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A First Mathematical Model of Brood Sorting by Ants:

Functional Self-Organization Without Swarm-Intelligence.

L. Gaubert, P. Redou, F. Harrouet, J. Tisseau
European Center for Virtual Reality,
LISYC EA3883 UBO/ENIB,
25 rue Claude Chappe, 29280 Plouzané, France

Brood sorting, observed in leptothorax unifasciatus ant colonies, is a major example of social insects ability

to solve problems at the collective level. Two processes characterize this phenomenon: a process of aggregation

of all brood items in a single cluster, coupled with a process of segregation of items in concentric annuli, each

containing items of different type, and ordered such a way that the smallest items are at the center, the largest

at the periphery, and prepupæ dispersed in-between.

In spite of its influence on algorithmics and robotics methods, no formal explanation of the brood sorting

phenomenon was ever given. We present a first mathematical model devoted to brood sorting. Our hypothesis

about ants behaviour are consciously minimal: we assume that random rules their acts, not only when they walk

but also when they choose a brood item that they pick up, or beside which they deposit the one they carry. The

first part of our work deals with the process of aggregation in a single cluster. The main subject of our study is the

time evolution of a mathematical function linked to the notion of cluster. We prove that, whatever the number of

ants acting, this function tends to decrease until it reaches a threshold that we compute: this threshold matches

with the formation of the single cluster. The second part of our work deals with segregation in concentric annuli.

Coupling the concept of virtual size of a brood item to the previous conclusions leads to a realistic explanation

of the concentric structure observed in ant colonies.

Finally, we prove the existence of a feed-back effect, so that our results suggest that brood sorting is a case of

self-organization that does not involve swarm intelligence.

1. Introduction

Social insects are well known for their abil-
ity to build spatial complex structures: cite, for
instance, nest building (Jeanne, 1975; Grassé,
1984) brood sorting (Franks and Sendova-Franks,
1992) or population self-sorting (Sendova-Franks
and Franks, 2004; Backen et al., 2000; Sendova-
Franks and van Lent, 2002). These constructions
are widely considered as resulting from collective
work: indeed, it seems unlikely that each indi-
vidual has a precise idea of the structure under
construction. This ability to solve problems at
the collective level is named collective -or swarm-
intelligence (Camazine et al., 2001); the concept
of stigmergy is also used when an individual re-
acts to modifications of its environment due to
the action of an other individual (Grassé, 1959;
Bonabeau et al., 1999).

Brood sorting, observed in ant colonies, e.g.
lasius niger (Depickére et al., 2004), leptotho-
rax (Franks and Sendova-Franks, 1992), Phei-
dole pallidula or Messor sancta as reported by
Deneubourg et al. (1991), is one of the main
examples of collective intelligence. Such ant
colonies organize their brood in a single clus-
ter. In leptothorax unifasciatus ant colonies, the
brood cluster is made up of concentric annuli,
each containing items of a different type, with the
youngest items (eggs and micro-larvæ) gathered
at the center, and successively larger larvæ ar-
ranged in increasingly wider spaced bands mov-
ing out from the center of the cluster (Franks and
Sendova-Franks, 1992). It is noteworthy that this
annular structure ensures that the most evolved
brood items are fed first (Franks and Sendova-
Franks, 1992).

Brood sorting, as well as other social insect
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buildings, stresses the complexity of relationship
between individual and collective behaviors. For
this reason mainly, it has influenced the devel-
opment of research domains, such as ants algo-
rithms (e.g. Lumer and Faieta, 1994; Kuntz et al.,
1999) or collective minimalist robotics (e.g. Mel-
huish et al., 2001).

Several models have been proposed in or-
der to explain the brood sorting phenomenon:
Deneubourg et al. (1991) presented a first cellular
automata model devoted to cemetery formation
in ant colonies, also available for the process of ag-
gregation in a single cluster in the case of brood
sorting. In this algorithmic model, ants move ran-
domly and are assumed to recognize items of dif-
ferent types and to estimate their density in the
immediate neighborhood. An item is more proba-
ble to be picked up (resp. put down) if the num-
ber of immediate neighbors of the same kind is
small (resp. large).

Martin et al. (2002) revisited this cellular au-
tomata model and showed, by means of simula-
tions, that the task of aggregation was accom-
plished, only a bit slower, without the need to
bias the pick up and deposition probabilities and
with only one agent.

As regards the phenomenon of segregation in
concentric annuli observed in leptothorax ant
colonies, two physical models where used for
an explanation: firstly the differential adhe-
sion model (Steinberg, 1963), involving concen-
tric spheres so as to explain the sorting out of
adhering cells of the same type during morpho-
genesis; secondly, the muesli effect (Barker and
Grimson, 1990) is a model for self-sorting by size
which occurs under the influence of shaking and
gravity.

More recently, Franks and Sendova-Franks
(1992) studied brood sorting in leptothorax ant
colonies, and tested the hypothesis that the sort-
ing is made up of two phases: the clustering of
all brood items together constitutes a first phase,
followed by a second phase in which a mechanism
of differential diffusion leads to the formation of
concentric annuli where items of different type
take their relative positions. The method was ex-
perimental and statistical.

However, to our knowledge, no formal expla-

nation was ever given, neither for aggregation in
a single cluster, nor for segregation in concentric
annuli. This article presents a first mathematical
model devoted to brood sorting.

In the first part, we deal with the phenomenon
of aggregation. Our hypothesis are quite min-
imal: ants are only assumed to recognize brood
items (say larvæ), but ignore each other, and have
no notion of density. Walking randomly, they pick
up a larva which is not carried by another ant
(such a larva is said free), and deposit this larva
beside an other free larva, precisely randomly in
a disk which center is the free larva. We build an
algorithmic model for simulations, and we estab-
lish mathematical results giving properties of a
stochastic process which is the average of squared
distances between larvæ. By means of probabil-
ity theory, we prove that this process decreases -in
average-, until it reaches a threshold that we com-
pute: this threshold matches with the formation
of the single cluster. Once this cluster has been
formed, the process oscillates around the thresh-
old, with a standard deviation that we also com-
pute. Therefore, one can consider that the brood
aggregation is a natural minimization of the av-
erage of squared distances between larvæ. An
important fact is that this result is also available
in the case where a single ant is involved.

-In the second part, we use results of the first
part to deal with brood geometry and give an
explanation of concentric annular sorting in the
case of different types of larvæ. We combine nu-
merical methods of minimization of the average of
squared distances between larvæ and mathemati-
cal proofs, and introduce the notion of virtual size
of a brood item, which takes into account the care
it needs. Therefore, we get a realistic explanation
of the geometric structure observed in leptothorax
ant colonies.

Our results tend to prove that in the case of
brood sorting, the concept of collective -or swarm-
intelligence is out of use. We claim that it is
rather a case of self-organization, or functional
emergence, in the sense that annular sorting is a
natural and involuntary construction which ap-
pears as the most profitable.
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2. Aggregation

This section is devoted to the mechanism un-
derlying the phenomenon of aggregation of items
in a single cluster, observed both in cemetery for-
mation and brood sorting. We first present our
mathematical model, before exposing the results
it involves. Here, brood items are assumed to be
undifferentiated and we name them larvæ.

2.1. Model definition

2.1.1. A preliminary enlightening result

Martin et al. (2002) have proposed, as the main
reason for single cluster formation, the fact that
once a cluster has vanished, it can’t reappear.
Even if this phenomenon is of major importance
in aggregation dynamics, it is true in a single ab-
stract and ideal case, i.e. when larvæ are material
points and when a larva is deposited exactly upon
another. In this case, the concept of cluster is well
defined and we easily prove that only one cluster
will remain: indeed, assume the brood is made
up of N larvæ, distributed in m initial clusters,
with m ≤ N . Let

Xn = (Xn
1 , . . . , Xn

m)

be the random vector containing the number of
larvæ in each cluster at time n (i-th cluster con-
tains Xn

i larvæ). Xn is a Markov chain, the state
space is [0, N ]m and for the sake of concision, we
suppose that the transition matrix is independent
of n. The transition probabilities are assigned to
events of type ”one larva is displaced from cluster
i to cluster j”. Since an empty cluster cannot re-
ceive any larva, there are exactly m absorbing
states (N, 0, . . . , 0), . . . , (0, . . . , 0, N), each state
corresponding to a configuration with only one
cluster. Given that the state space is finite, the
Markov chain must eventually enter one of those
absorbing states (and remain in this state). Thus,
almost surely, a single and persistent cluster is
formed.
However, as soon as larvæ are not material points,
and since a given larva is deposited beside an
other (but not exactly at the same place), clus-
ters may be broken and the model proposed by
Martin et al. (2002) is not relevant anymore.
The mathematical model of the brood-sorting al-
gorithm we have built is inspired by a classical

computer model developed in our laboratory. It
is a Markov chain for which states are positions of
larvæ which constitute the brood (therefore the
state space is neither finite, nor discrete). It’s
a discrete-time stochastic process, since positions
are updated only when one larva is picked-up or
released by one ant.

2.1.2. General framework

Let us describe the state space of our process.
To each larva we assign the vector of its position
in the plane, so that we consider a larva as ”tem-
porarily vanished” when carried by an ant. This
state is indicated by the symbol ⋆. Therefore, if
N is the number of larvæ, the list of all positions
can be written:

V = (V1, . . . , VN ) ∈ E =
(
R̃2

)N

where R̃2 stands for R
2∪{⋆}. For V ∈ E we define

the number of larvæ on the ground, i.e. which are
not carried by an ant:

C(V ) = card{i, Vi 6= ⋆}

2.1.3. Dynamics of brood sorting

Now we define the functions that represent the
possible transitions of the process. The action of
picking the k-th larva, when applied to vector V ,
gives Rk(V ) = W with

Wi = Vi for i 6= k and Wk = ⋆

The action of putting down the k-th larva beside
the l-th one is defined as follows. Our computer
model assumes that even if larvæ are immaterial,
ants release them beside ananother larva. In or-
der to take this fact into account, we consider
a random vector ε, with uniform distribution in
the disk D(0, δ), δ > 0 (note that all this work
could be done with any other radial distribution).
Each time a larva is released beside another one,
the vector ε stands for such a random vector, in-
dependent from all other variables. Applied to a
vector V , this transformation gives εDkl(V ) = W

with:

Wi = Vi for i 6= k and Wk = Vl + ε

So that Wk − Wl = ε.
We must point out that actions Rk and εDkl are
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not exactly defined on E, since Rk can only be
applied to a list V for which Vk 6= ⋆, and εDkl

needs Vk = ⋆ and Vl 6= ⋆ to be applied to V .
Nevertheless, this fact is not problematical and
makes notations more convenient.
Now we define the stochastic process. Time steps
will be denoted by n at exponent.

We state that at time n, all the actions that are
allowed (depending on the state at time n) have
even chances to happen (this is an approximation
of what actually happens, but it is relevant for
the brood surface is finite). Successive actions,
denoted by M1,M2, . . . ,Mn, . . . are applied from
the initial state of the process V 0:

V n = Mn−1(V n−1) = Mn−1 ◦ . . . ◦ M1 ◦ M0(V 0)

2.1.4. The process

Finally, we define the function on E that will
express the dispersion among the brood: this
function gives the average of squared distances
between free larvæ, that is,

S(V ) =

∑
i,j 6=⋆ ‖Vi − Vj‖

2
2

C(V )(C(V ) − 1)

We first have the following result (we recall that
the expression “almost surely” means ”with prob-
ability 1”):

Proposition 2.1 Almost surely, the process

S(V n) reaches a value lower than s
(
2 − 1

N

)
.

This result suffices to prove the phenomenon of
aggregation, since this low value for S(V n) forces
the larvæ to be in a “single cluster” configuration.

Moreover, we want to know if those cluster
configurations are statistical accidents, or if they
are stable. In order to answer this question, we
will study, in the following section, the condi-
tional expectation of the process. This way, we
will show that, in some statistical sense, ”small
clusters” can’t be broken.

2.2. Conditional Behavior

We now compute the conditional expectation
of our process. The number of ants is denoted by
F . The assumption made about the choice of a

larva to be picked up or deposited allows us to
define C(V n) as a Markov chain: put

λk = P(C(V n+1) = k + 1|C(V n) = k)

= 1 − P(C(V n+1) = k − 1|C(V n) = k)

Thus, for the sake of concision, we write

a(k) =
2λk

k(k + 1)
and b(k) = δ2 λk

k + 1

the main result exhibits the conditional dynamics
of our process:

Proposition 2.2

E
[
S

(
V n+1

)∣∣ V n
]

= (1 − a(C(V n))) S(V n) + b(C(V n))
(1)

Observing proposition 2.2, we see that the num-
ber of ants acting in the brood has a narrow
influence on the behavior of S(V n). Thus, we
first study the single ant case, and then we gen-
eralize to the several ants process.

2.3. Single ant process

If we assume that at time 0, all larvæ lie on the
ground, when a single ant acts on the brood, since
operations of picking a larva and putting it down
both happen cyclically, we notice that C(V 2n) =
N and C(V 2n+1) = N−1. Therefore, considering
processes S

(
V 2n

)
and S

(
V 2n+1

)
leads to useful

simplifications. Proposition (2.2) becomes:

Proposition 2.3 If F = 1 process S(V n) satis-
fies (for i = 0, 1):

E
[
S

(
V 2(n+1)+i

)∣∣ V 2n+i
]

=
(
1 − 2

N(N−1)

)
S(V 2n+i) + δ2

N

(2)

Writing θ = N−1
2 δ2, equation (2) gives some in-

tuitions that we will develop in proposition 2.5:
at even times, our process behaves like a sub-
martingale when S(V 2n) ≤ θ, otherwise it be-
haves like a super-martingale (the same is true
for odd times). We conclude that the process is,
in a sense, attracted by the value θ, which we call
pulsation threshold. First, the limit of the expec-
tation of the process, when time step n tends to
infinity, can be computed for even and odd times
and gives the same result:
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Proposition 2.4

lim
n→+∞

E [S(V n)] = θ

Therefore, the brood is expected to concentrate
until it reaches the pulsation threshold and then
to oscillate around this threshold. The limit value
θ is small enough to avoid dispersion of the brood,
so that this result confirms the fact that once a
single cluster configuration has been reached, the
probability to escape from this configuration is
weak. In order to make this result more precise
and to confirm the expected behavior of S(V n),
we give a result similar to some used to prove
up-crossing inequalities:

Proposition 2.5 Let τ1 ≤ τ2 ≤ m two bounded
stopping times (adapted to the natural filtration
associated to the process V n), then:

S(V τ2) ≥
b

a
⇒ E [S(V τ2)|V τ1 ] ≤ S(V τ1)

and

S(V τ2) ≤
b

a
⇒ E [S(V τ2)|V τ1 ] ≥ S(V τ1)

Area
[

b
a
,+∞

[
is what we call a “decreasing area”

for the process, while
[
0, b

a

]
which is an “increas-

ing area”. Therefore, proposition 2.5 confirms in-
tuition: both decreasing an increasing area are
expected to be unstable for S(V n) and to push
the process near the value θ.
Nevertheless, this does not mean that the process
has a limit. First, as the process can be supposed
to be bounded (this doesn’t change significantly
the previous results), we assume that S(V n) is
uniformly integrable, and then deduce that the

first time (and then the following ones) the

process goes through the threshold θ isn’t

bounded. Moreover, here are two results that
deal with asymptotic behavior of S(V n). First,
we show that the process will eventually oscillate
around θ:

Proposition 2.6 Denote by Var(S(V n)) the
process variance at time n. We have:

lim
n→+∞

Var(S(V n)) = νN > 0

Figure 1. Simulation with 1 ant and 25 larvæ

The formula defining νN is too big to be exposed
here, but the crucial point is that νN > 0. In
order to see that this variance isn’t negligible, we
give an approximation of ν for large values of N :

νN ≈ N3

3 s4

So, the process cannot converge to θ, moreover,
using Markov chain theory we can prove the
stronger result:

Proposition 2.7 S(V n) cannot converge in L1

to any random variable.

Finally, summarizing our results, we can conclude
that the process, even if attracted by the value
θ, will oscillate forever near it, as if some kind
of elasticity was operating (see fig. 1). In the
next section, we show how, under supplementary
hypothesis, we extend those results to the general
case.

2.4. Several ants process

As in the single case, and since Markov chain
C(V n) is 2-periodic, we concentrate on the two
sub-processes S(V 2n) and S(V 2n+1). In order to
extend proposition 2.4 to the multiple ants pro-
cess, we need to assume that C(V n) and S(V n)
are independent random variables. Relevance of
this hypothesis comes from the fact that we con-
sider the mean of squared distances, which seems
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Figure 2. Simulation with 8 ants and 25 larvæ

to be, as n grows, independent from the number
of larvæ on the ground. Under this assumption
we get the following result:

Proposition 2.8 There exists two real numbers
θe and θo such that:

lim
n→+∞

E
[
S

(
V 2n

)]
= θe

lim
n→+∞

E
[
S

(
V 2n+1

)]
= θo

Let X be a random variable with binomial distri-
bution B

(
F, 1

2

)
, and Y = X + N − F , then for

large values of N :

θe ≈N θo ≈N

E [a (X + N − F )]

E [b (X + N − F )]

Remark 1 Even if the values θe and θo are easily
computed, the approximation of those thresholds
arises naturally and suffices to highlight similari-
ties with the single ant case.

Again, the threshold can be observed on simula-
tions (see figure 2). The result about the variance
of the processus is analogous to the one obtained
in the single ant case, but the formula is too
heavy, so we won’t write it. Nevertheless, it is
important to notice that the mean square root
has the same order of magnitude that the mean:

as the number of ant is constant, the mean square

root behaves like
√

7
6 Nδ2 when N grows. Regard-

ing conditional dynamics, we can easily bind the
process with a process with F = 1, but the best
way to think of the variability of several ants case
is to notice that, according to the value of C(V n),
the process behaves like a single ant process, so it
will jump between different single ant processes
with respectively N − F,N − F + 1, . . . and N

larvæ. This is why we can guess on simulations a
bigger variance (this is confirmed by the formula
we obtained.)

2.5. Conclusions on aggregation

We have proved that the process S(V n) is not
really affected by the number of ants working
in the brood. Furthermore, considering equation
(2.2) leads us to the conclusions that the dynam-
ics of the brood, and the speed (in terms of logical
time) of cluster formation are similar (however, in
terms of real time, obviously many ants sort the
brood much faster than a single worker; in fact,
this is the only relevant collective effect). Then, it
becomes clear that the nature of the phenomenon
of aggregation remains unchanged as the number
of ants varies. We can go further in the analysis of
our results and extract an important feature: we
have highlighted the fact that, in the phenomenon
of aggregation, collective action of ants is similar
to a stochastic algorithm minimizing the sum of
distances between larvæ. In the next section, we
use this fact in order to deduce results with regard
to the phenomenon of segregation.

3. Segregation

Hartmann (2005), O’Toolenw et al. (2003),
Franks and Sendova-Franks (1992) and others,
studied the following question: why is the brood
arranged in concentric annuli, with eggs at the
center and larger larvæ at the periphery? Wilson
et al. (2004) propose two hypothesis: the first
one was made by analogy with the manner in
which muesli settles in transit. The phenomenon
of smaller clusters falling to the bottom, leaving
the larger ones on top has been studied by Barker
and Grimson (1990). This analogy was made con-
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sidering that instead of gravity, larvæ move as if
they were attracted by a centripetal force that
could cause the same effect on segregation. Under
this hypothesis, annular sorting is a consequence
of differences between sizes of larvæ. Unfortu-
nately, after simulations, Wilson et al. (2004) con-
cluded that using objects of different sizes doesn’t
lead to efficient sorting in the brood. Another hy-
pothesis is that ants deliberately introduce spac-
ing between brood items. The extent of spac-
ing is influenced by the size of the brood item,
detected by the amount of waste gas the brood
item produces. A spacing mechanism has been
explored using real robots (Melhuish et al., 1998)
and produced one central circle with a concentric
ring around the outside. However, Melhuish et al.
(1998) tested this mechanism with only two types
of objects of the same size.
All these hypothesis couldn’t lead to satisfying ex-
periments and simulations; therefore, works have
been achieved in order to improve annular sort-
ing, acting on criteria which make ants decide
whether they set down the larva they carry or
not. This was justified by the fact that mature
larvæ need more care than young ones and be-
ing placed at the periphery, ants approach them
more easily. Implicitly, this explanation involves
the notion of collective aim and assumes that ants
are able to recognize annular configurations which
is not obvious.
In section 2 we proved that there is no need, in our
model, to invoke collective intelligence. In this
section, we adapt the two hypothesis put forth
by Wilson et al. (2004) in the light of our results:
we combine them in order to explain annular sort-
ing as a consequence of local activity.
In this section, we first precise the hypothesis of
attraction that ensures our minimization princi-
ple; subsequently, we present mathematical re-
sults explaining the natural emergence of annular
configurations.

3.1. Mutual attraction

In section 2, we concluded that -according to
our model- the collective action of ants imitates
a stochastic algorithm that minimizes the func-
tion S. Under this hypothesis, we can go further
in the insight of brood’s dynamics. Rather than

a centripetal force, as proposed by Wilson et al.
(2004), our results confirm formally that this dy-
namics results from mutual attractions between
larvæ (Bonabeau et al., 1999). However, in all
models, this dynamics is distorted by stochastic
behaviors, so that it isn’t easily observed. Drop-
ping the stochastic part of the model, we only
have to study the abstract case in which ants col-
lectively reach a minimal state for S. The ques-
tion is thereby: which configurations minimize S?
Let’s formalize this problem: larvæ are assimi-
lated to disks in the plane, that is

• V = (V1, . . . , VN ) are the coordinates of
their centers

• (r1, . . . , rN ) the list of their radius.

We impose the natural constraints:

D(Vi, ri) ∩ D(Vj , rj) = ∅ ∀i, j (3)

where D(Vi, ri) denotes the disk with center Vi

and radius ri. Now we want to bind annular con-
figurations of V to the ones that minimize S(V ).

3.2. Annular configurations minimize S

Numerical simulations clearly illustrate the fact
that minimal configurations for S(V ) match an-
nular ones. Figures 3 and 4 give two examples of
numerical optimizations we obtained.

In order to understand this phenomenon, we
propose a simple explanation supported by math-
ematical results. The idea is that, if one increases
the size of a larva, say V1, it will move away
larvæ stuck on both sides of V1, so that if V1 is
at the periphery of the cluster, its growth won’t
move away many larvæ, and won’t increase S(V )
to a significant degree.
In order to deal rigorously with this idea, we first
define the transformation that captures the in-
crease of a radius. Precisely, as a first approxi-
mation, we consider that increasing radius rk by
λ > 0 leads to push forward, in straight line, all
other larvæ. The function involved can be defined
as:

Hλ,k(V ) =
(
V1 + λ V1−Vk

‖V1−Vk‖ , . . . , Vk,

. . . , VN + λ VN−Vk

‖VN−Vk‖

)
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Figure 3. Numerical minimization of S: case of 1
small larva, 4 intermediate and 7 large larvæ

Obviously, this function does not preserve mini-
malism for S, nevertheless, we want to study the
effect of infinitesimal increase to detect where big
larvæ are expected to be in a minimal configura-
tion. The function H is then sufficient to find this
kind of information. We define the penalization
function:

Definition 3.1 The penalization function of S

by the disk Dk is:

PS,k (V ) = d
dλ

S(Hλ,k(V ))|λ=0

In a minimal configuration, disks with high pe-
nalization values on S, according to their po-
sitions, are expected to be the smallest among
other disks, and conversely. Writing αk

i the angle
between vector Vi − Vk and the absissa axe, we
prove that:

Proposition 3.1 Penalization PS,k by Dk satis-
fies:

PS,k(V ) =

4
∑

i6=k ‖Vi − Vk‖
[
N − 1

2 −
∑

j 6=k cos
(
αk

i − αk
j

)]

Figure 4. Numerical minimization of S: case of 7
small larvæ, 7 intermediate and 7 large

This result confirms our intuition: the contribu-
tion of two disks, say Di and Dj , to the penaliza-
tion by Dk decreases with the distance |αk

i −αk
j |.

Therefore, any peripheral disk will cause a low pe-
nalization of S, we can precise this idea by using
the notion of field of view:

Definition 3.2 The field of view of a disk Dk is
the smaller real αk ∈ [0,Π] such that there exists
a closed angular sector S(Vk, α), with center Vk

and angle αk, satisfying:

Vi ∈ S(Vk, α) ∀i = 1..N

Disk with low FoV are not surrounded by other
disks, they must have a peripheral position (see
examples on Fig. 5 and 6). Finally, the follow-
ing result makes a clear link between FoV and
penalization

Corollary 3.1 The penalization of Dk on S sat-
isfy:

PS,k(V ) ≤ 4

[
N −

1

2
− cos(αk

k)

] ∑

i

‖Vi − Vk‖
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Figure 5. Example of an unspecified configura-
tion: central larva has a high FoV value.

This partial study allows us to forecast that
minimal configurations for S(V ) give the brood
an annular shape.

We stress the point that these conclusions are
specific to the function S. If we assume, for
instance, that the collective action (and the in-
dividual one, as we proved in section 2) of ants
tends to minimize the surface occupied by larvæ,
we do not observe concentric circles, but a dis-
persion of small items among large ones.

Thus, under the hypothesis that the action
of ants minimizes the mutual distances between
larvæ, we conclude that concentric annular sort-
ing naturally arises.
In order to connect these minimal configurations
to the ones observed in nature, we are to use real-
istic larvæ sizes and consider what actually hap-
pens in ant’s nest. For the latter reason, we now
introduce the notion of virtual size of an item.

3.3. Spacing and virtual size

Sendova-Franks et al. (2004) pointed out that
larvæ, in a real brood, are far from each other,

Figure 6. Example of an unspecified configura-
tion: FoV value of peripheral larva is expected
to be low.

what allows ants to move everywhere in the
brood. Moreover, the free space surrounding a
larva generally increases with its size (Franks and
Sendova-Franks, 1992). Following these observa-
tions, we define the virtual size of an item as its
physical size added to the free space allocated
to it by ants. Observations of Sendova-Franks
et al. (2004) ensure that disparities between vir-
tual sizes of items are, compared to their physical
sizes, greatly stressed.
As a consequence, geometric configurations that
minimize S can get through stochastic effects of
the dynamical system. Thus, brood sorting is
much closer to ideal annular configuration.
Furthermore, we are now able to explain the ex-
ceptional case of pupæ: when pupæ and pre-
pupæ are present in the brood, they are located
between the peripheral large larvæ and more cen-
tral larvæ with medium size. Yet, pupæ and pre-
pupæ are much bigger than larvæ that surround
them. Following our analysis, this fact implies
that virtual sizes of pupæ and prepupæ are sim-
ilar to virtual sizes of surrounding larvæ. Conse-
quently, we should observe that less free space is
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allocated to pupæ and prepupæ. Indeed, this fact
has been observed: Franks and Sendova-Franks
(1992) showed that there is a positive correlation
between individual space and metabolic rate and
that pupæ and prepupæ do not require feeding
but only grooming.
Our principle is therefore sufficient to explain the
major causes of annular configuration, consider-
ing virtual sizes of objects rather than their phys-
ical sizes.

4. Conclusion and discussion

We have showed, in a mathematical way, that
brood sorting can be explained without the help
of swarm intelligence. We have also proved that
it is achieved with drastically minimal hypoth-
esis about ants’ activity. Moreover, deducing a
minimization principle, we believe that we have
highlighted two of the major causes of the concen-
tric annuli formation in leptothorax unifasciatus
ant colonies, that is: almost minimization of the
average of squared-distances between free larvæ,
coupled with great differences between virtual
sizes of brood items.
Even if we dropped the fascinating hypothesis
of swarm intelligence, and only for this phe-
nomenon of brood sorting, we can refer to the
not less attractive concept of functional self-
organization. A common self-organization deals
with emergence of structures at a global level
from interactions among lower-level components
(?Nicolis and Prigogine, 1977). This concept is
essential to handle more and more complex sys-
tems in biology. Beyond this subjective notion of
self-organization, that is strongly related to the
observer himself, the notion of functional self-
organization which requires that the observed
pattern is useful to individuals. For example,
in the case of brood sorting, if we only observe
concentric circles, it is really premature to invoke
functional self-organization. We must consider
those configurations as interesting ones, since
we can recognize them as particular, but this is
a subjective point of view: probably any other
configuration, even not particular to our eyes,
should be considered with equal attention. How-
ever, in the light of experiments of Francks and

Sendova-Francks, we see that annular sorting is
a functional phenomenon: on one hand, we have
proved that annular sorting is achieved as soon
as ants provide more space to larvæ that need
more care, what involves only local criterions
(there is no need to consider density of larvæ or
more global notions). On the other hand, pe-
ripheral larvæ are, by a feed-back effect, more
accessible to ants, so that the self-organization
phenomenon has a direct influence on the care
they receive from ants. The conjunction of these
two phenomemons leads us to stand that annular
sorting is a case of functional self-organization.
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