Let S be a language such that (S) = INs. Then S implements R}, ;Z## via a q.p.p. imple-
mentation.

Both R}/,” and R}/;”” can be viewed as candidates for the easiest NP-complete languages. In
order to prove that Rféfa'f7é is not harder than R} /ﬁ# we must give a size-preserving reduction from
SAT(R]/,”) to SAT(R;/,77).

Lemma 12. SAT(R][,”) is not harder than SAT(R3 "7).

Proof. Let ¢ be an instance of SAT(Rf/ﬁ#) and C = Rf}j# (1,22, x3, T4, T5, T¢) be an arbitrary con-
straint in ¢. Let Y7 and Y5 be two global variables. Then the constraint C" = R}777 (21, z2, 23, Y1,
x4, %5, X6, Y2) is satisfiable if and only if C'is satisfiable, with Y7 = 1 and Y2 = 0 (we may assume that
Y1 = 1 since the complement of a satisfiable assignment is also a satisfiable assignment for languages
in INy). If we repeat this reduction for every constraint in ¢ we get a SAT(R7, /ﬁ#) instance which is
satisfiable if and only if ¢ is satisfiable. Since the reduction only introduces two new variables, it fol-

lows that an O(c™) algorithm for SAT(R}/,””) can be used to solve SAT(R7]7,”) in O(c") time, too. O

Since S is NP-complete if and only if (S) = BR or (S) = IN2, Lemmall0|together with Lemma][12)
gives that SAT(R]/,”) is the easiest NP-complete SAT problem.

Theorem 13. Let S be an NP-complete Boolean language. Then SAT(Rf/ff) is not harder than SAT(.S).

5 SAT problems with bounded degree

In this section, we investigate the SAT problem where restrictions are placed on the number of occur-
rences per variable. If x occurs in k constraints then we say that the degree of x is k. If S is a language,
then SAT(S)-k is the SAT(S) problem where the degree of each variable is at most k. This restric-
tion is of particular interest since, for all languages S such that SAT(S) is NP-complete, SAT(S)-k is
NP-complete for some k.

Theorem 14. [|/6|]] For any fixed S such that CSP(S) is NP-complete, there is an integer k such that
CSP(S)-k is NP-complete.

The most interesting case is when k is the smallest k such that SAT(S)-k is NP-complete. These
values are already known for 1-in-3-SAT: for £ = 2 it can be reduced to the problem of finding a perfect
matching in a graph [14]], but for £ = 3 it is NP-complete even for planar instances [21]]. It might be
expected that the same holds for SAT(Rf/ﬁ#) since it is easier than SAT(R, ;). This is however not
the case: SAT(R7;”)-k is NP-complete even for k = 2. To prove this we first note that R} 7” is not a
A-matroid relation.

Definition 15. (A-matroid relation) Let R be a Boolean relation and x, v, x' be Boolean tuples of the
same arity. Let d(x,y) be the binary difference function between x and y. Then ' is a step from x to y
ifd(z,2') =1and d(z,y) = d(«',y) + d(x,2'). Ris a A-matroid relation if it satisfies the following
axiom: Vx,y € RVx'.(2' is a step from x to y) — (x' € RV 32" € R which is a step from 2’ to y).

Lemma 16. Rfff is not a A-matroid relation.

Proof. Let z = 001110 and y = 010101. These are both elements in R]/,”. Let 2/ = 000110. Then

d(z,2') = 1,d(x,y) = 4 = d(z,2’) + d(2',y) = 1 + 3 = 4, whence 2’ is a step from z to y. For

R7/” to be a A-matroid relation either 2/ € R;7,”, or there exists a 2" which is a step from 2’ to y.
FAt

Since neither of the disjuncts are true, it follows that R7/;” is not a A-matroid relation. O
The hardness result then follows from Theorem 3 in Dalmau and Ford [8]], which states that
SAT(.S)-2 is NP-complete if S contains a relation that is not A-matroid.

Theorem 17. SAT(R]},”)-2 is NP-complete.

6 The exponential-time hypothesis

Even though Rff? is the easiest NP-complete language, we cannot hope to prove or disprove that

SAT(Rf/?é) or SAT(RT;;#)—Z is solvable in polynomial time since this would settle the P = NP ques-
tion. A more assailable question is if the problem can be solved in sub-exponential time. If yes, then we
are none the wiser; but if no, then P # NP. As a tool for studying sub-exponential problems, Impagli-
azzo et. al [13] proved a sparsification lemma for k-SAT. Intuitively, the process of sparsification means
that a SAT instance with a large number of constraints can be expressed as a disjunction of instances
with a comparably small number of constraints. We prove that sparsification is possible not only for
k-SAT, but between all NP-complete, finite languages, and use this to prove that SAT(R],”)-2 is sub-
exponential if and only if the exponential-time hypothesis is false. Due to sparsification we can also
prove that all NP-complete languages are sub-exponential if and only if one NP-complete language is
sub-exponential (and that this holds also in the degree-bounded case), which is a significant refinement
of Impagliazzo et. al’s result when restricted to finite Boolean languages.

6.1 Preliminaries

There has been a stride in constructing faster exponential algorithms for NP-complete problems. A
natural question to ask is whether there exists a constant ¢ such that a problem is solvable in O(c™), but
not for any ¢’ smaller than c. Problems without such a sharp limit are said to be sub-exponential.

Definition 18. A language S is sub-exponential if SAT(S) is solvable in O(2") for all € > 0.

We now need a class of reductions that relates languages based on their sub-exponential complex-
ity. Reductions based on q.p.p. definitions are however to precise to fully encompass this since they
preserve exact complexity — a reduction should be able to introduce new variables as long as the re-
sulting instance can be solved in sub-exponential time. We introduce linear variable reductions, which
should be compared to the more complex but general class of SERF-reductions from Impagliazzo et.
al [[13]].

Definition 19. Let S and S’ be two finite languages and ¢ a SAT(S) instance with n variables. A total
function f from SAT(S) to SAT(S’) is a many-one linear variable reduction, or an LV-reduction, if:

—

. ¢ is satisfiable if and only if f(¢) is satisfiable,

2. the number of variables in f(¢), n’, is only increased by a linear amount, i.e. there exists a fixed
constant C such that n’ < Cn, and

3. f(¢) can be computed in O(poly(n)) time.

The point of the definition is that an LV-reduction between two languages preserves sub-exponentiality.
Hence, if SAT(S) is sub-exponential and we know that SAT(S’) is LV-reducible to SAT(S), then
SAT(S") is sub-exponential as well. The proof is straightforward and is included in Appendix

Lemma 20. Let S and S’ be two finite languages such that SAT(S) is sub-exponential. If there exists
an LV-reduction from SAT(S’) to SAT(S), then SAT(S’) is sub-exponential.

Let S and S’ be two finite languages such that S C (S”). We can then reduce SAT(S) to SAT(S”) by
replacing each constraint from S by its equivalent implementation in S’. Such a reduction would need
C' - m new variables, where C' is a constant that only depends on S’, and m the number of constraints
in the instance. If m is large compared to the number of variables, n, this would however require more
than a linear amount of new variables. We can therefore only prove that LV-reductions exist for classes
of problems where m is linearly bounded by the number of variables. The proof is in Appendix

Lemma 21. Let S and S’ be two finite languages such that SAT(S) and SAT(S’)-k are NP-complete
for some k. If S" C (S), then SAT(S')-k is LV-reducible to SAT(S).

This does not imply that there exists LV-reductions between SAT(S) and SAT(S’) for all NP-
complete languages S and S’ since these problems are not degree-bounded, but it is a useful tool
in the sparsification process.

Definition 22. Let S and S’ be two finite languages. We say that S is sparsifiable into S’ if, for all
€ > 0 and for all SAT(S) instance ¢ (with n variables), ¢ can be expressed by a disjunctive formula

\/221 ®i, where:

¢ is satisfiable if and only if at least one ¢; is satisfiable,
. k is a constant that only depends on ¢, S and S,

. ¢; is a SAT(S')-k instance,

Lt <29 and

\/i_, ¢i can be computed in O(poly(n) - 2") time.

LA W N~

Note that nothing in the definition says that S and S’ cannot be the same language. If so, we simply
say that S is sparsifiable. Impagliazzo et. al [[13] prove the following for k-SAT.

Lemma 23. (sparsification lemma for k-SAT) k-SAT is sparsifiable.

6.2 General sparsification

Recall from Section [2[that we use [, and I}, to denote the languages of k-SAT and NAE-k-SAT
respectively. In order to prove that sparsification is possible between all NP-complete, finite languages
we first prove that I}, , is sparsifiable, and then that all NP-complete languages in BR and IN3 can be
sparsified by reducing them to either ', or I'¥, ..

Lemma 24. (sparsification lemma for NAE-k-SAT) I, is sparsifiable.

Proof. Let ¢ be a SAT(I},,,) instance with n variables. If v, . (x1,...,2k) is a constraint from ¢ it
can be verified that it is satisfiable if and only if v, (z1, ..., 2%) A Y5 (—x1, . .., —xy) is satisfiable.
We can therefore form an equivalent SAT(/%,..) instance ¥ by adding the complement of every % , .-
constraint. By the sparsification lemma for k-SAT, it then follows that ¢ can be sparsified into the
disjunctive formula \/5:1 ;. We must now prove that each v; is reducible to an equivalent SAT(%,)-

[instance, for some constant / that does not depend on n.

For simplicity, we shall first reduce each disjunct to SAT(I'{1). For each constraint %, . (21, . .., xx) €
; we let viht (71, - . ., ¥, X) be the corresponding 4} ;-constraint, where X is a fresh variable com-

mon to all constraints. Let ¢, be the resulting SAT(I%XL) instance. Then v); is satisfiable if and only if
W} is satisfiable: if ¢); is satisfiable, then ¢ is satisfiable with X = 0; if ¢/} is satisfiable we may assume

that X = 0 since the complement of each valid assignment is also a valid assignment. But then each
constraint has at least one literal that is not 0, by which it follows that »; must be satisfiable.

Since v was sparsified, the degree of the variables in 1); is bounded by some constant C. Hence
X cannot occur in more than C - n constraints. We now prove that the degree of X can be reduced
to a constant value. Since (I'{fL) = IN2 we can implement an equality relation that has the form
Eq(z,y) = 321, ..., 27.0, where 0 is a conjunction of constraints over I'4:. Let V denote the highest
degree of any variable in §. We may without loss of generality assume that 2V < C' since we can
otherwise adjust the e-parameter in the sparsification process.

To decrease the degree of X we introduce the fresh variables X1, ..., X7, in place of X and the
following chain of equality constraints: Eq(X, X{) A Eq(X{,X5) A ... A Eq(X},_, X{;). Let the
resulting formula be). Then ¢, is satisfiable if and only if ¢/ is satisfiable since X = X| = ... =

Xy in all models. Then W = % new variables are needed since each X/ can occur in C' — 2V
additional constraints. Since each equality constraint requires 7' variables the whole equality chain
requires gj‘m:c variables which is linear with respect to n since 7', C' and V' are constants.

But since (I'is) = (I'¥,) = IN2 and no variable occurs more than C' times we can use Lemma
and LV-reduce v/ to an equivalent SAT(I%,) instance ¢;. Since all variables in ¢! are degree
bounded by C' there exists a constant [determined by C' and I, such that no variable in ¢; occurs in
more than [constraints, i.e. ¢; is an instance of SAT(I%, ,)-I. It now follows that ¢ is satisfiable if and

only if at least one of the disjuncts ¢; is satisfiable. Hence I'%, . is sparsifiable. O

The proof of the following auxiliary lemma can be found in Appendix [B]

Lemma 25. Let S be a finite language such that S C INy and let S’ be a finite language such that
S" C BR. Then, SAT(S) is LV-reducible to SAT(I't,.), for some k dependent on S, and SAT(S’) is
LV-reducible to SAT(T'%...), for some k' dependent on S'.

Since a language S is NP-complete if and only if (S) = BR or (S) = IN», we can now prove that
sparsification is possible between all finite NP-complete languages.

Theorem 26. (sparsification between all finite NP-complete languages) Let S and S’ be two finite
languages such that SAT(S) and SAT(S’) are NP-complete. Then, SAT(S) is sparsifiable into SAT(S’).

Proof. There are a few different cases depending on which co-clones that are generated by S and S”:
(1) (S)=(S") = IN2,(2) (S) =(S") = BR,(3) (S) =INp, (S") = BR,and (4) (S) = BR, (S’) = IN.

For case (1), assume that (S) = (S’) = INj. Let p denote the highest arity of a relation in S. If
¢ is a SAT(S) instance with n variables it can be reduced to a SAT(I%,5) instance ¢’ with the same
number of variables by Lemma[23] Then, according to the sparsification lemma for NAE-k-SAT, there
exists a disjunction of SAT(I'%,,)-I formulas such that ¢’ = \/'_, #;. Since (S’) = INy, each ¢; can
be implemented as a conjunction of constraints over S’ with a linear amount of extra constraints and
variables. Let ¢/ denote each such implementation. Then ¢, is an instance of SAT(S")-I’, for some I’
determined by [and S’. Hence SAT(S) is sparsifiable into SAT(S").

Case (2) is analogous to case (1) but with I}, instead of I}, . Case (3) follows from case (2)
since all finite languages are sparsifiable into 1'%, by Lemmas and

For case (4), assume that (S) = BR and (S’) = IN,. Let p denote the relation with the highest
arity in S. If ¢ is a SAT(S) instance with n variables it can be LV-reduced to a SAT(I/{,r) instance
¢’ by lemma Since I}, is sparsifiable there exists a disjunction such that ¢/ = \/!_, ¢;. By
recapitulating the steps from Lemma we can then reduce each ¢; to a SAT(I%iL)-I instance @,
Then, since (S’) = IN,, each ¢ can be implemented as a conjunction of constraints over S’ such that
no variable occurs in more than I’ constraints, where [’ is determined by [and S’. O

Santhanam and Srinivasan [26] have shown that the unrestricted SAT problem (which corresponds
to an infinite constraint language) does not admit sparsification to arbitrary finite NP-complete lan-
guages. Consequently, it is a necessary condition that the languages in Theorem [26] are indeed finite.

6.3 SAT and the exponential-time hypothesis

The exponential-time hypothesis states that k-SAT is not sub-exponential [12] for k£ > 3. If one as-
sumes that P £ NP, then this statement is plausible since it enforces a limit on the time complexity of

exponential algorithms. A problem that is sub-exponential if and only if k-SAT is sub-exponential is
said to be ETH-hard. Impagliazzo et. al prove that many NP-complete problems such as k-colorability,
clique and vertex cover are ETH-hard. An ETH-hard problem has the property that it is sub-exponential
if and only if all problems in SNP are sub-exponential. In this section we prove that both SAT(R; ;")
and SAT(Rf/ﬁ#)—Z are ETH-hard, and this implies that all finite, NP-complete languages are ETH-hard
even for degree-bounded instances. This result does not exclude the possibility that there exist an ex-
tremely simple NP-complete problem that is not ETH-hard, it seems that such a problem is unlikely to
reside in the Boolean domain.

Theorem 27. The following statements are equivalent:

The exponential-time hypothesis is false.

SAT(Rf/ﬁ’é)-2 is sub-exponential.

SAT(Rfff) is sub-exponential.

For every NP-complete and finite language S, SAT(S) is sub-exponential.

For every NP-complete and finite language S, SAT(S)-k is sub-exponential for every k.

There exists an NP-complete and finite language S such that SAT(S) is sub-exponential.

There exists an NP-complete and finite language S such that SAT(S)-k is sub-exponential for all k.

NS R ® N~

Proof. We will prove that[I| = ... ==[7] ==[1]and hence that all statements are equivalent.
= | 2t If the exponential-time hypothesis is false then k-SAT is sub-exponential. But then Rfjg;ﬁ
must also be sub-exponential since it is the easiest NP-complete language. This immediately implies
that SAT(R],”)-2 is sub-exponential.
— [3} We must prove that SAT(R]/;”) is sub-exponential if SAT(R,*)-2 is sub-exponential.
Let ¢ be a SAT(RT/#f) instance with n variables. Due to Theorem [26| there exists a disjunction of

SAT(R?/,7)-l instances such that ¢ = \/{_; ¢;, where [is a constant that does not depend on n.
Next assume that x is a variable in ¢; that occurs in 2 < k£ < [constraints. Since this is not a valid
SAT(R7/,”)-2 instance the degree of 2 must be lowered to 2.

Call two variables in an Rff;#—constraint complementary if one occurs in position ¢ = 1, 2 or 3, and
the other in position ¢ + 3. It is easily verified that variables fulfilling this constraint are indeed each
other’s complement. Let C', . . ., Cj, be an enumeration of the constraints that contains x. Without loss
of generality we may assume that always occur in position 1 and that it has a single complementary
variable 2’ which occurs in position 4 in the same & constraints. For each three constraints,

Cio1= Rffé#(%yiq, Zifljﬂ?/,yﬁ;fl, 21{71)7
Ci = R{7 (%,yi, 2,2y}, 2}), and
Cit1 = R (%, yig1, 2iv1, ¥ Y15 24 1)
we can then lower the degree of 2 and z’ by introducing the constraints C;_,, C}, and C}, ;, which we

define such that

I pFEEE roa /
i—1 = Rl/S (wvyi—lazi—lax 7yi717zi71)7

| __ DRFEEF "o,
C; = R{7 (x, i, zi, 2", y;, 27), and

! — RFFEF (N "o /
i+1_R1/3 ('T y Yit+1, Zi+1, T 7yi+1,zi+1).

Here, 2" and z’” are fresh variables. Since the new variables occur in the same complementary po-
sitions it follows that z = 2’/ = -2’ = —z”, and that C;_1, C;, C; 11 are satisfiable if and only if

i_1,C;, Cj ., are satisfiable. If the procedure is repeated iteratively for all C1, . .., C}, the degree of x
or any newly introduced variable in C7, ..., C}, is at most 2. Let ¢; denote the formula obtained when
the procedure is repeated for all variables occurring k times, 2 < k < [. The total number of variables
needed is then bounded by the linear expression I'n, where I’ is a constant determined by .

Since no variable in ¢, occurs in more than two constraints, we can then use a sub-exponential algo-
rithm for SAT(R}/;”)-2, and answer yes if and only if at least one ¢} is satisfiable. Hence SAT(R; ")
is sub-exponential if SAT(R#S#)Q is sub-exponential.

—> | 4} Assume that R} ;" is sub-exponential. Let S be an arbitrary finite language and ¢ be an
instance of SAT(S). According to the general sparsification result (Theorem[26)), ¢ can be sparsified into
\/f:1 ¢;, where each ¢; is an instance of SAT(Rf/?ﬁ)—l. But then we can simply use a sub-exponential
algorithm for SAT(Rf/’?) and answer yes if and only if at least one of the disjuncts is satisfiable.

4l =[5 Trivial.

10

= [6} Assume that SAT(S) is NP-complete and that SAT(S)-k is sub-exponential for every
k. Let ¢ be a SAT(S) instance. Then according to Theorem there exists a disjunction \/f:1 ¢; of
SAT(S)-I formulas, for some constant /. Since SAT(.S)-k is sub-exponential for every k£ we can use a
sub-exponential algorithm for SAT(S)-I and answer yes if and only if at least one of the disjuncts is
satisfiable.

= [T} Trivial.

— Assume that SAT(.S) is NP-complete and that SAT(S)-£ is sub-exponential for all k.
According to Theorem , any instance of SAT(/%,) can be expressed as a disjunction of SAT(S)-
instances for some constant /. But since SAT(S)-k is sub-exponential for all £ we can simply use a
sub-exponential algorithm for SAT(S)-I and answer yes if and only if at least one of the disjuncts is
satisfiable. O

7 Research directions and open questions

We will now discuss some research directions and pose some open questions. After having shown
that SAT(R#S#) is the easiest NP-complete SAT problem, it is tempting to try to determine bounds
on its time complexity. We are currently working on a branch-and-bound algorithm for this problem
and preliminary results show that this algorithm runs in O(a"™) time where o =~ 1.05. We are fairly
convinced that the time complexity can be significantly lowered by a more careful analysis of the
algorithm.

We have proved that SAT(S) is sub-exponential if and only if SAT(S)-k is sub-exponential for all
k. This result is inconclusive since it does not rule out the possibility that a language is sub-exponential
and NP-complete for some k, but that the sub-exponential property is lost for larger values. Hence,
it would be interesting to (dis)prove that SAT(S) is sub-exponential if and only if there exists some
k such that SAT(S)-k is NP-complete and sub-exponential. This holds for SAT(R]) so it does not
seem impossible that the result holds for all languages. We also remark that bounding the degree of
variables is not the only possible structural restriction: many attempts at establishing structurally based
complexity results are based on the tree-width (or other width parameters) of some graph representation
of the constraints, cf. [7U10]. A particularly interesting example is Marx’s [20] result that connects ETH
with structural restrictions: if ETH holds, then solving the CSP problem for instances whose primal
graph has treewidth k requires n‘2(%/1°8%) time.

A natural continuation of this research is to generalize the methods in Section 3] to other prob-
lems. Generalizing them to constraint satisfaction problems over finite domains appears to be effortless,
and such a generalisation would give us a tool for studying problems such as k-colourability and its
many variations. Lifiting the results to infinite-domain constraints appears to be more difficult, but it
may be worthwhile: Bodirsky and Grohe [1]] have shown that every computational decision problem
is polynomial-time equivalent to such a constraint problem. Hence, this may lead to general methods
for studying the time complexity of computational problems. Another interesting generalisation is to
study problems that are not satisfiability problems, e.g. enumeration problems, counting problems, and
non-monotonic problems such as abduction and circumscription.

As we have already mentioned, a drawback of Theorem [7]is that the structure of the Boolean partial
clone lattice is far from well-understood (and even less well-understood when generalized to larger do-
mains). Hence, it would be interesting to look for lattices that have a granularity somewhere in between
the clone lattice and the partial clone lattice. One plausible candidate is the lattice of frozen partial
clones that were introduced in [23]]. A frozen implementations is a primitive positive implementation
where we are only allowed to existentially quantify over variables that are frozen to a constant (i.e.,
variables that are constant over all solutions). For more details about frozen partial clones (e.g., the Ga-
lois connection between frozen partial clones and frozen partial relational clones), we refer the reader
to [23]]. We remark that the complexity of SAT(S) is determined by the frozen partial clones and that the
lattice of frozen partial clones is indeed coarser than the lattice than the lattice of partial clones as there
are examples of infinite chains of partial clones that collapse to a single frozen partial clone [[11423]].

Acknowledgments

We thank Magnus Wahlstrom for helpful discussions on the topic of this paper.

11

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.
21.

22.

23.

24.

25.

26.

M. Bodirsky and M. Grohe. Non-dichotomies in constraint satisfaction complexity. In Proceedings
of the 35th International Colloquium on Automata, Languages and Programming (ICALP-2008),
pp- 184-196, 2008.

V. Bodnarchuk, L. Kaluzhnin, V. Kotov, and B. Romov. Galois theory for post algebras. I. Cyber-
netics and Systems Analysis, 5(3):1-10, 1969.
V. Bodnarchuk, L. Kaluzhnin, V. Kotov, and B. Romov. Galois theory for post algebras. II.. Cyber-
netics and Systems Analysis, 5(5):1-9, 1969.
E. Bohler, N. Creignou, S. Reith, and H. Vollmer. Playing with boolean blocks, part I: Post’s lattice
with applications to complexity theory. ACM SIGACT-Newsletter, 34, 2003.
A. Bulatov, P. Jeavons, and A. Krokhin. Classifying the complexity of constraints using finite
algebras. SIAM Journal on Computing, 34(3):720-742, 2005.

M. Cygan, H. Dell, D. Lokshtanov, D. Marx, J. Nederlof, Y. Okamoto, R. Paturi, S. Saurabh,
and M. Wahlstrom. On problems as hard as CNFSAT. In Proceedings of the 27th Annual
IEEE Conference on Computational Complexity (CCC-2012). To appear. Preprint available from
http://arxiv.org/abs/1112.2275

V. Dalmau, Ph. Kolaitis, and M. Vardi. Constraint satisfaction, bounded treewidth, and finite-
variable logics. In Proceedings of the 8th International Conference on Principles and Practice of
Constraint Programming (CP-2002), pp. 310-326, 2002.

V. Dalmau and D. Ford. Generalized satisfiability with limited occurrences per variable: A study
through delta-matroid parity. In Proceedings of the 28th International Symposium on Mathematical
Foundations of Computer Science (MFCS-2003), pp. 358-367, 2003.

D. Geiger. Closed systems of functions and predicates. Pacific Journal of Mathematics, pp. 228—
250, 1968.

M. Grohe. The complexity of homomorphism and constraint satisfaction problems seen from the
other side. Journal of the ACM, 54(1), 2007.

L. Haddad. Infinite chains of partial clones containing all selfdual monotonic partial functions.
Multiple-valued Logic and Soft Computing, 18(2):139-152, 2012.

R. Impagliazzo and R. Paturi. On the complexity of k-SAT. Journal of Computer and System
Sciences, 62(2):367-375, 2001.

R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complexity?
Journal of Computer and System Sciences, 63(4):512-530, 2001.

G. Istrate. Looking for a version of Schaefer’s dichotomy theorem when each variable occurs at
most twice. Technical report 652, Computer Science Department, The University of Rochester,
1997.

P. Jeavons. On the algebraic structure of combinatorial problems. Theoretical Computer Science,
200:185-204, 1998.

P. Jonsson, A. Krokhin, and F. Kuivinen. Hard constraint satisfaction problems have hard gaps at
location 1. Theoretical Computer Science, 410(38-40):3856-3874, 2009.

R. Ladner. On the structure of polynomial time reducibility. Journal of the ACM, 22(1):155-171,
1975.

D. Lau. Function Algebras on Finite Sets. Springer, Berlin, 2006.

D. Lokshtanov, D. Marx, and S. Saurabh. Lower bounds based on the exponential time hypothesis.
Bulletin of the EATCS, 105:41-72, 2011.

D. Marx. Can you beat treewidth? Theory of Computing, 6(1):85-112, 2010.

C. Moore and J. Robson. Hard tiling problems with simple tiles. Discrete & Computational
Geometry, 26(4):573-590, 2001.

R. Moser and D. Scheder. A full derandomization of Schoening’s k-SAT algorithm. In Proceedings
of the 43rd ACM Symposium on Theory of Computing (STOC-2011), pp. 245-252, 2011.

G. Nordh and B. Zanuttini. Frozen Boolean partial co-clones. In Proceedings of the 39th Interna-
tional Symposium on Multiple-Valued Logic (ISMVL-2009), pp. 120-125, 2009.

E. Post. The two-valued iterative systems of mathematical logic. Annals of Mathematical Studies,
5:1-122, 1941.

B. Romov. The algebras of partial functions and their invariants. Cybernetics and Systems Analysis,
17(2):157-167, 1981.

R. Santhanam and S. Srinivasan. On the limits of sparsification. In Proceedings of the 39th
International Colloquium on Automata, Languages and Programming (ICALP-2012). To appear.
Preprint available from http://eccc.hpi-web.de/report/2011/131/

12

27

28.

29.

30.

31.

32.

33.

. Th. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th Annual ACM
Symposium on Theory of Computing (STOC-1978), pp. 216-226, 1978.

H. Schnoor and I. Schnoor. New algebraic tools for constraint satisfaction. In N. Creignou, Ph.
Kolaitis, and H. Vollmer, editors, Complexity of Constraints, Schloss Dagstuhl, Germany.

U. Schoning. A low and a high hierarchy within NP. Journal of Computer and System Sciences,
27(1):14-28, 1983.

A. Szendrei. Clones in Universal Algebra, volume 99 of Seminaires de Mathématiques
Supérieures. University of Montreal, 1986.

J. van Rooij, M. van Kooten Niekerk, and H. Bodlaender. Partition into triangles on bounded
degree graphs. In Proceedings of SOFSEM 2011: Theory and Practice of Computer Science, pp.
558-569, 2011.

M. Wahlstrom. Algorithms, Measures and Upper Bounds for Satisfiability and Related Problems.
PhD thesis, Linkdping University, 2007.

G. Woeginger. Exact algorithms for NP-hard problems: A survey. In Combinatorial Optimization
- Eureka, You Shrink!, volume 2570 of Lecture Notes in Computer Science, pages 185-208, 2003.

13
A Additional proofs for section 4]

Proof. (Lemma Let Ryar be not-all-equal-SAT as defined in Section [2| and recall that (Rx,p) =

IN,. By Theorem g it is enough to show that the irreduntant core R of R\"Y can implement R7 e

with a p.p.q implementation. Since the cardinality of Ry, is 6, R" will have arity 26 = 64, consist
of 12 tuples where the columns of the six first tuples are the binary numbers from 0 to 63, and the six
last tuples the complements of the six first. The matrix representation is therefore as follows.

00---11

00---11

00---11

. 00---11

R™=1[00---11
01---01

10---10

Let x1,..., xg4 denote the columns in the matrix and the variables in the relation. We must now

prove that R can implement R},”” with a p.p.q implementation. Note that 1 and z2 only differ in
one row. If we identified x; and x2 we would therefore get a relation where that tuple was removed.

But since R} fff’é only has 6 tuples we want to identify two columns that differ in 6 positions.

I = y L8 =

R R HRERERFRPOOO0OOO
QOO R MFHFERFERFRRFROOO

Therefore identifying x; and xg will remove rows 4, 5, 6 and 10, 11, 12 from R If we then
collapse identical columns the resulting matrix will be:

00001111
00110011
01010101
11110000
11001100
10101010

It can be verified that this relation is nothing else than a rearranged version of R}, ;ff#. Hence, since

S can p.p.q. define R", which in turn can p.p.q. define R}, ;j’é#, it follows that S can also p.p.q. define

At
R2/4 . O

B Additional proofs for section [6]

Proof. (Lemma Assume that SAT(S’) can be solved in time O(c™) but not in O(c"€) for any
0 < € < 1. Since SAT(S) is sub-exponential it can be solved in time O(c") for all € > 0. Assume
that the LV-reduction from SAT(S’) to SAT(S) implies that the resulting instance contains at most C' - n
variables where C'is a constant. This will make SAT(S’) solvable in time O(c(© ™)) for all € > 0 which
contradicts the assumption. O

14

Proof. (Lemma Let ¢ be a SAT(S")-k-instance with n variables. Since each variable can occur in
at most k constraints there cannot be more than n - k constraints in total. Each such constraint is of
the form R(x1,...,x;) where R € S’. By assumption R can then be expressed as a conjunction of
constraints over S U {=} with a set of existentially quantified variables: 3y, ...,y;. A ¥(Y’), where
eachyp e SU{=}andY C {z1,...,2;} U{y1,...,y;}.

Hence the number of extra variables for each constraint depends on the relations from S’. Let ¢
denote the largest amount of variables that is required for implementing a constraint. In the worst case
the total amount of new variables in the reduction is then (n - k)¢, which is linear with respect to n since
k and t are fixed values.

Since the reduction only increases the amount of variables with a linear factor it is indeed an LV-
reduction, which concludes the lemma. O

Proof. (Lemmal[25) Let ¢ be an instance of SAT(S) with n variables, and let R € S be a relation with
arity p. By definition, R = {0,1}? \ E, where F is a set of p-ary tuples over {0, 1} that describes
the excluded tuples in the relation. Since all relations in .S must be closed under complement we can
partition F into E'; and F» where each tuple in E5 is the complement of a tuple in Fy.

Let |E1| = |E3] = N and eyg,...,ey be an enumeration of the elements in F;. Let e; =
(bi1, .-, bip), bij € {0,1}.

If R(x1,...,xp) is a constraint in ¢, then it can be expressed by the SAT(I'{) formula ¢y A... A
1N, where each ¥; = Y{ag(y1,...,Yp), and y; = x; if b; ; is 0, and y; = —z; if b; j is 1. Each such
constraint represents one of the excluded tuples in E'; and one of the excluded tuples in E5, and as such
the formula as a whole is satisfiable if and only if R(z1,...,x)) is satisfiable. The same procedure can
be repeated for all the other relations in S. Moreover, since no extra variables are introduced and the
number of new constraints is bounded by S, the reduction is an LV-reduction.

Let R € S’ be a relation with arity p and ¢ an instance of SAT(S’) with n variables. By definition,
R =1{0,1}? \ E, where E is a set of p-ary tuples over {0, 1} that describes the excluded tuples in the
relation.

Let |[E| = N and eq,...,exy € E be an enumeration of its elements. Let e; = (b;1,...,bip),
bm‘ S {0, 1}.

If R(z1,...,xp) is a constraint in ¢, then it can be expressed by the SAT(/ g, ;) formula ¢; A ... A
¢, where each ¢; = YEar (Y1, .., Yp), and y; = x; if b; ; is 0, and y; = —x; if b; ; is 1. Each constraint
represents exactly one of the excluded tuples in R, and as such the formula as a whole is satisfiable if
and only if R(x1,...,xp) is satisfiable. The same prodecure can be repeated for all the other relations
in S. Moreover, since no extra variables are introduced and the number of new constraints are bounded
by S’, the reduction is an LV-reduction.

O

@,/i\\,@

W/

N
i
O ‘&ﬁ o
Ot

	Complexity of SAT Problems, Clone Theory and the Exponential Time Hypothesis

