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Abstract. We present a constraint programming formulation for the
elevator trip origin-destination matrix estimation problem, and propose
different approaches to solve the problem. An elevator trip consists of
successive stops in one direction of travel with passengers inside the
elevator. It can be defined as a directed network, where the nodes cor-
respond to the stops on the trip, and the arcs to the possible origins
and destinations of the passengers boarding and alighting at the stops.
The goal is to estimate the count of passengers for the origin-destination
pairs of every clevator trip occurring in a building. These counts arc
used to make passenger traffic forecasts which are needed in elevator
dispatching to make robust dispatching decisions in constantly changing
traffic conditions. The proposed approach can be used to estimate eleva-
tor trip origin-destination matrices within a real time limit, and provides
a flexible method to solve a challenging real life problem.

Keywords: clevator traffic, origin-destination matrix, constraint pro-
gramming

1 Introduction

Modern elevator systems consist of one or more elevator groups. Each group
includes typically four to cight clevators that sharc the same call giving devices
in the clevator lobbies, and that are controlled collectively. The main task of the
control unit is to allocate passenger calls to elevators by minimizing, e.g., pas-
senger waiting time. These elevator dispatching decisions define the routes of the
elevators. Modern group controls plan the elevator routes based on existing calls
[1,2]. At any given moment, however, a passenger may arrive to an elevator lobby
and give a new call which requires the changing of previously defined routes, if
they are no longer optimal. By making forecasts of future passengers, the group
control can avoid such unexpected route changes and improve passenger service
level. The forecasts should be based on the realized passenger journeys between
every pair of floors of a building. The problem is that, especially during heavy
traffic, the passenger journcys cannot be uniquely determined.



The passenger journeys can, however, be estimated by solving the elevator
trip origin-destination matrix (ETODM) estimation problem |3]. An elevator
trip to up or down direction starts when passengers board an empty elevator
and ends to a stop where the elevator becomes empty again. The passengers
who board the elevator register calls that define their destinations, and the OD
pairs of the trip. The boarding and alighting passenger counts can be measured,
e.g., with an electronic load weighing device [4]. If the counts are measured
without errors, they are consistent. The ETODMSs estimated for a given time
interval can be combined into a building OD matrix (BODM) that describes
the passenger traffic between every pair of floors in the building during that
interval. The BODMs can be used to make forecasts about future passengers.
One method to construct BODMs from consistent counts was presented in [5].
Another method that accepts inconsistent counts was presented in |3]. In this
paper, we present a new approach for constructing BODMs from consistent and
inconsistent counts.

An elevator trip is analogous to a single transit route, e.g., a bus line, where
there is only one route connecting any OD pair, and usually counts of the board-
ing and alighting passengers are collected on all stops on the route [6]. There are
many methods for estimating the OD matrix for a single transit route [6-17].
If the observed passenger counts are consistent, then a typical objective is to
minimize a distance measure between the unobserved and a target OD matrix
subject to the flow conservation constraint. This constraint simply requires that
passengers travelling on the route do not disappear or multiply. The target OD
matrix is usually based on historical data or a survey. If the counts are not con-
sistent, then a distance measure between the unobserved and observed counts
should also be minimized.

A single transit route is usually defined in advance and remain as such for
long periods of time. This means that it is possible to collect many counts on the
same route during a given time period, e.g., a rush hour, and usc these counts
to estimate average passenger counts for the OD pairs of the route. An clevator
trip is request driven, which means that there may not be two similar clevator
trips even within a day. Hence, it may be impossible to make many observations
on the same trip. In addition, every elevator trip has its own set of OD pairs,
and boarding and alighting counts. This is why we need to estimate a separate
OD matrix for each elevator trip. Because there cannot be partial passengers,
only integer solutions are acceptable.

We formulate the ETODM estimation problem as a constraint optimization
problem (COP) [18]. In addition to respecting a set of constraints defined by the
formulation, a solution to the problem is optimal with respect to a predefined
distance measure between the unobserved and observed passenger counts. We
selected the least squares (LS) objective function for the following reason. Ex-
perience has shown that usually, in case an error occurs, the measured boarding
or alighting count is usually one passenger less than the true count independent
of the number of passengers who board or alight the elevator. This is because
a typical passenger clevator door width is at most 1200 millimeters, and thus,



usually at most two passengers may board or alight at the same time and be
measured as one. The LS objective does not allow large deviations between the
unobserved and observed counts, and thus, is a reasonable choice.

Our approach is studied with respect to solving time and BODM quality.
Solving time is used since, for implementing an ETODM estimation algorithm in
areal elevator group control application, the algorithm must be fast to reduce the
computational load of the group control computer, and to have the most recent
information about the passenger traffic all the time. BODM quality affects the
robustness of the passenger traffic forecasts. It is measured based on the total
squared deviation, accuracy and precision.

Kuusinen et al. 3] formulated the ETODM estimation problem as a box-
constrained integer least squares (BILS) problem, and presented algorithms for
finding all solutions to the problem. When all solutions are available and one
is selected randomly every time, the BODMs are not affected by the algorithm
used in solving the problem. In the long term, this strategy results to BODMs
that model better all possible realizations of the passenger traffic, and enable
robust passenger traffic forecasting in elevator dispatching. However, from a sta-
tistical point of view, finding all solutions and then selecting one randomly is
equal to finding a single solution randomly. Intuitively, the latter is a faster strat-
cgy. One advantage of the CP approach compared to, e.g., mixed integer lincar
programming, is that an optimization procedure resulting in a single or multiple
deterministic or randomized optimal solutions can be casily implemented. An-
other advantage is that an existing CP algorithm can be directly applied with a
reasonable amount of additional work.

The rest of the paper is organized as follows. Section 2 presents the CP
formulation for the ETODM estimation problem, and Sec. 3 search algorithms for
solving the problem. In Sec. 4, we describe numerical experiments to evaluate the
proposed approach, and in Sec. 5 the experimental results. Section 6 concludes
the paper.

2 Constraint Programming Formulation

Adapting to the notation in [3], we define an clevator trip as a directed network
of nodes N ={1,2,...,n}, and arcs A defined by OD pairs (i,j ), i,j € N. The
node i corresponds to the i-th stop on the elevator trip. Let r; be the node at
which a delivery request to the node i € N, rj < i, is registered. If no delivery
requests are registered to node i, then rj = n 4+ 1. Let b and a; denote the
measured count of passengers who board and alight at node i € N, respectively.
The elevator capacity. expressed as number of passengers, is denoted with C.
We assume that:

. At any time. there are less than C passengers in the elevator

. At least one passenger boards at node rj 2 n + 1 and alights at node i

. Passengers do not alight at a node without a delivery request

. A passenger who boards at node j < ry, i.e., before the delivery request to
node i is registered, does not alight at node i

T A



The fourth assumption means that the possible destinations of a passenger are
defined by the delivery requests that are registered before or at the node where
the passenger boards the elevator, which is usually the case in practice. This
eliminates some OD pairs, and thus, an elevator trip often includes a smaller
number of OD pairs than a single transit route where typically any node i forms
an OD pair with any other node j, i < j.

The set of arcs A is defined as:

A={Gj)eN2|i<j Aizr}. (1)

Let Bi € [0,C] and A; € [0,C] denote the unobserved count of passengers
who board and alight the elevator at node i € N, respectively. Let P; € |0,C],
i =1,...,n- 1, denote the number of passengers in the clevator between the
nodes i and i +1. Finally, let X;; € |0, C] denote the unobserved passenger count
along the arc or OD pair (i,j) € A, i.e., the passenger count from origin i to
destination j, that we want to estimate.

The unobserved boarding and alighting counts must be consistent:

Bi= A . (2)
ieN jeN

At the first node, the unobserved boarding count must be at least one and the
alighting count zero, and at the last node the reverse must hold:

A =0, By21, Ayz1, B,=0. (3)

At every node between the first and the last node, at least one passenger either
boards or alights:

Ai+Biz1 ifl<i<n.

This constraint is more accurately stated by considering the delivery requests.
Passengers cannot alight at a node to which there is no delivery request, and
thus, at least one passenger must board:

ri=n+1e A =0AB;jz2z1 ifl<is=n. (4)
At least one passenger boards at node r;i = hn + 1 and alights at node I:
nen+le X, ;21 ifl<isn. (5)

The unobserved OD passenger counts are related to the unobserved boarding
and alighting counts through the so called flow conservation constraints :

Xij =B, VieN, (6)
TN )eA
Xy =A; VYjeN. (7)
i yeA



The number of passengers in the elevator between nodes i and i + 1, Pj, is
computed as follows:

P,=Bi, Poio1=A,, Pi=P-1+B; - A ifl<i<n-1. (8)

The elevator capacity is always respected because of the domain of the variables.

The problem of finding the passenger counts for the arcs or OD pairs of an
clevator trip such that the unobserved boarding and alighting counts are as close
as possible to the measured counts can be seen as a network flow problem. In such
a problem, the objective function is typically linear. A linear objective function
may, however, result to a solution that produces small deviations between most
of the unobserved and observed counts, but accepts large deviations for some
counts. This is not good since, as explained before, the observed boarding or
alighting count is usually one passenger less than the true count. Hence, we
consider the LS deviation between the unobserved and observed counts as the
objective function:

(Ai-a)?+(Bi-h)* . (9)

ieN

The goal is to minimize (9) with respect to the constraints (2)-(5) and (6)-(8).
Note that the LS objective value in (9) is zero only if the problem is consistent.
This is the case if:

b= a, h= 1 VieN ,
ieN _JeN Jlrp=ii<j=n

g = (b - 1) VjeN

iji<i<]j Kiry =i,i<k<n ks

Similar consistency conditions were defined in [3].

3 Search Algorithms

We consider a complete standard backtracking search which consists of a depth-
first traversal of the search tree. At a node of the search tree, an uninstantiated
variable is sclected and the node is extended so that the resulting new branches
out of the node represent alternative choices that may have to be examined in
order to find a solution. The branching strategy determines the next variable to
be instantiated, and the order in which the values from its domain are selected.

During a depth-first search, constraint propagation is used to remove incon-
sistencies. This can make the branching strategy more efficient. Such as the stan-
dard depth-first branch-and-bound algorithm for solving a discrete optimization
problem, our algorithm performs a backtracking search and maintains a lower
bound, |b, and an upper bound, ub, on the objective value. When ub =< |b, the
sub tree can be pruned because it cannot contain a better solution. The efficiency
of the algorithm depends strongly on its pruning capacity, which relies on the
quality of the bounds.



3.1 Branching Strategy

A branching strategy determines the next variable to be instantiated (variable
selection), and the next value the variable is assigned from its current domain
(value selection). The branching strategy strongly impacts the performance of
the scarch by improving the detection of solutions (or failures for unsatisfiable
problems) when building the scarch tree.

Here we consider the following variable selection strategics: dom sclects the
variable whose domain is minimal; wdeg selects the variable whose weighted
degree is maximal; lex selects a variable according to lexicographic ordering;
dom/ wdeg selects the variable that minimizes the quotient of its domain size over
its weighted degree; random selects a variable randomly. The weighted degree of
a variable is the sum of the weights of the constraints in the current search state
associated with the variable. The weight of a constraint is incremented by one
each time it causes a failure during the search. We consider only two classical
value selection strategies: minVal selects the smallest value randVal selects a
value randomly. There is also a third classical value selection strategy, maxVal,
which sclects the largest value. However, our numerical experiments indicated
that it is less efficient than minVal, and thus, is not considered in this study.

3.2 Optimization Procedure and Candidate Algorithms

Most CP tools use by default the top-down procedure. It starts with an upper
bound ub which is updated whenever a better solution is found. Here, the prob-
lem is solved using the bottom-up procedure. The procedure starts with a lower
bound Ib as a target upper bound which is incremented by one unit until the
problem becomes feasible. The first solution found by the bottom-up procedure
is proven optimal. If (by luck) the first solution found by the top-down procedure
is optimal, the optimality has to be still proven. Most bottom-up variants differ
by the way infeasibilities are resolved.

Let opt denote the optimal objective value. The bottom-up procedure solves
opt - Ib unsatisfiable problems and only one satisfiable problem before finding an
optimal solution. Hence, the number of problems that has to be solved is lincar
with respect to Ib. Most bottom-up variants reduce from a linear to a logarithmic
number of iterations in the worst-case. The bottom-up procedure is efficient if
the difference between the lower bound and the optimum is tight, whereas other
procedures, such as the top-down. are useful if the difference is large, or when
the goal is to find good solutions quickly. In our case, the boarding and alighting
counts are often measured without errors, and if an error is made, it rarely
exceeds one unit. This means that the optimal objective value is often equal or
close to zero, and thus, the bottom-up procedure with the initial lower bound
equal to zero, Ib= 0, is a good candidate.

The candidate algorithms (CA) are defined in Tab. 1. Each column describes
the alternatives for a component of the backtrack search. A CA is obtained by
combining one variable selection and one value selection strategy. For example,
DM uses dom for variable selection and minVal for value selection.



Table 1. Candidate algorithms

Variable selection | Value selection

D — dom

W dom/wdeg M minVal
L lex R randval
R random

4 Numerical Experiments

4.1 Simulation Process

We simulated lunch hour traffic in a 25 floors high office building using the
Building Traffic Simulator (BTS) [19]. Lunch hour is one of the most difficult
traffic situations occurring in a building during a day. The simulation time was 15
minutes which is a typical interval length for passenger traffic statistics in a real
elevator group control application [20]. In a simulation, a specific traffic pattern
such as lunch hour traffic is defined by traffic components which are incoming,
outgoing and inter-floor traffic. Incoming component consists of passengers who
travel from entrance floors to upper floors, outgoing of passengers who travel
from upper floors to entrance floors, and inter-floor of passengers who travel
between upper floors. In a typical lunch hour traffic pattern, which was used
also in this study, the proportion of incoming, outgoing and inter-floor traffic is
40%, 40% and 20%, respectively.

We used a group of cight clevators with the capacity of 21 passengers, and
adjusted the traffic intensity so that the handling capacity (HC) of the elevator
group was insufficient. HC is the number of passengers the elevator group can
transport within a five minutes period during up-peak [21]. Up-peak consists
only of incoming passengers. When the HC is insufficient, the elevators become
often fully loaded, and thus, make many stops during one up or down trip. This
increases the number of difficult problem instances. Because, in practice, elevator
groups are designed to have enough HC, the problems occurring in reality are
likely to be less complex.

Every simulation produces a log file that contains all the data related to the
simulation, e.g., all passengers and their origin and destination floors. From this
data, we can construct the source BODM. An element in the source BODM
corresponds the true number of passengers from an origin to a destination. The
data in the log file can also be used to construct the ETODM estimation problem
instances. By solving all the ETODM estimation problem instances, and adding
up the estimation results, we obtain the estimated BODM.

To obtain several sets of test data., we repeated the simulation 10 times
with different seeds. Because a simulation does not involve measuring errors,
the resulting 10 sets of problem instances contain only consistent instances. In
practice, however, a measured boarding or alighting count may be typically one
passenger less than the true count, and the frequency of the errors depends on



the accuracy of the measuring device. Experience has shown that a reasonable
assumption about the measurement accuracy is 90%. Consequently, we created
inconsistent problem instances from the consistent problem instances by remov-
ing one passenger from each boarding and alighting count with 10% probability.
This resulted in 10 new sets of problem instances containing in total 165 incon-
sistent instances. To make it clear, from now on we call all of the instances in
the 10 new sets inconsistent even if some of them are consistent.

4.2 Performance M easures

The quality of the estimated BODM is evaluated based on the total squared
deviation, accuracy and precision. Let X itj”"e and X ﬁSt denote the true and the
estimated passenger count from origin i to destination j in the source and the
estimated BODM, respectively, and let N denote the total number of OD pairs
in the building. The total LS deviation is the sum of the OD passenger count
deviations between the estimated and the source BODM:

total squared deviation = (X5 = X[e)? . (10)
ieN jeN

Hence, the total squared deviation measures the proximity of the estimated
BODM to the source BODM with respect to the OD passenger counts.
Accuracy and precision are computed as follows. First, we determine the
number of true positives, false positives, and true negatives. An OD pair is
classified as true positive, if)(iejSt > 0 and X Y€ > 0, as false positive il‘)(i‘cjSt >0
and Xitjrue 0, and as true negative if Xieis‘ Xitjrue 0. Then, accuracy is
defined as:
number of true positives 4+ number of true negatives
accuracy = . (11)

N

and precision as:

.. number of true positives
precision = — — . (12)
number of true positives + number of false positives

Note that if an OD pair is classified as false positive, then the OD pair is included
in at least onc of the ETODM estimation problem instances and assigned a
positive OD passenger count even if in the simulation no passengers travelled
from the origin to the destination of the OD pair. Hence, the number of false
positives is related to the magnitude of error caused by the formulation of the
ETODM estimation problem. In other words, accuracy is the degree to which
the problem instances obtained using the formulation, and thus, the estimated
BODM, contain the true OD pairs described by the source BODM, and precision
the variability of the estimation results due to the formulation.

The solving time of each problem instance should be as short as possible
to have all the time the most recent information about the passenger traffic.
In addition, the computer used in a real application performs simultancously



many tasks, and the more tasks, the less time for solving an ETODM estimation
problem instance. A reasonable time limit is 0.5 seconds especially during heavy
traffic when the computation load is higher. This criterion was used also in |3,
5]. To compare the quality of the BODMS obtained with different CAs, the final
solution to an EKTODM estimation problem instance is selected as the average
of the optimal solutions to the instance.

5 Experimental Results

All the experiments were conducted on a Linux machine with 32 GB of RAM
and a Intel Core i7 processor (6 cores — 3.20GHz). The implementation is based
on choco (http://choco.mines-nantes.fr). The industrial computer used in a real
application is typically less cfficient than the one used in this study. However,
the solving times reported here are also longer than they would be in a real
application since the choco solver is a general CP solver and therefore performs
some tasks that are not necessary for the ETODM estimation problem. A solver
designed only for this problem would be more efficient. Hence, the solving times
reported here are somewhat comparable to those that would be obtained in
reality.

5.1 Number of Optimal Solutions

Table 2 shows the distribution of the number of optimal solutions among the 558
consistent and inconsistent problem instances. For example, the fourth column
indicates that there are 35 instances among the consistent instances, and 75
instances among the inconsistent instances that have between 10 and 100 optimal
solutions. The last column gives the total number of optimal solutions. It can
be concluded that the scarch space is significantly larger for the inconsistent
instances, i.e., they are harder to solve.

Table 2. Distribution of the number of optimal solutions

#solutions | =1 =10 =10 =10° = 10* > 10* | Total

Jonsistent, 405 84 3 19 13 2 136280
Inconsistent | 320 107 T 27 17 12 34063787

5
5

Table 3 gives the distribution of the LS objective value at the optimal so-
lutions to the inconsistent problem instances. The distribution shows that the
lower bound of an inconsistent instance rarely exceeds one, which confirms that
the bottom-up procedure with the initial lower bound equal to zero, Ib= 0, is a
good choice for optimization.
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Table 3. Distribution of the LS objective value for the inconsistent instances

Objective | 0 1 2 3
Frequency | 393 136 27 2

5.2 Impact of Finding Multiple Solutions

In this seetion, we consider the deterministie algorithms DM, WM and 1M, and the
first 10%, K=0,1..., 3, *, optimal solutions. The star sign refers to all optimal
solutions. The goal is to study how the number of optimal solutions affect solving
time and quality, and the differences between the deterministic CAs with respect
to these performance measures.

Solving Time. Table 4 gives the solving time of each CA for the 558 consistent
and inconsistent problem instances. Consistent instances are easy to solve. the
total solving time being less than 74 seconds considering all CAs. The fastest
CA is DM Inconsistent instances are harder to solve. The slowest CA is 1M, and
M clearly outperforms WM when all optimal solutions has to be found, although
WM is slightly faster than DM for K= 0, 1, ..., 3. An interesting result is that most
of the time for finding all solutions to the inconsistent instances is taken only by
one instance. The reason is that it has about 75 times more optimal solutions
than the second hardest inconsistent instance, and the more solutions the more
time it takes to find them all.

Table 4. Solving time of cach CA in seconds

Consistent, Inconsistent
K DM WM LM DM WM LM
0 | 66.1 68.2 66.7 | 79.0 78.1 144.5

1|66.6 688 67.2|81.7 80.5 146.6
2168.0 70.1 68.7]|86.2 85.0 152.3
31693 714 699 91.3 90.0 158.2
= | 71.3 735 T1.9|1122.5 3392.0 3919.8

Figure 1 shows the frequency of solving time per instance for the inconsistent
instances. Solving times for consistent instances are not shown since the differ-
ences between the CAs were negligible. Note that the bar heights are not equal
since the number of instances for which the CAs found the optimal solutions in
less than 0.25 seconds is not shown. The number of inconsistent instances for
which the CAs cannot find the first 10%, K = 1, 2, optimal solutions within 0.5
seconds is small. For the first 10%, K = 3, #, optimal solutions DM and WM are
faster than IM, and the number of instances for which the latter two cannot find
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#natances

Fig. 1. Frequency of solving time for inconsistent instances

all optimal solutions within 0.5 seconds is only 19 which is about 3.4% of all the
558 instances. This result is comparable to that obtained in |3].

Total Squared Deviation. Figure 2 shows the total squared deviation of
each deterministic CA for consistent (2(a)) and inconsistent (2(b)) instances as
histograms. The total squared deviation for each BODM is computed based on
(10), and the results shown in the figure are obtained by summing up these
deviations. The CAs are grouped by the parameter K K = 0,1,...,3, and the
horizontal line is the total squared deviation of the CAs for all optimal solutions,
K = %, which is the same for all CAs.
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Fig. 2. Total squared deviation

According to the figure, inconsistent instances lead to a greater deviation.
The reason is that inconsistent instances are created by removing passengers
from the observed counts, and thus, the total count of passengers obtained by
adding up the OD passenger counts of an optimal solution is always less than
the true total count of passengers. In addition, finding multiple optimal solutions
reduces the deviation. This is because the final solution to a problem instance is
computed as the average of the optimal solutions to the instance. This implies
that the more optimal solutions, the more small errors between the true and the
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estimated OD passenger counts, and the smaller the total squared deviation. A
single optimal solution usually results to a few large errors which will make the
total squared deviation large. LM results always to the greatest deviation, and
DM and WM are almost equivalent.

Accuracy and Precision. Figure 3 shows the accuracy and precision for each
consistent (3(a)) and inconsistent (3(b)) BODM and for each CA as a scatter
plot. Each point represents one BODM computed by a CA for K=0,1,...,3, *
and X coordinate is its accuracy and y coordinate its precision. It seems that the
more optimal solutions, the less accuracy and precision. There are two reasons
for this result. First, the problem formulation of any instance may contain and
OD pair for which the OD passenger count in the source BODM is zero, and
thus, should not be included in any of the formulations. Second, since the final
solution to an instance is selected as the average of all the optimal solutions
to the instance, the more optimal solutions, the more likely that an OD pair,
for which the OD passenger count in the source BODM is zcro, receives a non
zero value and is classified as false positive. This increases the number of false
positives and decreases the number of true negatives, and thus, reduces accuracy
and precision. Furthermore, inconsistent instances reduce accuracy and precision
for the same reason they lead to a greater total squared deviation.

a R '..".4',"? ?!_ S
w e = ‘

.?

|
- - 20|
B 3 *5! A
E.| )
A 5 ) | Ay ®
b e e | VAN
v | F
. 50| Y «
- vk I v ¥
3 3 a1 ] a3 !‘J EL £ 5 ==E.é B3 BE BB a0 5 34 £ g
Accurary Accumary
1. 1 w0 A& 1000 =¥ 18 10 100 A 1000 = v
(a) Clonsistent (b) Inconsistent

Fig. 3. Accuracy and precision

5.3 Impact of Randomization

Previous results show that DM is better than WM and LM It is also easier to
implement in practice. Hence, we use DM to study the effect of randomiza-
tion. From the randomized algorithms, we consider only TR and RR, and 10F,
K=0,1,...,3, optimal solutions. The difference between the deterministic and
randomized algorithms is that the deterministic algorithms always find the first
10, K =0,1,...,3, optimal solutions whereas the randomized algorithms find
10¥ randomized solutions among all optimal solutions.
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Randomized search algorithms are usually less efficient than deterministic
ones for solution enumeration, and the effect of the value selection is also re-
duced. Moreover, a randomized search typically gives a different set of optimal
solutions per problem instance when it is solved several times. Hence, to study
the robustness of the randomized algorithms, we ran DR 50 times for consistent
and inconsistent instances, and RR 50 times for consistent instances, but only
five times for inconsistent instances because of much longer solving times. One
run consists of solving all the 558 instances corresponding to the 10 BODMs
once. Henee, cach run produces 10 estimated BODMs.

Solving Time. Table 5 gives the average solving time (avg) among all runs,
and their standard deviation (std). The latter is shown only for the inconsistent
instances since for the consistent instances the standard deviation was always
below 0.05 seconds. For consistent instances, randomization does not consider-
ably increase the solving time. For inconsistent instances, DR produces a small
increase, but RR is far too slow. Again, it takes a long time to solve the hardest
inconsistent instance, but also many other inconsistent instances become prob-
lematic. RR has also a greater deviation, but this is partly because the number
of runs is only five.

Table 5. Solving time of cach CA in seconds

Consistent Inconsistent
DM DR RR DM DR RR
avg avg avg std avg std

66.1 66.7 66.7 | 79.0 82.6 3.7 4454.4 256.0
66.6 67.4 674|817 85.1 3.7 4436.0 254.6
68.0 68.8 68.9 |86.2 88.8 3.8 4604.8 160.6
69.3 70.4 7T0.6 | 91.3 928 3.8 4440.6 219.5

(LR == -

According to Fig. 4, IR can find the optimal solutions in at most 0.5 scconds
for about 99.5% of the inconsistent problem instances independent of the value
of K. This is even a better result than for the fastest deterministic CA DM, which
can find the first 10° optimal solutions in at most 0.5 seconds for about 99.1%
of the inconsistent problem instances. RR gives comparable results for K= 0,1,
but for K = 2,3 it becomes much slower. It can find 10° optimal solutions in at
most 0.5 seconds for about 94% of the inconsistent problem instances.

Total Squared Deviation. Table 6 gives results on the total squared deviation
of each CA. The total squared deviation of one run is the sum of the total squared
deviations between the 10 estimated and source BODMs. The average (avg) and
standard deviation (std) are computed over all runs. Also, the maximum (max)
and the minimum (min) of all runs arc shown.
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Fig. 4. Frequency of solving time for inconsistent instances

For consistent instances, both DR and RR result on average to a smaller total
squared deviation than DM for all values of K In the worst case (max), DR is
better than RR, and in the best case (min) RR is better than DR except when
only one optimal solution has to be found. The standard deviations of DR are
slightly smaller than those of RR. For inconsistent instances, DR is on average
better than DM and RR, the latter two being about equivalent. In the best case,
DR is better than RR, which is true also for the worst case except when only one
optimal solution has to be found. For the randomized CAs, it can be concluded
that the more optimal solutions, the more stability, i.e., less variation between
the estimated BODMS, and the more quality, i.e., smaller differences hetween
the estimated and source BODMs.

Table 6. Total squared deviation

DM DR RR
K avg std min max avg std min max
E 0| 1182.0| 978.1 159.0 648.0 1316.0| 979.0 163.2 674.0 1386.0
&B|1| 6815| 613.3 663 4884 T757.1| 6292 915 4328 8383
22| 530.5| 512.6 33.1 4474 587.9| 516.7 47.2 4134 627.2
S| 3| 4845| 4778 140 4535 499.3| 4758 198 4366 5256
E 0| 1255.0 | 1179.0 164.5 B867.0 1575.0 | 1253.8 199.8 1035.0 1527.0
H| 1| 843.7| 7621 799 607.8 962.0| 848.0 1279 709.1 1025.6
g 2| 676.9| 6534 395 578.1 T745.5| 6843 655 6026 7711
g|3| 6165 599.2 185 5611 6389 6159 39.1 573.0 6704

Accuracy and Precision. Based on the previous results. DR is better than RR
with respect to all performance measures, and thus, we consider here only DR
The behaviour of DR with respect to accuracy and precision is similar to the
deterministic CAs (see Fig. 3). Figure 5 compares the accuracy and precision
of DR and IM for K = 0,1,...,3. The X coordinate is the ratio of the average
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accuracy of DR to the accuracy of DM, and Yy coordinate is the same ratio for
the precision. All points located above and to the right of the point (1,1) are
BODMs for which the accuracy and precision are improved by the use ol DR
On the contrary, all points located below and to the left of the point (1,1) are
BODMS for which the accuracy and precision are degraded by the use of DR
All points are located around the diagonal as the variation of the accuracy is
roughly proportional to the variation of the precision. It can be concluded that
in general DR reduces accuracy and precision.

Preceion
>
L

Fig. 5. Comparison of DR and DM in terms of accuracy and precision

6 Conclusion

In this paper, we presented a constraint programming (CP) formulation for a real
life problem where the goal is to estimate the origin-destination (OD) passenger
counts for the OD pairs of an clevator trip, i.c., the clevator trip OD matrix
(ETODM). The ETODMs estimated for a given time interval can be combined
into a building OD matrix (BODM) that describes the passenger traffic between
every pair of floors in the building during that interval. These matrices form
traffic statistics that can be used to make forecasts about future passengers. The
forecasts are needed in elevator dispatching to avoid bad dispatching decisions
with respect to future passengers.

We compared three deterministic and two randomized CP algorithms in find-
ing a single. a predefined number or all optimal solutions to the ETODM esti-
mation problem. The comparison was based on solving time and BODM quality
which affects the reliability of the passenger traffic forecasts. The results suggest
that randomization and multiple solutions is a good compromise between solving
time, quality and robustness. In addition, the best randomized algorithms fulfill
real time elevator group control requirements for solving ETODM estimation
problems.
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