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Abstract. Social network applications are inherently interactive, cre-
ating a requirement for processing user requests fast. To enable fast re-
sponses to user requests, social network applications typically rely on
large banks of cache servers to hold and serve most of their content from
the cache. In this work, we present DynaSoRe: a memory cache system
for social network applications that optimizes data locality while placing
user views across the system. DynaSoRe storage servers monitor access
traffic and bring data frequently accessed together closer in the system
to reduce the processing load across cache servers and network devices.
Our simulation results considering realistic data center topologies show
that DynaSoRe is able to adapt to traffic changes, increase data locality,
and balance the load across the system. The traffic handled by the top
tier of the network connecting servers drops by 94% compared to a static
assignment of views to cache servers while requiring only 30% additional
memory capacity compared to the whole volume of cached data.

1 Introduction

Social networking is prevalent in current Web applications. Facebook, Twitter,
Flickr and Github are successful examples of social networking services that
allow users to establish connections with other users and share content, such
as status updates (Facebook), micro-blogs (Twitter), pictures (Flickr) and code
(Github). Since the type of content produced across application might differ,
we use in this work the term event to denote any content produced by a user
of a social networking application. For this work, the format of events is not
important and we consider each event as an application-specific array of bytes.

A common application of social networking consists of returning the latest
events produced by the connections of a user in response to a read request.
Given the online and interactive nature of such an application, it is critical to
respond to user requests fast. Therefore, systems typically use an in-memory
store to maintain events and serve requests to avoid accessing a persistent, often
slower backend store. Events can be stored in the in-memory store in the form
of materialized views. A view can be producer-pivoted and store the events
produced by a given user, or it can be consumer-pivoted and store the events
to be consumed by a given user (e.g., the latest events produced by a user’s
connections) [16]. We only consider producer-pivoted views in this work.



When designing systems to serve online social applications, scalability and
elasticity are critical properties to cope with a growing user population and an
increasing demand of existing users. For example, Facebook has over 1 billion
registered and active users. Serving such a large population requires a careful
planning for provisioning and analysis of resource utilization. In particular, load
imbalance and hotspots in the system may lead to severe performance degrada-
tion and a sharp drop of user satisfaction. To avoid load imbalances and hotspots,
one viable design choice is to equip the system with a mechanism that enables
it to dynamically adapt to changes of the workload.

A common way to achieve load balancing is to randomly place the views of
users across the servers of a system. This however incurs high inter-server traffic
to serve read requests since the views in a user’s social network have to be read
from a large amount of servers. SPAR is a seminal work that replicates all the
views in a user’s social network on the same server to implement highly efficient
read operations [15]. Yet, this results in expensive write operations to update the
large amount of replicated views. Moreover, SPAR assumes no bounds on the
degree of replication for any given view, which is not practical since the memory
capacity of each individual server is limited. Consequently, it is very important
to make efficient utilization of resources.

In this work, we present DynaSoRe (Dynamic Social stoRe), an efficient in-
memory store for online social networking applications that dynamically adapts
to changes of the workload to keep the network traffic across the system low. We
assume that a deployment of DynaSoRe comprises a large number of servers, tens
to hundreds, spanning multiple racks in a data center. DynaSoRe servers cre-
ate replicas of views to increase data locality and reduce communication across
different parts of data centers. We assume a realistic tree structure for the net-
working substrate connecting the servers and aim to reduce traffic at network
devices higher up in the network tree.

Our simulation results show that with 30% additional memory (to replicate
the views), DynaSoRe reduces the traffic going through the top switch by 94%
compared to a random assignment of views and by 90% compared to SPAR.
With 100% additional memory, DynaSoRe only incurs 2% of the total traffic
with the random assignment, significantly outperforming SPAR which incurs
35% of the traffic with the random assignment.

Contributions. In this paper, we make three main contributions:

– We propose DynaSoRe, an efficient in-memory store for online social appli-
cations, which dynamically adapts to changes of the workload to keep the
network traffic across the system low.

– We provide simulation results showing that DynaSoRe outperforms our base-
lines, random assignment and SPAR, and that it is able to reduce the amount
of network traffic across the system.

– We show that DynaSoRe is especially efficient compared to our baselines
when assuming a memory budget, which is an important practical goal due
to cost of rack space in modern data centers.



Roadmap. The remainder of this paper is structured as follows. We specify in
Section 2 the model and requirements of an efficient in-memory store. We present
the design of DynaSoRe in Section 3 and evaluate it in Section 4. We discuss
related work in Section 5 and present our conclusions in Section 6.

2 Problem Statement

2.1 System model

DynaSoRe is a scalable and efficient distributed in-memory store for online social
applications that enable users to produce and consume events. We assume that
the social network is given and that it changes over time. The events users
produce are organized into views, and the views are producer-pivoted (contain
the events produced by a single user). A view is a list of events, possibly ordered
by timestamps. DynaSoRe supports read and write operations. A write request
from user u of an event e writes e to the view of u. A read request from user u
reads the views of all connections in the social network of u. This closely follows
the Twitter API. According to Twitter, status feeds represent by far the majority
of the queries received1. Consequently, the benefits of DynaSoRe (that are only
measured with the read/write operations) are significant even in a complete
social application that also supports other kinds of operations.

DynaSoRe spans multiple servers, as the views of all users cannot fit into the
memory of a single server. Distributing the workload across servers is critical for
scalability. Our applications reside in data centers. Servers inside a data center
are typically organized in a three-level tree of switches, which has a core tier at
the root of the tree, an intermediate tier, and an edge tier at the leaves of the tree
[1,7,8] as shown in Figure 1. The core tier consists of the top-level switch (ST),
which connects multiple intermediate switches. The intermediate tier consists of
intermediate switches (SI) and each of them connects a subset of racks. The edge
tier consists of racks and each rack is formed by of a set of servers connected by a
rack switch (SR). The network devices, i.e., switches at different levels of the tree
architecture, only forward network traffic. The views of users are maintained in
the servers (S), connected directly to rack switches. The servers have a bounded
memory capacity and we established its capacity by the number of views it can
host. We use b to denote the number of bytes we use for a view. Brokers (B)
are also servers connecting directly to rack switches and they are in charge of
reading and writing views on the different servers of the data center.

Note that DynaSoRe could be deployed on several data centers by adding a
virtual switch representing communications between data centers, which would
then be minimized by DynaSoRe . In practice, Web companies such as Facebook
do not have applications deployed across data centers. Instead, they replicate the
content of each data center through a master/slave mechanism[13]. Thus in this
work we focus on the case of a single data center.

In the system, events are organized in views and stored as key-value pairs.
Each key is a user id and the value is the user view comprising events the

1 http://www.infoq.com/presentations/Twitter-Timeline-Scalability
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Fig. 1. System architecture of DynaSoRe.

user has produced. This memory store is back-ended by a persistent store that
ensures data availability in the case of server crashes or graceful shutdowns for
maintenance purposes. We focus in this work on the design of the memory store
and a detailed discussion of the design of the persistent store is out of scope.

2.2 Requirements

To provide scalable and efficient write and read operations, DynaSoRe provides
the following properties: locality, dynamic replication, and durability.

Locality. A user can efficiently read or write to a view if the network distance
between the server executing the operation and the server storing the view is
short. As one of our goals is to reduce the overall network traffic, we define the
network distance between two servers to be the number of network devices (e.g.,
switches) in the network path connecting them. DynaSoRe ideally ensures that
all the views related to a user (i.e., her own view and the views of her social
connections) are placed close to each other according to network distance so that
all requests can be executed efficiently. This requires flexibility with respect to
selecting the server that executes the requests and the servers storing the views.

Dynamic replication. Online social networks are highly dynamic. The structure
of the social network evolves as users add and remove social connections. User
traffic can be irregular, with different daily usage patterns and flash events gener-
ating a spike of activity. Adapting to the behavior of users requires a mechanism
to dynamically react to such changes and adjust the storage policy of the views
impacted, for both number and placement of replicas. One goal for DynaSoRe
is to trace user activity to enable an efficient utilization of its memory budget
through accurate choices for the number and placement of replicas. Such a repli-
cation policy needs also to consider load balancing and to satisfy the capacity
constraints of each server.

Durability and crash tolerance. We assume that servers can crash. Missing up-
dates because of crashes, however, is highly undesirable, so we guarantee that
updates to the system are durable. To do this, we rely upon a persistent store
that works independently of DynaSoRe. Updates to the data are persisted be-
fore they are written to DynaSoRe to guarantee that they can be recovered in



the presence of faulty DynaSoRe servers. Since we replicate some views in our
system, copies of data might be readily available even if a server crashes. In the
case of a single replica, we need to fetch data from the persistent store to build it.
In both cases, single or multiple replicas, crashes additionally require live servers
to dynamically adjust the number of replicas of views to the new configuration.

2.3 Problem formulation

Given the system model and requirements, our objective is to generate an as-
signment of views to servers such that (i) each view is stored on at least one
server and (ii) network usage is minimized. The first objective guarantees that
any user view can be served from the memory store. We eliminate the trivial
case in which the cluster does not have the storage capacity to keep a copy of
each view. DynaSoRe is free to place views on any server, as long as it satisfies
their capacity constraints. Any available space can be used to replicate a view
and optimize the second objective. We define the amount of extra memory ca-
pacity in the system as follows : Given V the set of views in the system, and b
the amount of memory required to store a single view, the system has x% extra
memory if its total memory capacity is (1+x/100)× |V | × b. To reduce network
traffic, we need to assign views to servers such that it reduces the number of
messages flowing across network devices. Note that a message between servers
reaching the top switch also traverses two intermediate switches and two rack
switches. Consequently, minimizing the number of messages going through the
top switch is an important goal to reduce network traffic.

We show in Section 4 that DynaSoRe is able to dynamically adapt to work-
load variations and to use memory efficiently. In this work, we focus on the
mechanisms to distribute user views across servers and on the creation and evic-
tion of their replicas. Although important, fault tolerance is out of the scope of
this work and we discuss briefly how one can tolerate crashes in Section 3.3.

3 System Design

In this section, we present the design of DynaSoRe. We first present its API,
followed by the algorithm we use to make replication decisions. We end this
section with a discussion on some software design issues.

3.1 API

DynaSoRe is an in-memory store used in conjunction with a persistent store.
The API of DynaSoRe matches the one used by Facebook for memcache [13].
It consists of a read request that fetches data from the in-memory store, and
a write request that updates the data in the memory store using the persis-
tent store. Consequently, DynaSoRe can be used as a drop-in replacement of
memcache to cache user views and generate social feeds.
Read(u, L): u is a user id and L is a list of user ids to read from. For each id

u′ in L, it returns view(u′).



Write(u): u is a user id. It updates view(u) by fetching the new version from
the persistent store.

3.2 Algorithm

Overview DynaSoRe is an iterative algorithm that optimizes view access lo-
cality. DynaSoRe monitors view access patterns to compute the placement of
views and selects an appropriate broker for executing each request. Specifically,
DynaSoRe keeps track, for each view, the rates it is read and written, as well as
the location of brokers accessing it. When DynaSoRe detects that a view is fre-
quently accessed from a distant part of the cluster, consuming large amounts of
network resources, it creates a replica of this view and places it on a server close
to those distant brokers. This improves the locality of future accesses and reduces
network utilization. Similarly, when a broker executes a request, DynaSoRe an-
alyzes the placement of the views accessed, and selects the closest broker as a
proxy for the next instance of this operation.

Routing DynaSoRe optimizes view access locality by placing affine views on
servers that are close according to network distance, and replicating some of
the views on different cluster sub-trees to further improve locality. Using such
tailored policies for view placement requires a routing layer to map the identifiers
of requested views to the servers storing them.

Brokers. Each request submitted to DynaSoRe is executed by a broker. A request
consists of a user identifier and an operation: read or write. DynaSoRe creates,
for each user, a read proxy and a write proxy, each of them being an object
deployed on a broker. The motivation of using two different proxies per user
stems from the fact that they access different views. The write proxy updates the
view of a user, while the read proxy reads the views of a user’s social connections.
These views may be stored in different parts of the cluster. Allowing DynaSoRe
to select different brokers gives it more flexibility and impacts network traffic.
The mapping of proxies to brokers is kept in a separate store and is fetched by
the front-end as a user logs in. Once a front-end receives a user request, it sends
it to the broker hosting the proxy for execution.

Routing policy. When multiple servers store the same view, the routing layer
needs to select the most appropriate replica of the view for a given request. The
routing policy of DynaSoRe favors locality of access. Following the tree structure
of a cluster, a broker selects, among the servers storing a view, the closest one,
i.e. the one with which it shares the lowest common ancestor. This choice reduces
the number of switches traversed. When two replicas are at equal distance, the
broker uses the server identifier to break ties.

Routing tables. The write proxy of a user is responsible for updating all the
replicas of her view and for storing their locations. Whenever a new replica of



the view is created or deleted, the write proxy serves as a synchronization point
and updates its list of replicas accordingly.

The read proxy of a user is in charge of routing her read requests. To this end,
each broker stores in a routing table, for every view in the system, the location of
its closest replica according to the routing policy described earlier. The routing
table is shared by all the read proxies executed on a given broker. The write
proxy of a view is also responsible for updating the routing tables whenever a
view is created or deleted. As the routing policy is deterministic, only brokers
affected by the change are notified.

Servers also store some information about routing. Each view stores the loca-
tion of its write proxy, so that a server may notify a proxy in case of an eviction
or replication attempt of its replica. When several replicas of a view exist, each
replica also stores the location of the next closest replica. Both information are
used to estimate the utility of a view that will be described in Section 3.2.

Proxy placement. To reduce the network traffic, the proxies should be as close as
possible to the views they access. Whenever a request is executed, the proxy uses
the routing table to obtain the location of the views and execute the operation.
As a post-processing step, the proxy analyzes the location of these views and
computes a position that minimizes the network transfers. Starting at the root
of the cluster tree, the proxy follows, at each step, the branch from which most
views were transferred, until it reaches a broker. If the obtained broker is different
from the current one, the proxy migrates to the new broker for the next execution
of this request. In the case of a write proxy, this migration involves in sending
notification messages to view replicas.

Access statistics To dynamically improve view access locality, DynaSoRe gath-
ers statistics about the frequency and the origin of each access to a view. This
information is stored on the servers, along with the view itself. The origin of an
access to a view is the switch from which the request accessing this view comes.
Consequently, two brokers directly connected to the same switch correspond to
the same origin. The writes to a given view are always executed in the location
of its write proxy. However, reads can originate from any broker in the cluster.
This explains why their origins should be tracked.

To reduce the memory footprint of access recording, DynaSoRe makes the
granularity coarser as the network distance increases. Considering a tree-shaped
topology, a server records accesses originating from all the switches located be-
tween the server and the top switch, as well as their siblings. For example, in
Figure 1 the server S111 records the accesses originating from the switches SR11

(the accesses from the local broker) to SR1n and from SI2 to SIm instead of an
individual record for every switch. In this way, in a cluster of m intermediate
switches and n rack switches per intermediate switch, every replica records max-
imum m − 1 + n origins instead of m × n origins. While significantly reducing
the memory footprint, this solution does not affect the efficiency of DynaSoRe.
The algorithm still benefits from precise information in the last steps of the con-



vergence, and relies on aggregated statistics over sub-trees for decisions about
more distant parts of the cluster.

DynaSoRe is a dynamic algorithm that is able to react to variations in the
access patterns over time. We use rotating counters to record the number of
accesses to views. Each counter is associated to a time period, and servers start
updating the following counter at the end of the period. For example, to record
the accesses during one day with a rotating period of one hour, we can use
24 counters of 1 byte. The number of counters, their sizes and their rotating
periods can be configured depending on the reactivity we expect from the system,
the accuracy of the logs and the amount of memory we can spend on it. It is
possible to compress these counters efficiently. For instance, one may decrease
the probability of logging an access as the counter increases to account for more
accesses on 1 byte. One may also store these counters on the disk of the server
to enable asynchronous updates of the counters. These optimizations are out of
the scope of this work, and in the remainder of this paper we assume that the
size of the counters is negligible with respect to the size of the views.

Storage management A DynaSoRe server is a in-memory key-value store im-
plementing a memory management policy. A server has a fixed memory capacity,
expressed as the number of views it can store. DynaSoRe manages the servers
as a global pool of memory, ensuring that the view of each user is stored on
at least one server. Each server stores several views, some of them being the
only instance in the system, while others are replicated across multiple servers
and therefore optional. The objective of DynaSoRe is to select, for each server,
the views that will minimize network utilization, while respecting capacity con-
straint. We assume that the events generated by users have a fixed size, such as
those of Twitter (140 characters). Heavy content (e.g., pictures, videos, etc.) are
usually not stored in cache but in dedicated servers.

View utility. Each server maintains read and write access statistics for the views
it stores, as described in Section 3.2. Using these statistics, DynaSoRe can eval-
uate the utility of a view on a given server, i.e., the impact of storing the view
on this server in terms of network traffic. DynaSoRe uses the statistics about the
origins of read requests to determine which of them are impacted by the view. It
then computes the cost of routing them to the next closest replica instead of this
server, which represents the read gains of storing the view on the server. The
traffic generated by write requests represents the cost of maintaining this view,
and is subtracted from the read gains to obtain the utility. The details of the
utility computation are presented in Algorithm 1. The utility of a view is positive
if its benefits in terms of read requests locality outweighs the cost of updating
it when write requests occur. The goal of DynaSoRe is to optimize network
utilization. Hence, views with negative utility are automatically removed.

Replication of views. Servers regularly update the utility of the views they store
and use this information to maintain an admission threshold so that a sufficient



Algorithm 1 Estimate Profit
1: function Estimate Profit(logs, server, nearest)
2: serverReadCost ← 0
3: nearestReadCost ← 0
4: for all < source, reads >∈ logs.reads() do

5: serverReadCost + = reads · cost(source, server)
6: nearestReadCost + = reads · cost(source, nearest)

7: serverWriteCost ← writes · cost(broker, server)
8: serverProfit ← nearestReadCost − serverReadCost − serverWriteCost
9: return serverProfit

amount (e.g., 90%) of their memory is occupied by views whose utility is above
the admission threshold. If less memory is used, the admission threshold is 0.
These admission thresholds are disseminated throughout the system using a
piggybacking mechanism. Each broker maintains the admission threshold of the
servers located in its rack, and transmits the lowest threshold to other racks
upon accessing them. Thus, each server receives regular updates containing the
lowest access threshold in other racks. A replica of a view on a given server
serves either the brokers of the whole cluster, when this is the unique replica,
or the brokers of a sub-tree of the cluster, when multiple replicas exist. Upon
receiving a request for a view, a server updates its access statistics and evaluates
the possibility of replicating it on another server of this sub-tree. This procedure
is detailed in Algorithm 2. The utility of the replica is computed by simulating
its addition on one of the servers, following the approach described previously.
If the utility exceeds the admission threshold of the server, a message is sent to
the write proxy of the view to request the creation of a replica.

When no replicas can be created, the server attempts to migrate the view
to a more appropriate location. The computation of the utility of the view at
the new location is slightly different from the replication case, since it assumes
the deletion of the view on the current server and therefore generates higher
scores. Algorithm 3 details this procedure. The migration of the view is subject
to the admission threshold. Using the admission threshold avoids the migration
of views rarely accessed to servers with high replication demand.

Eviction of views. To easily deploy new views on servers, DynaSoRe ensures that
each server regularly frees memory. When the memory utilization of a server ex-
ceeds a given threshold (e.g., 95%), a background process starts evicting the
views that have the least utility. Views that have no other replica in the sys-
tem have infinite utility and cannot be evicted. Since multiples servers could
try to evict the different replicas of the same view simultaneously, DynaSoRe
relies on the write proxy of the view as a synchronization point to ensure at
least one replica remains in the system. Servers typically manage to evict a suf-
ficient amount of views to reach 95% capacity. One exception happens when the
full DynaSoRe cluster reaches it maximum capacity, in which case there is no
memory left for view replication. This proactive eviction policy decouples the
eviction of replicas from the reception of requests, thus ensuring that memory
can be freed at any time even when some replicas do not receive any requests.



Algorithm 2 Evaluate Creation of Replica
1: procedure Evaluate Creation of Replica(logs)
2: newReplica ← ∅
3: bestProfit ← 0

4: for all < source, reads >∈ logs.reads() do

5: profit ← Estimate Profit(logs, source, this)
6: threshold ← Admission threshold(source)
7: if profit > threshold & profit > bestProfit then

8: newReplica ← Least loaded server(source)
9: bestProfit ← profit

10: if newReplica 6= ∅ then

11: Send(newReplica) to broker

Algorithm 3 Compute Optimal Position of Replica
1: procedure Compute Optimal Position of Replica(logs)
2: nearest ← nearest replica

3: bestPosition ← this
4: bestProfit ← Estimate Profit(logs, this, nearest)
5: for all < source, reads >∈ logs.reads() do

6: profit ← Estimate Profit(logs, source, nearest)
7: threshold ← Admission threshold(source)
8: if profit > bestProfit & profit > threshold then

9: bestPosition ← Least loaded server(source)
10: bestProfit ← profit

11: if bestProfit < 0 then

12: Send(removeThis) to broker
13: else

14: if bestPosition 6= this then

15: Send(bestPosition, removeThis) to broker

3.3 Software Design

Durability DynaSoRe complies with the architecture of Facebook, and relies
on the same cache coherence protocol [13]. When a user writes an event, this
command is first processed by the persistent store to generate the new version
of the view of a user. The persistent store then notifies DynaSoRe by sending a
write request to the write proxy of the user, which fetches the new version of
the view from the persistent store and updates the replicas. The persistent store
logs write requests before sending them, so they can be re-emitted in case of a
crash. If a server crashes, the views can be safely recovered from the persistent
store. Also, frequently accessed views are likely to be already replicated in the
memory of other servers, allowing faster recovery and avoiding cache misses
during the recovery process. We have chosen this design because memory is
limited, and replicating frequently accessed views leads to higher performance
compared to replicating rarely accessed views for faster recovery. However, if a
large amount of memory is available, DynaSoRe can also be configured to keep
multiple replicas of each view on different servers. In that case, the threshold
for infinite utility is set to the minimum number of replicas and recovery is fully
performed from memory. The state of brokers and the location of the proxies
of users are persisted in a high performance disk-based write-ahead log such as
BookKeeper [10], so that the setup of DynaSoRe is also recoverable.



Cluster modification The configuration of the cluster on top of which DynaSoRe
is running may change over time. For example, the number of servers allocated
to DynaSoRe can grow as the number of users increase. There are three different
ways a server can be added to the system:

1. The additional server is added into an existing rack. In this case, the new
server will become the least loaded server in the rack, and all the new replicas
deployed into this rack are stored in this new server until it becomes as loaded
as the other servers in the rack.

2. A new rack is added below an existing intermediate switch. The same
reasoning for the previous case applies here. The new rack is automatically used
to reduce the traffic of the top router.

3. A new branch is added to the cluster by adding a new intermediate switch.
In this case, DynaSoRe has no incentive to add data to the new servers since no
requests will originate from there. When adding a new branch to the data center,
we consequently need to move some views and proxies onto the new servers to
bootstrap it. This procedure is, however, not detailed in this paper.
Removing servers on the other hand requires the views hosted by the servers
to be relocated. Before removing a server, the views that have no other replica
should be moved to a near server. The views that exist on multiple servers can
simply be deleted as DynaSoRe will recreate them if needed.

Managing the social network As described earlier, DynaSoRe does not main-
tain the social network, and instead receives the list of users from which data
need to be retrieved when executing a read request. Consequently, the only di-
rect impact of a modification to the social network is the modification of the
list of views accessed by reads. The addition of a link between users u1 and u2

increases the probability to have either u2’s view replicated near u1’s read proxy,
or u1’s read proxy migrated closer to a replica of u2’s view. DynaSoRe adapts
to the modifications to the social network transparently, without requiring any
specific action. When a new user enters the system, DynaSoRe needs to allocate
a read proxy, a write proxy, and a view on a server for this user. The server
chosen is the least loaded one at the time of the entrance of the user, and the
two proxies are selected to be as close as possible to this server.

4 Evaluation

4.1 Baseline

Random In-memory storage systems, such as Memcached and Redis, rely
on hash functions to randomly assign data to servers. This configuration is static
in the sense that it is not affected by the request traffic. For this scheme, the
proxies of a user are deployed on the broker located in the same rack in which
the user view is located. This is the simplest baseline we compare against, as it
ignores the topology of the data center, the structure of the social graph, and
does not leverage free memory through replication.

http://memcached.org/
http://redis.io/


METIS Graph data can be statically partitioned across servers using graph
partitioning. This leverages the clustering properties of social graphs and in-
creases the probability that social friends are assigned to the same sever. We
rely on the METIS library to generate partitions, and randomly assign each of
them to a server. The read and write proxies of users are deployed on the broker
located in the rack hosting their view. This solution does not take into account
the hierarchy of the cluster, and does not perform replication. It also does not
handle modifications to the social graph, and needs to re-partition the whole
social graph to integrate them.

Hierarchical METIS We improve the standard graph partitioning to ac-
count for the cluster structure. We first generate one partition for each inter-
mediate switch, and then recursively re-partition them to assign views to rack
switches and then servers. Compared to directly partitioning across servers, this
solution significantly reduces the network distance of views of social friends as-
signed to different servers.

SPAR SPAR [15] is a middleware that ensures the views of the social friends
of a user are stored on the same server as her own view. SPAR assumes that it
is always possible to replicate a view on a server, without taking into account
memory limitations. We adapt SPAR to limit its memory utilization. The views
of the friends of a user are copied to her server as long as storage is available.
When the server is full, these views are not replicated. Similarly to the graph
partitioning case, the proxies of a user are located in the rack hosting her view.

4.2 Datasets

Social graphs We evaluate the performance of DynaSoRe by comparing it
against our baselines on three different social networks (summarized in Table 1):

– a sample from the Twitter social graph from August 2009 [3]

– a sample from the Facebook social graph from 2008 [17]

– a sample from the LiveJournal social graph [2]

# users # links
Twitter 1.7M 5M

Facebook 3M 47M
LiveJournal 4.8M 69M

Table 1. Number of users and links in
each dataset
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Request log In this section, we rely on two different kinds of request logs for
our experiments, a synthetic one and a real one. The real one is obtained from
Yahoo! News. We discuss the logs we used in more details below.

http://glaros.dtc.umn.edu/gkhome/views/metis


Synthetic logs. Huberman et al. [9] argue that the read and write activity of users
in social networks is proportional to the logarithm of their in and out degrees
in the social graphs. Silberstein et al. [16] observe that there are approximately
4 times more reads than writes in a social system. Using this information, we
create a random traffic generator matching these distributions and obtain, for
each social graph, a request log. We additionally assume that each user issues on
average one write request per day and that requests are evenly distributed over
time. Compared to real workloads, these synthetic workloads show low variation,
which enables DynaSoRe to accurately estimate read and write rates.

Real user traffic. Yahoo! News Activity is a proprietary social platform that
allows users to share (write) news articles, and view the articles that their
Facebook friends read (read). We use a two-week sample of the Yahoo! News
Activity logs as a source of real user traffic in the experiments. We focus in this
experiment on users who performed at least one read and one write during the
two weeks. This selection results in a dataset of 2.5M users with 17M writes and
9.8M reads. Figure 2 depicts the distribution of read and write activities per
day. Users can consult the activity of their friends both on the Yahoo! website,
or on Facebook. In the latter case, the reads are not processed by the Yahoo!
website and do not appear in the log, which explains the prevalence of writes
in our dataset. Because we do not have access to the Facebook social graph, we
map the users of Yahoo! News Activity to the users in the Facebook social graph
presented in Section 4.2. We rank both lists of users according to their number
of writes and their number of friends, respectively, and connect users with the
same rank. Because the Facebook social graph has more users, we only consider
the first 2.5 million users according to the number of friends.

4.3 Simulator and cluster configuration

We implement a cluster simulator in Java to evaluate the different view man-
agement protocols on large clusters. The simulator represents all the servers and
network devices in order to simulate their message exchanges and measure them.
The virtual data center used in our experiment is composed of a top switch, 5
intermediate switches, each connected to 5 rack switches, for a total of 25 racks
containing 10 machines each. In every rack, 1 machine is broker while the 9 others
are servers to store views. Servers keep view access logs using a sliding counter of
24 slots shifted every hour. After each shift, the replica utility is recomputed and
the server’s admission threshold is updated. Each server has the same memory
capacity, and the total memory capacity is a parameter of each simulator run.
Finally, we assume that each application message, i.e., read, write request and
their answer, is 10 times longer than a protocol message. In fact, most protocol
messages do not carry any user data and are therefore much smaller.

4.4 Initial data placement and performance

The random placement and graph partitioning approaches produce static assign-
ments of views to servers, which persists during the whole experiment. SPAR
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(b) LiveJournal, tree network topology
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(c) Facebook, tree network topology
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Fig. 3. Top switch traffic with varying memory capacity

places views as the structure of the social network evolves. We first create one
replica for each user, and we simulate the addition of all the edges of the social
graph to obtain the its view placement. Once the memory of all servers has been
used, the view layout remains constant. For DynaSoRe, the system is deployed
on an existing social platform and uses this configuration as an initial setup. It
then modifies this initial view placement by reacting to the request traffic.

We consider three different view placement strategies when initializing DynaSoRe:
Random, METIS and hierarchical METIS (hMETIS). Using the synthetic re-
quest log, we evaluate the performance of each system after convergence, i.e.,
once the content of the servers stabilizes. Figures 3a, 3b and 3c depict the traf-
fic of the top switch for the 3 different social graphs. The traffic is normalized
with respect to the traffic of Random. On the x-axis, we vary the extra memory
capacity of the cluster. x = 0% means the capacity matches exactly the space
required to store all the views without replication. With x = 100% memory
capacity doubles, so the algorithms can replicate views up to 2 times on average.

Considering the initial data assignment (x = 0%), we can clearly see that
graph partitioning approaches (METIS and hMETIS) outperform Random data
placement. Furthermore, hierarchical partitioning leads to a two-fold improve-
ment over standard clustering. These results are expected: partitioning increases
the probability that views of social friends will be stored on the same rack, which
reduces the traffic of the top switch upon accessing them. hMETIS further im-
proves this result by taking into account the hierarchy of the cluster. Thus, when
the views of 2 friends are not located on the same rack, they are likely to be
communicated through an intermediate switch rather than the top switch.

As we increase the memory capacity, both DynaSoRe and SPAR are able to
replicate and move views. Yet, the results indicate that DynaSoRe is much more
efficient than SPAR for using the available memory space. For example, in the



case of Twitter, with 30% memory in addition to the amount of data stored,
SPAR reduces the traffic by 42% compared to a Random, while DynaSoRe re-
duces it by 80%. These figures also demonstrate the importance of the initial
data placement in the case of DynaSoRe. As DynaSoRe relies on heuristics to
place views in the cluster, a good initial placement allows it to converge to bet-
ter overall configurations, while a random placement converges to slightly worse
performance. As the amount of available memory further increases, the perfor-
mance of DynaSoRe converges and part of the memory remains unused. Indeed,
DynaSoRe detects that replicating some views does not provide an overall bene-
fit, since the cost of writing to the extra replicas outweighs the benefits of reading
them locality, which induces higher network traffic.

Table 2 and Table 3 present the average switch traffic at the top, intermediate,
and rack levels for two memory configurations. We normalize the traffic value
by the equivalent switch traffic using Random. DynaSoRe is initialized using
hMETIS. Note that network traffic drops more significantly for the top switch
which is the most loaded with Random. As fewer requests access different racks,
rack switches also benefit from DynaSoRe, but to a lesser extent. Comparing
absolute values, the traffic of the top switch almost drops to the level of a rack
switch. Ultimately, DynaSoRe is able to relax the performance requirements for
top and intermediate switches.

Figure 4 shows the traffic on the top switch for the Facebook graph using the
real user traffic extracted from Yahoo! News Activity. For space reasons, we only
display the performances achieved by SPAR and DynaSoRe starting from the
placement generated by Random and METIS with 50% extra memory. The figure
shows the evolution of the traffic over time, and we can see that the traffic on the
top switch follows the request pattern observed in Figure 2. This figure shows
that DynaSoRe is able to converge to an efficient view placement configuration,
even in the case with high variance traffic. DynaSoRe still clearly outperforms
the baseline, confirming the results obtained with the synthetic logs. Our results
(not shown here for space reasons) show that the performance of DynaSoRe is
consistently better (3 times when starting from Random, 9 times when starting
from METIS) than Random independently of the traffic variation, confirming
the robustness of DynaSoRe under high traffic.

Facebook Twitter Live J.
Top switch DynaSoRe .07 .06 .04

Top switch SPAR .65 .55 .60
Inter switch DynaSoRe .14 .11 .08

Inter switch SPAR .77 .61 .70
Rack switch DynaSoRe .60 .59 .57

Rack switch SPAR .94 .84 .90

Table 2. Switch traffic, 30% extra memory

Facebook Twitter Live J.
Top switch DynaSoRe .01 .01 .01

Top switch SPAR .24 .11 .26
Inter switch DynaSoRe .03 .02 .02

Inter switch SPAR .39 .13 .37
Rack switch DynaSoRe .54 .53 .53

Rack switch SPAR .77 .60 .75

Table 3. Switch traffic, 150% extra mem.



4.5 Behavior in flat network topologies

The results presented above assume a tree topology for the network of the data
center. This setup is common in data centers, hence DynaSoRe was specifically
tailored for it. For the sake of fairness (as the baselines are designed without
considering any network topology of data centers), we also evaluate DynaSoRe
on a flat network topology. In this case, all of the 250 servers act as both caches
and brokers, and are directly connected to a single switch. This configuration
is similar to the one used to evaluate SPAR in [15]. Figure 3d shows that the
performances of DynaSoRe and SPAR on the Facebook social graph using the
synthetic request logs. Given that DynaSoRe was specifically tailored to tree
topologies, the performance gap between DynaSoRe and SPAR is not as large
as that presented in Figure 3c. DynaSoRe still clearly outperforms SPAR, in
particular in the configurations of low memory, thanks to its better replication
policy. In the remainder of the evaluation, we focus on the tree network topology.
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4.6 Flash Events

Online social networks are often subject to flash events, in which the activity
of a subset of users suddenly spikes. To evaluate the reactivity of DynaSoRe,
we simulate a sudden increase of popularity of some users, and measure the
evolution of their number of replicas and the number of requests each of them
processes. More precisely, at time t = 2 days in the simulation run, we randomly
select a user and make this user popular by adding 100 random followers to read
her view. Five days later (t = 7 days) all these additional followers are removed.
We repeat this experiment 100 times on the Facebook dataset with a 30% extra
memory capacity. We present the average results in Figure 5.

At the beginning of the experiment, the user is not particularly active, and
has 1.15 replicas on average. As new followers arrive, DynaSoRe detects that the
number of reads of the view increases, and starts replicating it on other servers.
DynaSoRe stabilizes in a configuration close to 5 replicas for this view. Given
that the users reading this view are selected at random, they originate from all
racks of the cluster and DynaSoRe generates a replica per intermediate switch.
After replication, the average number of reads per replica is very close to the
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Fig. 6. Top switch traffic over time, Facebook, 150% extra memory

initial situation. The utility of replicas is high enough to be maintained by the
system, but additional replicas do not pass the admission threshold. At the end
of this period, the number of reads per replica drops sharply. DynaSoRe is able
to detect and adjust the utility of the replicas, which leads to their eviction
before the end of the following day. These results illustrate DynaSoRe’s ability
to react quickly to flash events, and evict replicas once they become useless.

4.7 Convergence time

SPAR and the three static approaches to assign views only require the social
graph to determine the assignment of views. They do not react dynamically
to traffic changes, and consequently, they do not require any time to converge
as long as the social graph is stable. For DynaSoRe, however, it is important to
evaluate the convergence time, using both stable synthetic traffic and real traffic.
Before converging to a stable assignment, DynaSoRe replicates views regularly.
This traffic of replicas generates messages that also consume network resources.
Once the system stabilizes, the overhead of system messages becomes negligible.

Figure 6a shows the traffic of the top switch when running DynaSoRe on the
Facebook social graph using synthetic traffic with an extra memory of 150%. We
separate the application traffic and the system traffic to study the convergence of
DynaSoRe over time (x axis). After a few hours of traffic, DynaSoRe has almost
reached its best performance, starting both from a random placement and from
a placement based on graph partitioning. The amount of system messages sent
by the protocol rapidly drops and reaches its minimum after one day. Note
that less memory capacity makes the time to converge shorter, since DynaSoRe
performs fewer replication operations. Figure 6b displays the results of the same
experiments executed using the real request trace from Yahoo! News Activity.
As the workload presents more variation, DynaSoRe does not fully converge, and
the system traffic remains at a noticeable level as views are created and evicted.
The request rate of the real workload is lower than the synthetic one, which
explains the slower convergence: DynaSoRe is driven by requests. Initializing
DynaSoRe using graph partitioning, however, induces an initial state that is more
stable, allowing the system traffic to remain low. Despite slower convergence, the
application traffic still reaches its best performance after one day.



5 Related Work

DynaSoRe enables online data placement in in-memory store for social network-
ing applications. We review in this section related work on in-memory storage
systems, offline data placement algorithms, online data placement algorithms,
and discuss their differences with DynaSoRe.

In-memory storage RAMCloud [14] is a large-scale in-memory storage system
that aggregates the RAM of hundreds of servers to provide a low-latency key-
value store. RAMCloud does not currently implement any data placement policy,
and could benefit from the algorithms used in DynaSoRe. RAMCloud recovers
from failures using a distributed log accessed in parallel on multiple disks. This
is similar to write-ahead logging approach described in Section 3.3 and could be
also used in DynaSoRe.

Offline data placement Curino et al. describe Schism [4], a partitioning and
replication approach for distributed databases to minimize the amount of trans-
actions executed across multiple servers. Schism uses an offline standard graph
partitioning algorithms on the request log graph to assign database tuples to
servers. DynaSoRe is an online strategy, creating and placing views dynamically.
As a consequence, it is much easier to react to changes in access patterns that
frequently occur in social applications. DynaSoRe benefits from graph cluster-
ing techniques similar to those used in Schism to generate more effective initial
placement of views for faster convergence to ideal data placement.

Zhong et al. consider the case of object placement for multi-object opera-
tions [19]. Using linear programming, they place correlated objects on the same
nodes to reduce the communication overhead. However, this solution focuses on
correlation and does not take access frequencies into account. It does not account
for the hierarchy of network either.

Duong et al. analyze the problem of statically sharding social networks to
optimize read requests [5]. They demonstrate the benefits of social-network
aware data placement strategies, and obtain moderate performance improve-
ments through replication. Nonetheless, these results are limited by the absence
of write requests in the cost model. In addition, it only supports static social
networks and does not account for network topology.

There are a few graph processing engines [6,12,18] that split graphs over sev-
eral machines using offline partitioning algorithms. Messages exchanged between
partitions are the results of partial computations, which can be further reduced
through the use of combiners. While these approaches lead to important gains,
they cannot be applied to all kind of requests, and they mostly benefit long
computational tasks rather than low latency systems considered in this paper.

Online data placement SPAR [15] is a middleware for online social networking
systems that ensures that the server containing the view of a user also contains
those of her friends. This favors reads, but sacrifices writes as all the replica of
a user’s view need to be updated. Similar to DynaSoRe, SPAR uses an online



algorithm that reacts to the evolution of the social network. The main differences
between SPAR and DynaSoRe stems from the assumption on the storage layer.
SPAR assumes that storage is cheap enough to massively replicate views, up to 20
times for 512 servers, largely exceeding fault tolerance requirements. DynaSoRe
is much more flexible, and operates at a sweet spot, trading a small storage
overhead for high network gains. By default, DynaSoRe does not guarantee that
each view is replicated multiple times, and relies on the stable storage to ensure
durability. Yet, DynaSoRe can be configured to provide an in-memory replication
equivalent to SPAR, as explained in Section 3.3.

Silberstein et al. propose to measure users’ events production and consump-
tion rates to devise a push-pull model for social feeds generation [16]. The spe-
cialized data transfer policy significantly reduces the load of the servers and
the network. DynaSoRe is inspired by this work and also relies on the rates of
reads and writes of events to decide when to replace views. However, DynaSoRe
addresses different problem and focuses on determining where to maintain the
views, which will lead to performance gain in addition to this approach.

DynPart [11] is a data partitioning algorithm triggered upon inserting tuples
in a database. DynPart analyzes requests matching a tuple and places the tuple
on the servers that are accessed when executing these requests. While DynPart
handles insertion of data, it never reverts previous decisions and therefore cannot
deal with new requests or changes in request frequency. Social networks are fre-
quently modified, leading to different requests, and are subject to unpredictable
flash events. For these reasons, DynaSoRe is a better fit for social applications.

6 Conclusion

Adapting to workload variations and incorporating detail of the underlying net-
work architecture are both critical for serving social networking applications ef-
ficiently. Typical designs that randomly and statically place views across servers
induce a significant amount of load to top tiers of tree-based network layouts.
DynaSoRe is an in-memory view storage system that instead adapts to work-
load variations and uses the network distance between servers to reduce traffic
at the top tiers. DynaSoRe analyzes request traffic to optimize view placement
and substantially reduces network utilization. DynaSoRe leverages free memory
capacity to replicate frequently accessed views close to the brokers reading them.
It selects the brokers that serve each request and places them close to the views
they fetch according to network distance. In our evaluation of DynaSoRe, we
used different social networks and showed that with only 30% additional mem-
ory, the traffic of the top switch drops by 94% compared to a static random view
placement, and 90% compared to the SPAR protocol.
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