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The hydrodynamic interaction of two deformable vesicles in shear flow induces a net

displacement, in most cases an increase of their distance in the transverse direction.

The statistical average of these interactions leads to shear-induced diffusion in the

suspension, both at the level of individual particles which experience a random walk

made of successive interactions, and at the level of suspension where a non-linear

down-gradient diffusion takes place, an important ingredient in the structuring of

suspension flows. We make an experimental and computational study of the inter-

action of a pair of lipid vesicles in shear flow by varying physical parameters, and

investigate the decay of the net lateral displacement with the distance between the

streamlines on which the vesicles are initially located. This decay and its depen-

dency upon vesicle properties can be accounted for by a simple model based on the

well established law for the lateral drift of a vesicle in the vicinity of a wall. In the

semi-dilute regime, a determination of self-diffusion coefficients is presented.
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Compiègne, France.
b)Now at Zentralinstitut für Medizintechnik, Technische Universität München, Germany; both first authors

equally contributed to the production of the data presented in this paper. P.-Y. G. produced the theoretical

and computational results and A. S. performed the experiments.
c)Electronic mail: gwennou.coupier@ujf-grenoble.fr

1



I. INTRODUCTION

Liquid suspensions of deformable particles are the focus of permanent interest due to their

ubiquity in life science and applications, from emulsions to blood, a dense suspension of red

blood cells. It is well known since Batchelor1,2 that the viscosity of a semi-dilute suspension

of rigid spheres departs from the classic linear Einstein law of viscosity for volume fractions

of particles above a few percents, due to the additional dissipation induced by hydrodynamic

interactions between particles.

In addition to their influence on the effective viscosity at significant volume fractions,

these hydrodynamic interactions (which are sometimes called binary collisions in the liter-

ature, although still mediated by hydrodynamics) can lead to irreversible perturbations of

the particle trajectories which result in an effective random walk of individual particles in

the suspension. This shear-induced diffusion has two main consequences: enhanced mix-

ing and transport even at low Reynolds number3–8, and a modification of the structure of

suspensions via diffusion along gradients of concentration of the particles9–12.

In shear flow, two identical particles located on different streamlines and moving towards

each other will generally experience irreversible drift in the shear and vorticity directions

after they have interacted. However, for smooth rigid spherical particles in a dilute regime

dominated by pairwise interactions, the cross-stream lateral displacement is expected to be

negligible at low Reynolds number since trajectories must be symmetric due to the flow-

reversal symmetry of the Stokes equation13 and the symmetry of the geometrical configura-

tion. Symmetry breaking can be obtained by considering rough particles14,15 or deformable

two-fluid systems such as bubbles16 or drops17–20. More recently, systems made of closed

membranes have been investigated numerically or experimentally. Hydrodynamic interac-

tion between elastic capsules were studied numerically in several papers21–24. During the

interaction, net displacement of the capsules can be coupled with wrinkling or buckling of

the membranes, whose tension strongly increases during interaction.

The dynamics and rheology of suspensions of lipid vesicles have recently been the focus

of several studies, due to their relevance to the understanding of blood flows, considering

giant vesicles as models of red blood cells, and the challenging theoretical questions they

pose as a consequence of their rich microscopic dynamics. Vesicles are closed lipid bilayers

with mechanical properties similar to those of living cells. A key property is the membrane
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Set Solution η (mPa.s) λ = ηI
ηE

1
(I) 300mM sucrose in (20% glycerol + 80% water w/w)

(E) 370mM glucose in (20% glycerol + 80% water w/w)

2.2

2.2
1.0

2
(I) 100mM sucrose in water + 3.3% dextran w/w

(E) 115mM glucose in water

4.2

1.1
3.8

3
(I) 300mM sucrose in water

(E) 316mM glucose in water + 3% dextran w/w

1.1

4.0
0.28

TABLE I. Sets of internal (I) and external (E) solutions considered in the experiments. Viscosities

η are measured at T = 23◦ C.

inextensibility, which leads to local area conservation, while volume conservation is generally

obtained once osmotic equilibrium is reached. The vesicles mechanical response, as well as

their shapes25, are governed by a bending energy of order a few kT , where k is Boltzmann’s

constant and T the temperature. These particular properties, especially the non-linearities

due to the constraint of local area conservation, are responsible for the various dynamics of

single vesicles in shear flow26–28. The phase diagram of microscopic dynamics has a signature

on the rheology of vesicle suspensions29, but there is still disagreement, especially in the semi-

dilute regime where two experimental studies show contradictory results30,31. In an effort to

resolve this contradiction, Kantsler et al.30 and Levant et al.32 have investigated the influence

of interactions on fluctuations and correlations of the inclination angles of interacting vesicles

and suggest that they may be responsible for discrepancies between theories in the dilute

regime and experimental measurements of the effective viscosity, which are often made

in a semi-dilute regime for sensitivity reasons. On the analytical side, the trajectories of

interacting vesicles have been recently studied in the limit were they are initially very distant

from each other33. This study has been later on refined in the case of vesicles located in

the same shear plane34. Very recently, such trajectories have been calculated numerically

by Zhao and Shaqfeh35. They also calculated the rheology of a semi-dilute suspension and

found good agreement with the experiments by Vitkova et al.31, a strong indication that,

in that concentration regime, interactions between vesicles cannot explain the contradiction

between the latter experiments and the one by Kantsler et al.30

Along with their influence on rheology, hydrodynamic interactions significantly affect the
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FIG. 1. Sketch of the experiment.

structure of suspensions, especially in confined flows where a balance between migration

away from walls and shear-induced diffusion due to repulsive interactions leads to the for-

mation of a non-homogeneous distribution of vesicles11. During heterogeneous interactions

of vesicles or capsules with different mechanical or geometrical characteristics, asymmetric

displacements take place, which leads to segregation or margination7,11,36–38, a phenomenon

also observed in blood flows39–42.

In this paper, we report on our experimental and numerical investigation of the interaction

of two identical vesicles in shear flow, with a focus on the net lateral displacement as a

function of initial configuration and vesicle properties.

With a good agreement between experiments and simulations, the amplitude of the lateral

displacement is found to be weakly dependent on vesicle deflation and viscosity ratio, at least

in the tank-treading regime to which we restrict our study. Thanks to the simulations, we

also discuss to which extent the discrepancies between the ideal case of two identical and

neutrally buoyant vesicles, placed in the shear plane of an infinite simple shear flow, and the

realistic case of channel flow, influence the final result.

Finally, from the numerical results, an evaluation of the self-diffusion coefficient, obtained

by averaging displacements over all initial configurations, is proposed and compared to the

recent results of Zhao and Shaqfeh35.
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II. EXPERIMENTAL SET-UP

Fluid vesicles are prepared by following the electroformation method43, which produces

vesicles of various size and deflation (that is, the surface to volume ratio). They are made

of a dioleoylphosphatidylcholine (DOPC) lipid bilayer. We consider three sets of outer and

inner solutions in order to vary the viscosity ratio λ between the inner and the outer fluids

(see table I). The different additives (sugars and dextran) used for inner and outer solutions

provide an optical index contrast which is convenient for phase contrast microscopy.

We wish to observe interactions in simple shear flow between vesicles located in the same

xy plane, where x is the flow direction and y the shear direction. To that end, the vesicle

suspension is injected in a standard polydimethylsiloxane (PDMS) microfluidic device. The

observation channel is 184µm wide (y direction) and 100µm deep (z direction). The imposed

flow is along the x axis (see Fig. 1). Before the observation section, vesicles flow in a

channel of several centimeters long, so that centering in the z direction is generally rather

well achieved44, as confirmed by the location of all vesicles within a focal plane of thickness

of order 5µm. The interacting vesicles were followed manually translating the stage. The

observation window is 477x358 µm2, with a resolution of 0.47µm/pixel. The use of a channel

flow, rather than a four-roll mill device30,32, allows to measure the final lateral displacement

due to the interaction, a key parameter in the discussion of diffusion phenomena.

As measurable interactions only occur when vesicles have initial y separation not larger

than 2 radii, it appeared necessary to favor such an initial condition by adding a flow focusing

device at the entrance of the observation channel. Two lateral inlets were then added, where

vesicle-free fluid was injected in order to focus the suspension in a narrow area. This area

is located at around one fourth of the total width of the channel, that is, far from the

wall and far from the center, where the flow can be considered as a simple shear flow, in a

first approximation to be discussed later. Vesicles stay at this favorable position thanks to

the balance between lift forces44–46 and gravity. In addition, dilution by the lateral inlets

decreases the probability of perturbation of the interaction trajectories by other vesicles.

In the observation window, at most 3 or 4 vesicles (including the two studied vesicles)

are present at the same time. In the selected interaction sequences, the additional vesicles

of non negligible size are always at a distance from the pair larger than 5 radii and are

located almost on the same streamlines, so that they will not come close to the pair within
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FIG. 2. Time sequence of an experimental interaction (left to right and top to bottom). Bottom

vesicle: R1 = 9.3 µm, νa1 = 0.94. Top vesicle: R2 = 9.2 µm, νa2 = 0.92. Total sequence length is

about 5 s.

the duration of the studied interaction process. As in Fig. 2, very small vesicles may

come closer, but the induced perturbation is expected to be negligible: from an asymptotic

approach33, we can expect the velocity perturbations induced by a vesicle 4 times smaller

than the studied ones to be smaller than the one coming from the interacting vesicles by a

factor (1
4
)2 = 0.06.

Once an appropriate pair of vesicles is chosen, the vesicles are followed along their tra-

jectories and the (x, y) coordinates of the vector linking their geometrical centers are de-

termined, as well as their shapes. We denote by (xi, yi) the initial position and by (xf , yf )

the final one. By convention, xi < 0 and yi > 0. An example of selected snapshots taken

along a trajectory is shown in Fig. 2. As we only have access to their two-dimensional

cross-section in the xy plane, we characterize the 2D shapes by the effective radius Ri,

i = 1, 2, defined by Ri = Pi/(2π), where Pi is the cross-section perimeter, and by a reduced

area νai = Ai/(πR
2
i ) ≤ 1, where Ai is the cross-sectional area. These two parameters are

evaluated before the vesicles strongly interact, at which point out-of-plane deformations

occur.

In this study, we focus on pairs of vesicles of similar size and deflation (within maximal

variations of 10 percent for the radii and 5 percent for the reduced area). We denote by

R0 and νa the arithmetic averages of the radii and reduced areas of the two interacting

vesicles. R0 lies between 5 and 19 µm, and νa between 0.73 and 1. The flow velocity is

set so that the capillary number lies typically between 10 and 100. This capillary number

Ca = ηγ̇a3/κ qualitatively represents the ratio between the magnitude of the liquid viscous

stresses exerted on a membrane, and its resisting bending stresses, controlled by bending

rigidity κ. γ̇ is the shear rate and η the suspending fluid viscosity. a is the effective radius

of the vesicle, defined from its volume V by V = 4πa3/3. Note that, due to vesicle volume

6



conservation, this 3D effective radius is constant and characteristic of the considered vesicle,

while the observed 2D radius R0 depends on the applied flow. As a can only be roughly

estimated in the experiments, we only have access to estimated values for Ca.

From the obtained trajectories, we extract the main information, that is the lateral

displacement ∆y = yf − yi as a function of initial lateral separation yi. Both distances

are rescaled by R0. Several initial positions yi are scanned either by considering different

pairs of vesicles, or by making a given pair going back and forth thanks to flow reversal.

III. EXPERIMENTAL RESULTS

We first focus on vesicles with no viscosity contrast. Results for ∆y/R0 as a function of

yi/R0 are shown in Fig. 3. Initial and final y positions are measured by averaging over several

positions long before and after interaction. Error bars are associated to the fluctuations in

these y positions due to the presence of other small vesicles or flow variations due to channel

roughness. Such events are likely to occur because of the large ratio between the relative

velocity along the x axis between the considered vesicles and the other vesicles or the wall,

and the velocity along the y axis. The studied pairs are split into two subpopulations

according to their reduced areas. Vesicles with νa > 0.99 undergo negligible deviations

which are not measurable within experimental errors. This result is expected for spherical

particles and allows to check that no uncontrolled drift alters the experimental results. All

other pairs of vesicles yield comparable deviations whatever the reduced area in the range

0.82 − 0.98. Data scattering can be due to variations in reduced areas (including within a

pair), sizes, capillary numbers, but also to non complete colocation in the same xy plane.

In addition, displacements might be affected by the flow perturbation induced by the walls,

which depends on the lateral position of the vesicles, a parameter that varies from one pair

to another.

Lateral deviation is a decreasing function of initial lateral separation, and becomes negli-

gible for initial lateral separations greater than one diameter. An empirical estimate for this

deviation can be obtained by considering that, in the reference frame of the bottom vesicle,

the displacement of the top vesicle is due to the interaction with a wall of finite extent in

the x direction, whose role is played by the bottom vesicle. The lift velocity of a vesicle in a

simple shear flow and at a distance y from a wall was experimentally shown46 to agree with
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FIG. 3. Experimental lateral displacements ∆y/R0 as a function of yi/R0 for vesicles with no

viscosity contrast (λ = 1). Empty symbols correspond to vesicles with reduced area νa > 0.99,

while vesicles of reduced area between 0.82 and 0.98 are represented by full symbols. Full line

shows fit to this latter data set with empirical law given by Eq. 1 with fit parameter ξ = 0.92.

Error bars correspond to a spatial uncertainty of 1µm. Only part of them are presented for clarity.

the scaling law ẏ = Uγ̇R3
0/y

2 suggested or confirmed by several theoretical works34,47–49,

where U is a dimensionless parameter that depends on viscosity ratio and reduced volume.

The reduced volume ν is defined as the ratio between the vesicle volume and the volume

of the sphere having the same area; due to volume conservation and membrane incompress-

ibility, this is a constant parameter that characterizes the deflation of the vesicle. The top

vesicle flows with relative velocity ẋ = γ̇y, so that dy/dx = UR3
0/y

3. Interaction takes place

on a finite distance of order 2R0. Integrating the latter equation on this distance for x and

between yi and yf for y, one finally finds
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∆y/R0 = (y4i /R
4
0 + ξ)1/4 − yi/R0, (1)

where ξ = 8U contains the interaction details. ξ1/4 is the maximal displacement, obtained

for yi → 0. Taking an estimate of U from Olla’s work47, we have for a prolate ellipsoid with

νa = 0.9, ξ1/4 ∼ 1.2, which is close to the maximal displacement seen in Fig. 3, where a full

fit of the whole data set with Eq. 1 yields ξ = 0.92. Note that this is a single parameter

fit, so that the distance at which interaction becomes negligible is fully determined by the

maximal deviation obtained for quasi-aligned vesicles. In particular, vesicles initially distant

by one diameter in the y direction will deviate only by (16+ξ)1/4−2 . 2% from their initial

trajectories.

From this law, we can estimate how the final displacement should vary with reduced

volume. Following for instance the recent study by Farutin and Misbah34, U scales as

(1− ν)
1
2 , so that the maximal displacement scales as (1− ν)

1
8 . This sharp increase around

ν = 1 explains the strong difference between the quasi-spherical vesicles (νa > 0.99) and the

more deflated ones (νa < 0.98) seen on Fig. 3. On the other hand, from Olla’s results47,

U is multiplied by a factor 2.7 between prolate vesicles of reduced areas 0.98 and 0.82,

respectively. The maximum displacement for vanishing yi should then be multiplied by

2.71/4 ' 1.3. Such a tiny variation is within the scattering and error of experimental data.

Similarly, when the viscosity ratio is varied, no significant displacement variation is ob-

served, as shown in Fig. 4. Once again, this is consistent with our empirical law, since from

Olla’s results again, for νa = 0.9, U1/4 decreases only by 2% between vesicles of viscosity

ratio 0.28 and 1, and by 12% between vesicles of viscosity ratio 1 and 3.8. According to Zhao

and Shaqfeh35, the maximum displacement drops by about 30% between viscosity ratio 1

and 7.

In the next section, we address the same questions with full 3D numerical simulations

restricted to the case λ = 1, following our discussion on the weak influence of the viscosity

ratio in the previous section. We then confront the numerical results with the experimental

ones.
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FIG. 4. Experimental lateral displacements ∆y/R0 as a function of yi/R0 for vesicles with different

viscosity ratios; λ = 0.28: νa ∈ [0.73; 0.98]; λ = 1: νa ∈ [0.82; 0.98] ; λ = 3.8: νa ∈ [0.77; 0.98].

Error bars correspond to a spatial uncertainty of 1µm. Only part of them are presented for clarity.

IV. MODEL AND NUMERICAL METHOD

A. Liquid and membrane

In this section we outline the model and numerical method. The internal and external

liquids are modeled as incompressible, homogeneous, Newtonian fluids. We restrict our

study to the case where their densities, as well as their viscosities, are equal. Both liquids

flow in the creeping regime.

The membranes are modeled by two dimensional surfaces. As for the liquids, their inertia

is negligible. Their areas stay locally constant. They resist bending with an energy Eb, given

by50
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Eb =

∫
A

κ

2
(2H)2dA, (2)

where A is the membrane surface, κ the bending rigidity, and H the mean curvature.

The sign convention for the curvatures is taken so that the mean curvature of a sphere is

negative.

The resulting surface force density that the membrane exerts on the fluids is

f = −{κ[2H(2H2 − 2K) + 2∆sH]− 2ζH}n+∇sζ,

where n is the unit normal vector pointing outward, K the Gaussian curvature, and ζ

a Lagrange multiplier that enters the total energy, obtained by adding to (2)
∫
A
ζdA . It

ensures local membrane incompressibility and satisfies:

∇s · v = 0, (3)

where ∇s is the surface gradient operator and v is the membrane velocity.

Note that we don’t include in our model any other small range interaction than the

hydrodynamic forces within the lubricating film, described as squeezed between athermal

membranes. As a first approximation, we considered that theses stresses grow fast enough

so that the minimal distance between the membranes, that we denote d, remains higher

than a typical distance under which other type of interactions become significant. The first

one that would appear is linked to the inhibition of thermal fluctuations51, which leads to

an entropic repulsion pressure. It is of order 0.2(kBT )
2/(κd3). It would balance the imposed

pressure, estimated as ηγ̇, that tends to push the two vesicles towards each other, if

d ∼ (
0.2(kBT )

2

κηγ̇
)1/3. (4)

Using the typical value κ ∼ 20kBT , for the smallest shear rate in our experiments 1s−1, one

finds that d reaches values in the range of 100nm. We checked that, in the trajectories we

investigated, d remains higher than the previous estimate. The facts that the entropic force

is repulsive, and that, on the contrary to some rigid particles, there are no heterogeneities on

the phospholipid membranes that can facilitate the drainage of the lubricating film, support

even more our approximation.
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B. Boundary conditions

The membranes are supposed to be at osmotic equilibrium and are modeled as imper-

meable. Together with the no slip boundary condition, this leads to an advection of the

membranes with the local velocity of the flow.

A force balance on the membrane yields

f = −(σ+ − σ−) · n, (5)

where σ is the liquid stress tensor with a + or − superscript respectively for the external and

internal fluids, defined as σ = −p11 + η (∇v + (∇v)t). Far from the vesicles, the imposed

simple shear flow v∞ = γ̇yex is recovered.

We denote by R12 = (x, y, z) the vector linking the centers of mass Ci of the two vesicles.

We shall study the evolution of (y, z) as a function of x, that is, the trajectory of vesicle 2

in the frame centered on vesicle 1. Different initial positions (yi, zi) will be scanned, with

initial longitudinal distance xi much larger than the vesicles radii. A sketch of the initial

state of the system is presented in Fig. 5.

C. Numerical method

The full set of equations in the Stokes regime can be converted into a boundary integral

formulation52. The integral equation (recalled below) is solved numerically in three dimen-

sions following the work by Biben et al.28. The new elements of the present study are the

extensions to two vesicles and, in a second time, to the presence of a wall that turns out to

be a relevant ingredient when confronting the numerical results with the experimental one.

We shall first study the situation without wall, which is the main goal of the paper.

The integral equation provides the expression of the membrane velocities as a function

of boundary integrals and reads

vα(r) = v∞α (r) +

∫
∂Ω

Gαβ(r, r
′)fβ(r

′)dA′, (6)

where r is the position vector of a membrane point, ∂Ω the boundaries present in the

system under consideration, which are in the present case the two vesicle membranes, and

G(r, r′) the Green’s function of an incompressible fluid following Stokes equation. As we
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FIG. 5. A schematic view of the initial state of the system

consider an unbounded domain, an appropriate choice is the Green’s function associated to

a point force in an infinite liquid, such that Gαβ(r, r
′) = G∞

αβ(r− r′), where52

G∞
αβ(r) =

1

8πη

(
δαβ
r

+
rαrβ
r3

)
. (7)

For most simulations, the vesicles are meshed by 642 vertices, and the time step is

10−4ηa3/κ. We checked that for a typical trajectory ((yi, zi) = (0.5, 0)), results were rela-

tively independent from a reduction of the mesh size and time step: increasing the number

of vertices to 2562 and reducing the time step by a factor 2 led to relative changes in the

transverse migration of 0.3%. A challenge is to achieve an evolution of the membrane shapes

ensuring a local conservation of the area. We present in appendix A details showing that
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our study conserves the area with a good approximation. The simulations start with both

vesicles having the steady inclination angle of an isolated vesicle in shear flow, obtained from

a preliminary simulation.

V. NUMERICAL RESULTS

A. Identical vesicles in the same shear plane

We start with the case of identical vesicles, with the typical parameters (λ = 1, ν = 0.95),

in the same shear plane of an infinite simple shear flow. The capillary number is taken in

the set {10, 50, 100}, so that the whole range of possible experimental values is covered. We

plot in Fig. 6 the interaction curve ∆y(yi) (that is the difference between the final and initial

y-positions), with initial and final distances corresponding to xi = −10a and xf = 10a.

For all values of Ca, we recover the decrease of ∆y/R0 from around 1 to zero. All

deviations become smaller than 0.1 for yi/R0 > 2.5. There is a good agreement with the

simple model based on the law for the lift of a vesicle near a wall, that was presented in

the preceding section. It thus validates this model as a convenient tool to anticipate the

dependency of the lift with the mechanical properties of the vesicles. Note however that,

since the shape in Olla’s model is prescribed, no dependency on Ca can arise from it.

Overall, considering that there are no fitting parameters (but some experimental un-

certainty on Ca), the agreement is rather satisfactory. However, the experiments lead to

smaller displacements, as the numerical curve passes through the error bars of only about

30% of the experimental points. This discrepancy may be explained by differences between

the experimental configuration and the ideal unbounded simple shear flow on three aspects.

First, the suspension is slightly polydisperse, both in shape and size. Second, the centering

in the z direction might not be perfect. Indeed, the depth of focus of the microscope is

about 5µm, which allows zi to differ from 0 by amounts up to R0/2. Third, the balance

between wall-induced lift forces and sedimentation in the y direction is perturbed during the

interaction, and may also not be fully reached before interaction starts, because of preceding

interactions. All those effects could be non negligible. We use the numerical model to study

their relative importance.
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FIG. 6. Simulated displacements in the y direction for zi = 0, λ = 1, ν = 0.95 (νa = 0.91),

Ca ∈ {10, 50, 100}, and comparison with experimental data (same data as in Fig. 3). Error bars

correspond to a spatial uncertainty of 1µm. Only part of them are presented for clarity. For

comparison, we also plot the curve obtained through our simple model (Eq. 1) with ξ = 8U given

by the U value obtained from Olla’s theory47 for ν = 0.95.

B. Departure from interaction of two identical vesicles in a shear plane of a

simple shear flow

Influence of polydispersity

Regarding the influence of polydispersity, we computed several sets of interaction curves,

with Ca = 10, first changing the radius ratio so that R2/R1 ∈ {0.9, 1.1}, and then both

reduced volumes, so that ν1 = ν2 ∈ {0.8, 0.99}. We find relatively small effects, not sufficient

to explain all the data scattering : for instance, for yi/R0 = 0.5, the maximal variation in

∆y is 9%. Such a small effect was expected from the qualitative discussion presented in Sec.

III.
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Influence of zi

We plot the interaction curve ∆y(yi) for zi ∈ {0, 0.46R0, 0.92R0, 1.84R0} (0.92R0 = a).

The result is reported in Fig. 7.
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FIG. 7. Simulated displacements in the y direction for zi ∈ {0, 0.46R0, 0.92R0, 1.84R0} (0.92R0 =

a), λ = 1, ν = 0.95 (νa = 0.91), Ca = 50, and comparison with experimental data (same data as

in Fig. 3).

As expected, the deviation ∆y decreases with zi. Considering that the vesicles can be

initially shifted in the vorticity direction by the maximal distance allowed by the focal depth

of the microscope, a better agreement between experimental data and simulations is found

(about 70% of experimental points, for vesicles of radii 10 µm).

Influence of the bottom channel wall

We consider now the influence of an imbalance between wall-outward migration and

sedimentation. For simplicity and since gravity acts similarly on both vesicles, we only
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consider the wall migration effect. As lift is a decreasing function of the distance to the

wall44, we expect the upper vesicle to migrate less relatively to the wall, so that the distance

between the two vesicles is indirectly reduced due to that wall-induced lift forces.

We compare the whole trajectory obtained by our code with the one corresponding to the

experiment shown on Fig. 2. The geometrical input parameters of the simulation are the

reduced volume ν and the 3D effective radius a, in contrast with the experimentally measured

reduced area νa and the 2D effective radius R0. From the study of isolated vesicles in simple

shear flow, we find that, for Ca = 10, vesicles having same 2D cross-sections as the vesicles of

Fig. 2 are characterized respectively by {ν = 0.98, a = 8.9 µm} and {ν = 0.97, a = 8.6 µm}.

In order to quantify the bottom wall effect, we adopt the Green’s function corresponding

to a semi-infinite fluid52,53, and include the quadratic part of the flow in the plane of shear,

so that the imposed flow is γ̇y(1− y/Ly)ex. The initial distance of vesicle 1 from the wall is

yi,1 = 32µm. The comparison between the experiment and the numerical study is presented

in Fig. 8, without and with wall, for vesicles in the same shear plane (zi = 0). A possible

shift zi/a = 0.39 is also considered together with the presence of the wall.

As expected, lift by the wall leads to a slight initial attraction (a decrease of y for x < 0),

which results in a slightly smaller final lateral displacement when x → ∞. It appears

however that this correction is too small to account for the remaining discrepancy between

the simulations and the experiments, for which the initial attraction of around 1µm, that is

seen on Fig. 2, appears on most trajectories.

Anyhow, this second-order effect is most probably linked with the presence of the wall,

as suggested by recent simulations by Narsimhan et al., where interacting red blood cells in

the vicinity of a wall are studied54. They show that, for particles close enough to a wall,

the relative lateral distance might decrease before interaction (see trajectories on their Fig.

15(b)), sometimes even leading to a completely different scenario of interaction involving

swapping trajectories where particles do not cross. As shown by the authors, the presence

of the bottom wall in the y direction induces the formation of a recirculation vortex behind

the first particle, which is mainly responsible for the initial attraction. It is likely that when

walls are also present in the z direction, as is the case in the experiment, the strength and

extension of this recirculation are larger, leading to the stronger attraction observed in the

first stage of experimental trajectories.

To sum it up, starting from comparable results for experiments and simulations, we
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FIG. 8. Influence of the presence of the wall and the curvature of the imposed flow: comparison

between the trajectory y(x) of the experiment of Fig. 2 and the simulations, where we consider

Ca = 10. For six selected relative positions x, the raw experimental pictures are shown, on which

the simulated shapes are superimposed for the case where the influences of the wall and curvature

of the imposed flow are considered, and zi/a = 0.39 (dotted line).

have shown that a shift in the vorticity direction and the contribution of walls, both being

inherent to the experiment, lead to a decrease of the repulsion, thus to some scattering in

the experimental data, that all lie right below the ideal curve given by the simulations.
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C. Deflection in the vorticity direction

As an extension to experimental results, the model also allows to investigate the effect of

the interaction on the deflection ∆z.

In Fig. 9, we present the interaction curves ∆y(zi) and ∆z(zi), for yi = 0.92R0, the other

parameters remaining the same as previously.

FIG. 9. Interaction curves for ∆y(zi/R0) and ∆z(zi/R0), for yi = 0.92R0 = a, λ = 1, ν = 0.95, Ca =

50, and |xi| = |xf | = 20a

We find that there is a range of initial transverse positions for which the interaction

leads to a transverse attraction between the vesicles, mostly in the vorticity direction. A

similar phenomenon has been predicted for the interaction of capsules22, but not for drops17.

An asymptotic study, for vesicles in the far field interacting regime, also predicts such an

attraction33. However, here the vesicles become close during the interaction, so a qualitative

interpretation of the predicted attraction may involve the description of the flow of the thin
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liquid film between the two tank-treading membranes, as done for drops17.

VI. HYDRODYNAMIC DIFFUSION

From the numerical study, one can expect to deduce results about the hydrodynamic

diffusion properties of vesicle suspensions, in a regime where the solution is concentrated

enough so that interaction effects are not negligible, but dilute enough so that pairwise inter-

actions dominate over three-body interactions. We mostly study the case of self-diffusion, a

phenomenon related to the average transverse motion of a single vesicle. We also find that an

estimation of the collective diffusion coefficients is not possible only considering two-vesicle

interactions, due to the long range of hydrodynamic interactions.

A. Self-diffusion

1. Theoretical background

We consider a homogeneous suspension of vesicles, described at a mesoscopic level by a

volume fraction φ. For a given initial state, if this suspension is sheared by an imposed flow

v∞ = γ̇yex, a given vesicle will interact with the others and, as a result, will undergo a

net displacement X from its original streamline. In an unstructured semi-dilute suspension,

the transverse motion of the vesicle is expected to be a random walk due to successive

interactions with different vesicles. At long times, its mean-squared displacement 〈X2
α〉 is

described by the self-diffusion coefficients Ds,α, defined by

Ds,α = lim
t→∞

1

2

d〈X2
α〉

dt
,

with α ∈ {y, z}, 〈.〉 being an ensemble average over all possible initial states of the

suspension17.

As detailed by Da Cunha and Hinch14, assuming that only two-vesicle interactions occur

leads to the following expression for Da,α:

Ds,α = φγ̇a2fα, (8)
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with

fα =
3

2π

∫
(yi,zi)∈[0,+∞]2

∆2
l,αyidyidzi, (9)

where ∆l,α is the deviation of a test vesicle in the laboratory frame after one interaction.

For identical vesicles, ∆l,α = ∆α/2. In the latter integral and from now on, all lengths are

expressed in a units.

2. Analysis of the formal convergence of the diffusion coefficient

As the hydrodynamic interaction between two vesicles slowly decreases, the question of

the convergence of the previous integral arises. As all displacements ∆l,α are bounded,

the convergence of the expression 9 is linked to the contribution of the integration domain√
y2i + z2i � 1. We analyze this contribution by using an asymptotic study of two interacting

quasi-spherical vesicles remaining very distant from each other, that was recently proposed

by Gires et al.33. We first need to determine the domain in the (yi, zi) space for which this

asymptotic study is valid, a discussion that was not provided in the original paper. For the

asymptotic study to be valid, vesicles must remain far enough along the whole trajectory,

so that, at all times, ||R12|| � 1. As
√

y2i + z2i � 1, one could expect this criterion to be

always satisfied. However, let us consider yi = 0. If there was no interaction, both vesicles

would flow with the same velocity. But, since the velocity field induced by one vesicle

is radial, vesicle collision may occur, which is inconsistent with the asymptotic approach.

These considerations hint to the fact that the asymptotic study may not be valid for yi � 1.

In order to get a more accurate validity criterion, we assume the asymptotic study to be

valid for all times, and check that the inter-vesicle distance remains large. We expect that

this approach can be used as each vesicle is not in the vicinity of a bifurcation phenomenon,

such as the transition between the tank-treading and vacillating-breathing modes.

As detailed in Gires et al.33, within this asymptotic approach with respect to the inter-

vesicle distance, the trajectory of C2 with respect to C1 is of the form:

y(x) =yi +
1
γ̇

[(
x3

(x2+b2)3/2
+ 1

)
Txx

b2
− 2yiTxy

(x2+b2)3/2

+
(

(2x2+3b2)x

(x2+b2)3/2
+ 2

)
y2i Tyy

b4

]
, (10)
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and

z(x) =
(y(x)− yi)zi

yi
+ zi, (11)

where b =
√

y2i + z2i , and {Txx, Txy, Tyy} are constants linked to the perturbation of the

velocity field induced by the vesicles.

As the symmetry of the system does not depend on the reduced volume, we expect

these scalings to be valid for vesicles of arbitrary deflation in the tank-treading regime, the

dependency on the reduced volume being accounted for by the tensor Tαβ.

As y(x) − yi = O(b−2), the y distance between the vesicles will remain large if initially

large. However, as z(x)− zi = zi/yi × O(b−2), problems may arise at small yi, as discussed

earlier. In this case, the prevalent term in Eq. 10 is the term proportional to Txx/b
2.

If Txx < 0, this could lead to a minimal distance in the vorticity direction of the form

zmin = zi − c/(yizi), with c > 0. In order that the asymptotic approach remains valid

starting with zi � 1, we impose the condition that zmin > zi/d, (d > 1), where d is a

constant. This criterion can be achieved if yi > e/z2i , with e = dc/(d− 1) > 0.

For initial positions satisfying this criterion, we find from Eqs. 10 and 11 that

∆y = O(
y2i − z2i

(y2i + z2i )
2
), (12)

∆z = O(∆y
zi
yi
). (13)

It is clear from these expressions that the integral of Eq. 9, restricted to the region where

the asymptotic expression is valid, is convergent.

As for the region of large zi and small yi with yi < e/z2i , where the asymptotic expression

is not valid, since ∆2
l,α is bounded by its maximal value and the integral of yi on this region

is finite, its contribution to the integral in Eq. 9 is bounded, and finally the whole integral

is convergent.

3. Numerical determination of the self-diffusion coefficient

We now estimate the value of fy (Eq. 9) that enters the expression of the diffusion

coefficient (Eq. 8). For that purpose we need to run several simulations by starting with
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FIG. 10. (a) Evolution of the transverse position of a vesicle as a function of (yi, zi). ν = 0.95, Ca =

50. The lowest considered value for yi is yi = 0.1a, for which we chose |xi| = |xf | = 80a. For

the other points, |xi| = |xf | = 40a. Panel (b) shows a zoom on the range (yi, zi) ∈ [0, 2] × [0, 2],

where displacements are represented by arrows. For zi = 0, arrows are slightly shifted to avoid

superimposition.
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fy fz

part A 0.028 0.002

part B 0.003 0.004

part C 0.001 0.005

TABLE II. Contributions of the sub-domains to the dimensionless self-diffusion coefficients fy and

fz. ν = 0.95, Ca = 50.

different initial position in the y−z plane (which is the plane orthogonal to the flow direction)

and determine by how much the initial relative positions yi and zi have varied (by amounts

∆y and ∆z) after the two vesicles have interacted. We discretize the domain of initial values

(yi, zi) by considering the following domain size [0, 8] × [0, 8] (in units of vesicle radius a).

The discretized lattice of initial positions is shown in Fig. 10(a) with dark gray disks (blue

online). Since the interaction is important only when the two vesicles are separated by

about 2 or 3 radii, the lattice has a wide enough periodicity far away from (0, 0), whereas

in the vicinity further refinements are chosen in order to gain numerical precision. More

precisely, the domain is decomposed into three regions A, B and C, consisting in [0, 2]×[0, 2],

{[0, 4] × [0, 4]}�{[0, 2] × [0, 2]} and {[0, 8] × [0, 8]}�{[0, 4] × [0, 4]}. The lighter gray disks

(red online) in Fig. 10(a) show the final relative positions yf and zf . We note that in region

C the effect is weak, while it becomes more and more pronounced in region B and A. The

contributions of the integral involved in Eq. 9 on the different sub-domains A, B and C are

then evaluated using a trapezoidal rule. The results are given in Table II.

We find that the contributions for fy are decreasing. As we proved the convergence of

the expression, we expect the contributions of the remaining part of the plane to be at most

of the order of the contribution of the sub-domain C, and thus get the following estimation

for fy:

fy = 0.032± 10%. (14)

The uncertainty of 10% is a rough estimate coming from a study of the sensitivity of the

code to some numerical parameters, like a tension parameter used to preserve locally the

area of the membrane.
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For fz, we do not get decreasing contributions, due to the slow decrease of ∆z with zi

when yi � 1. A similar study has been presented by Zhao and Shaqfeh35, who calculated fy

for ν = 0.95 and Ca = 1. Using the effective radius based on the surface as a length scale

(a′ =
√

S/4π, where S is the vesicle membrane area) they find fy = 0.028. With the same

convention instead of our choice of radius based on the volume, we find fy = 0.032ν2/3 =

0.031, for ν = 0.95 and Ca = 50, which is a consistent result since lateral displacement

increases with Ca (Fig. 4). Zhao and Shaqfeh also estimated the value of fz, restricting to

the integration domain [0, 3]× [0, 3] : their value matches ours on the same region. However,

the present study shows that restricting the integration to this domain is not sufficient to

get a quantitative value of fz, due to the slow decrease of the attraction with zi for vesicles

characterized by yi � 1.

We are not aware of experimental measures of fy to which we could compare our esti-

mation. On the basis of studies on suspensions of spheres, the assumption of considering

only two-vesicle interactions could be a good approximation up to volume fractions of about

10%55.

4. Discussion

From simulated trajectories, Loewenberg and Hinch17 calculated fy and fz for pairs of

drops as a function of viscosity ratio and capillary number. They evoke the scaling at long

distance ∆α ∼ 1/(y2i + z2i ), which is similar to ours, to prove the convergence of the integral

of Eq. 9. It appears that in the case of drops, restricting the integration domain to A+B is

sufficient, for fy as for fz. For λ = 1, fy was found to be around 0.03±0.01, depending on the

capillary number, a result close to ours. A more quantitative comparison is precluded by the

dependency with capillary number and the difference in nature between the elastic restoring

forces involved in drops and vesicles. Interestingly, Loewenberg and Hinch17 find fz ' 0.004,

while we already find a result 3 times larger by integration over A+B+C. We can conclude

that anisotropy in self-diffusion is lower for vesicles than for drops. This weaker anisotropy

is also stated by Lac and Barthès-Biesel in their study of capsules collisions, though fy and

fz are not calculated22.
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B. Down-gradient diffusion

The collective diffusion property of a vesicle suspension can be modeled in the following

way: we consider a suspension of vesicles with a linearly increasing concentration given by

φ = φ0 + αy, sheared by an imposed flow v∞ = γ̇yey. As a result of the hydrodynamic

interactions between the vesicles, we expect a collective diffusion of the vesicles to appear,

consisting of a transverse flux j = jey of vesicles. As for molecular diffusion due to thermal

motion, j is expected to be in the opposite direction of ∇φ, of order O(α). Thus, for αa
φ0

� 1,

we expect that j = −Dc,yα, with Dc,y > 0. As done by Da Cunha and Hinch in the case of

rough spheres14, we tried to estimate Dc,y assuming only two-vesicle interactions. This leads

to an expression involving the integral of y2i∆y over the plane. However, as ∆y = O(
y2i −z2i

(y2i +z2i )
2 )

and the integral of
y2i (y

2
i −z2i )

(y2i +z2i )
2 over [0, y0]× [z0,+∞], with (y0, z0) ∈ R∗

+
2, is divergent, it turns

out that the estimated expression is not convergent. A renormalization procedure, analogous

to the one used by Batchelor1,56, and followed by Wang et al.57 in the case of the study of

the hydrodynamic diffusion properties of a suspension of spheres, may lead to a convergent

expression. It is hoped to investigate this matter further in a future work.

VII. CONCLUSION

We performed an experimental and numerical study of the trajectory deviations of iden-

tical vesicles interacting in shear flow. In experiments, restricted to pairs of vesicles in

the same shear plane, the amplitude of the net displacement decreases quickly when the

initial lateral distance increases and becomes negligible when this distance is larger than

approximately two vesicle radii.

A simplified model based on the well established law for the lift of a vesicle near a wall

was proposed, which allows to estimate quantitatively how the displacement should vary

with the mechanical properties of the vesicles.

With no fitting parameter, the deviations are found to be in rather good agreement

with our 3D simulations, even if smaller deviations are found experimentally. We found

than the main part of this discrepancy can be due to differences between the experimental

configuration and the ideal case of unbounded shear flow where the two vesicles would be

perfectly coplanar. The effect of walls, recently highlighted by Narsimhan et al.54, would
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need to be quantified thoroughly in complementary experiments where our requirements

of similar deflation within the pair of vesicles could be loosened for simplicity, since the

effect of deflation has been characterized and shown to be weak. We also indicate that,

according to partial results not shown here, the requirement of identical size within a pair

may be released, as rescaling of the displacements by the average radius R0 of two vesicles

of different size lead to a similar curve for ∆y/R0 as a function of yi/R0.

In addition, displacements in the vorticity direction were explored through the simulations

and found to be about an order of magnitude lower than in the shear direction, with a range

of initial distances leading to a weak attraction of vesicles.

Shear-induced diffusion coefficients can be obtained by a proper averaging of the net

displacement over all initial configurations. The self-diffusion, related to the random walk

of vesicles in a suspension, can be quantified using a discrete integration over a relatively

small domain for the diffusivity in the shear direction, and could be determined in the

vorticity direction if a larger integration area was considered, due to the slower decrease of

the amplitude of displacement in that direction. Note that this integration would not have

been possible in 2D58 where the displacements would scale like 1/y instead of 1/y2.

An estimation of the down-gradient diffusivities as defined by Da Cunha and Hinch14 was

not possible due to the long range of hydrodynamic interactions, leading to a divergence of

the integrals. In this case, the dilute limit assumption breaks down and one can no longer

consider only pair interactions as is the case for rough spheres with short range interactions14.

Appendix A: Local conservation of the area

We present in this appendix results about the local conservation of the area of a vesicle,

during a typical trajectory. The parameters chosen were (Ca = 50, λ = 1, ν = 0.95, yi =

0.5a, zi = 0). First, we plot in Fig. 11 the maximal relative variation of the area of the

mesh faces, between two time steps, if they were advected by the full velocity field (in the

simulation, the vertices are only advected by the normal component of the velocity field).

We find that this maximum can reach values higher than one. However, the proportion

of faces corresponding to such values stays lower than 0.1%, as shown in Fig. 12.
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FIG. 11. Maximal relative variation of the area of the faces. Ai,n is the area of face i at time step

n, and ∆Ai,n is its variation during one time step, if it were advected by the full velocity field.
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