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We provide an example which gives some new evidence to a recent conjecture of G. Rémond on lower bounds for the height.

Theorem 1.3. Conjecture 1.2 holds for the subgroup

Γ = ζ 3 t , 2 1/3 t t≥1 .
More precisely, let α be a non-zero algebraic number in the infinite extension

Q(ζ 3 , 2 1/3 , ζ 3 2 , 2 1/3 2 , ζ 3 3 , 2 1/3 3 , . . .) .
Then either there exists a positive integer N such that α N ∈ 2 or h(α) ≥ log(3/2)/18 .

Let us briefly explain why we are not able to prove conjecture 1.2 for Γ = 2 div but we can prove it for Γ = ζ 3 t , 2 1/3 t t≥1 . All the known proofs of the weak form of conjecture 1.1 for Γ = {1} div (even in dimension > 1, or in other settings, for instance for abelian varieties or in a recent result by Habegger [START_REF] Habegger | Small Height and Infinite Non-Abelian Extensions[END_REF]) rest on a dichotomy already present in [START_REF] Amoroso | A Lower Bound for the Height in Abelian Extensions[END_REF]. Roughly speaking, the core of the diophantine proof (the extrapolation step) consists of two metric properties. The first one, which comes from the standard Frobenius (or, if we prefer, Fermat's Small Theorem) argument, works if there is no ramification. The second one is useful if instead we have ramification. In the present situation we do not succeed to generalize the first metric property and thus we cannot solve conjecture 1.2 even in the said special case. However, we are able to generalize the second metric property in some extensions which are totally ramified at some fixed primes p, as Q(ζ 3 r , 2 1/3 s ) (r ≥ s ≥ 1) for p = 3. We hope that in the future someone will also be able to extend the full method of [START_REF] Amoroso | A Lower Bound for the Height in Abelian Extensions[END_REF] to solve the height problem for the extension Q(ζ n , 2 1/n ) n≥1 . This would probably allow to solve conjecture 1.2 and even the weak form of conjecture 1.1 for an arbitrary subgroup Γ of finite rank.

There is nothing special in the numbers 2 and 3 which appear in theorem 1.3, and indeed we shall prove (theorem 3.3) a lower bound for the height in the infinite extension

Q(ζ p , b 1/p , ζ p 2 , b 1/p 2 , ζ p 3 , b 1/p 3 , . . .)
, where p is a prime number and b ≥ 2 is an integer such that p b and p 2 (b p-1 -1). While the first condition is important for our method, the second one can be probably relaxed. More generally, our method could be generalized, at the price of a deeper analysis on the ramification in radical extensions, to get some partial results in the case of an arbitrary subgroup of finite rank (see remark 3.4). Since we are not able to solve conjecture 1.2 even in the special case Γ = 2 div , we have preferred to avoid such technical generalizations.

The plan of this paper is as follows. In section 2 we recall some results on higher ramification groups of the radical extension Q(ζ p r , b 1/p s ) for r ≥ s ≥ 1 which have been completely and explicitly described in Viviani's Master Thesis [START_REF] Viviani | Ramifications groups and Artin conductors of radical extensions of Q[END_REF], written under the supervision of Dvornicich. In section 3 we prove our main result and we discuss some possible generalizations of our method.
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Ramifications

We are concerned with lower bounds for the height in the infinite extension

Q(ζ p , b 1/p , ζ p 2 , b 1/p 2 , ζ p 3 , b 1/p 3 , . . .)
where b ≥ 2 is an integer and p ≥ 3 is a prime which will remain both fixed for the rest of the paper. For technical reasons, we assume p b and p 2 (b p-1 -1). We remark that, under the first assumption, the second hypothesis is equivalent to b ∈ Q p p . Let r, s be integers with r ≥ s ≥ 0. We need some facts about the radical extension L r,s :

= Q(ζ p r , b 1/p s ) .
We easily see that L r,s /Q is Galois (since r ≥ s) of degree φ(p r )p s . The last assertion is proved in [START_REF] Viviani | Ramifications groups and Artin conductors of radical extensions of Q[END_REF], Corollary 2.7 if r = s. The same proof works if r > s.

Indeed, since b ∈ Q p p , we have b ∈ Q p which in turns implies b ∈ Q(ζ p r ) p by a theorem of Schinzel ([8], Proposition 2.5) and thus x p s -b is irreducible over Q(ζ p r ) by a theorem of Capelli ([8], Theorem 2.1). By standard Galois Theory Gal(L r,s /Q) ∼ = C(p s ) G(p r ) (2.1)
where C(p s ) = Z/p s Z and G(p r ) = (Z/p r Z) * . The isomorphism is given by σ → (i, k) where i and k are uniquely determined by σ(b

1/p s ) = ζ i p s b 1/p s and σ(ζ p r ) = ζ k p r .
For later reference we recall that G(p r ) has a filtration given by the subgroups G(p r ) j := {k ∈ G(p r ) such that k ≡ 1 mod p j } (j = 0, . . . , r). Remark that G(p r ) j is cyclic of order p r-j for j = 1, . . . , r, while G(p r ) 0 = G(p r ).

We now recall some facts on the ramifications in the extension L r,s /Q. Proposition 2.1. Let r, s be integers with r ≥ s ≥ 0 and r ≥ 1. Then:

1) p is totally ramified in L r,s . Thus pO Lr,s = Q e with e := [L r,s : Q] = p r-1+s (p -1) .
2) Let G l be the last non trivial ramification group. Then

l =    2p 2s-1 -p+1 p+1 , if r = s;
(p-1)(p 2s -1) p+1

+ p 2s (p r-1-s -1), if r > s.

3) The fixed field of G l is

L G l r,s =    L r,s-1 , if r = s; L r-1,s , if r > s.
Proof. Let for short L = L r,s .

There is only one prime Q above p in the extension L/Q and the completion of L with respect to Q is Q p (ζ p r , b 1/p s ). If r = s, this is proved in [START_REF] Viviani | Ramifications groups and Artin conductors of radical extensions of Q[END_REF], Corollary 2.7. The same proof works if r > s, as we briefly show. The minimal polynomial For the proof of 2), see [START_REF] Viviani | Ramifications groups and Artin conductors of radical extensions of Q[END_REF], Theorem 5.8. This theorem also gives

X p s -b of b 1/p s over Q(ζ p r ) is still irreducible over Q p (ζ p r
G l ∼ =    C(p), if r = s; G(p r ) r-1 , if r > s
where the two groups on the right are naturally identified with subgroups of C(p s ) G(p r ) and where the isomorphism is the restriction of (2.1). Assertion 3) easily follows.

We also need the following elementary computation:

Lemma 2.2. Let r, s, e and l be as in Lemma 2.1. Then p 2 (l + 1) ≥ e (and moreover p(l + 1) ≥ e if s = 0 or r ≥ s + 2).

Proof. Let us assume first r = s. Then, according to Proposition 2.1, e = p 2s-1 (p -1) and

l + 1 = 2p 2s-1 -p + 1 p + 1 + 1 = 2(p 2s-1 + 1) p + 1 .
Thus

p 2 (l + 1) -e = 2p 2 (p 2s-1 + 1) -p 2s-1 (p 2 -1) p + 1 = p 2s+1 + 2p 2 + p 2s-1 p + 1 > 0 .
Let now r > s. Proposition 2.1 gives e = p r-1+s (p -1) and l + 1 = (p -1)(p 2s -1) p + 1 + p 2s (p r-1-s -1) + 1 = p r-1+s -2(p 2s -1) p + 1 .

Thus, if s = 0 we have p(l + 1) = p r > p r-1 (p -1) = e. Similarly, if r ≥ s + 2,

p(l + 1) -e = p r-1+s - 2p(p 2s -1) p + 1 ≥ p 2s+1 -2p 2s > 0 .
If instead s ≥ 1 and r = s + 1 we still have

p 2 (l + 1) -e = (p 2 -p + 1)p 2s - 2p 2 (p 2s -1) p + 1 ≥ (p 2 -3p + 1)p 2s > 0 .
3 Metric properties and proof theorem 1.3.

Let r ≥ s ≥ 0 with r ≥ 1. Put for short L = Q(ζ p r , b 1/p s ) and

L 0 = Q(ζ p r , b 1/p s-1 ), g = b 1/p s , if r = s; L 0 = Q(ζ p r-1 , b 1/p s ), g = ζ p r , if r > s. (3.1) 
Thus L = L 0 (g) and L/L 0 is a cyclic extension of degree p -1 or p, depending on whether (r, s) = (1, 0) or not, with Galois group G l (see proposition 2.1 point 3). We choose one of its generators σ. In both cases σg/g is a non trivial p-th root of unity.

The following lemma is the key ingredient of our proof. It generalizes the metric property of the ramified case of the lower bound for the height in abelian extensions ( [START_REF] Amoroso | A Lower Bound for the Height in Abelian Extensions[END_REF], lemma 2 and proposition 1). In the proof we use a simplification due to Habegger (see [START_REF] Habegger | Small Height and Infinite Non-Abelian Extensions[END_REF], lemma 4.2), which allow us to avoid the use of the Strong Approximation Theorem made in [START_REF] Amoroso | A Lower Bound for the Height in Abelian Extensions[END_REF] (cf. lemma 1 therein).

Given a place v, we denote by |•| v the corresponding absolute value normalized to induce on Q the underlying standard absolute value.

Lemma 3.1. Let α, g ∈ Q * such that α/g ∈ L.
We assume:

1) There exists an integer n such that gn ∈ L 0 ;

2) For any place v | p we have |g| v = 1.

Then either there exists an integer j such that α/gg j ∈ L 0 or

h(α) ≥ log(p/2) 2p 2 .
Proof. We put for short β = α/g ∈ L. Let E be the Galois closure of L(α) = L(g) over L 0 . We still denote by the same letter σ an arbitrary extension of σ to E. We make some elementary remarks.

Remark.

i) By 1) we have σg = ζ g for some root of unity ζ ∈ E. Thus σβ = σα/ζ g and

σβ p 2 -β p 2 = σα p 2 -(ζα) p 2 /(ζ g) p 2 .
ii) Let v be a place of E dividing p. By 2) we have |g| v = 1. Thus |β| v = |α| v and, by the previous remark, |σβ| v = |σα| v and

|σβ p 2 -β p 2 | v = |σα p 2 -(ζα) p 2 | v .
Let us now go on with the proof. Assume first

σβ p 2 = β p 2 . Let ω := σβ/β ∈ L.
Then ω is a p 2 -th root of unity. Since L 0 contains the p-th roots of unity, σω p = ω p and thus σω = ηω for some p-th root of unity η ∈ L 0 . From σβ = ωβ and σω = ηω we deduce that σ j β = η 1+•••+(j-1) ω j β and thus β = σ p β = ω p β which tells us that ω is indeed a p-th root of unity. Since σg/g is a non trivial p-th root of unity, there exists j such that ω = σg j /g j . But then σβ/β = σg j /g j which shows that α/gg j = β/g j is in the subfield L 0 fixed by σ, as required.

Assume now σβ p 2 = β p 2 . By remark i) σα p 2 = (ζα) p 2 . We want to apply the product formula to σα p 2 -(ζα) p 2 .

Let v be a place of E dividing p and let w be the the restriction of v at L. Assume for the moment β ∈ O w the ring of integers of the completion of L at w. By Proposition 2.1 points 1) and 2) we have pO L = Q e and σβ -β ∈ Q l+1 . By Lemma 2.2, we have p 2 (l + 1) ≥ e. Thus

σβ p 2 -β p 2 ≡ (σβ -β) p 2 ≡ 0 mod pO w and |σβ p 2 -β p 2 | v ≤ p -1 .
If β ∈ O w we have β -1 ∈ O w and the argument before gives

|σβ -p 2 -β -p 2 | v ≤ p -1
from which we easily deduce that

|σβ p 2 -β p 2 | v ≤ p -1 max(1, |σβ| v ) p 2 max(1, |β| v ) p 2
Hence this inequality holds in both cases β ∈ O w and β -1 ∈ O w . By remark ii)

|σα p 2 -(ζα) p 2 | v ≤ p -1 max(1, |σα| v ) p 2 max(1, |α| v ) p 2 .
For the other places v of E we use the trivial inequality as required.

|σα p 2 -(ζα) p 2 | v ≤ C(v) max(1, |σα| v ) p 2 max(1, |α| v ) p 2 with C(v) = 1 if v ∞
Let Γ be a subgroup of Q * and let α be a non-zero algebraic number. Following Silverman (as quoted in [START_REF] De La Maza | Heights of algebraic numbers modulo multiplicative group actions[END_REF]), we define the Γ-height of α as h Γ (α) = inf{h(gα) such that g ∈ Γ} .

For Γ = {1} div this is the usual Weil height of α. Obviously, h Γ (α) = 0 if α ∈ Γ. On the other hand we cannot hope to reverse this statement for an arbitrary subgroup. However, for saturated (i.e. Γ div = Γ) subgroups of finite rank, Rémond [START_REF] Rémond | [END_REF] proves an explicit lower bound of the shape h Γ (α) ≥ c(Γ, [Q(α) : Q]) > 0 for α ∈ Γ. We state a special case (which is enough for our purposes) of his result in the following lemma. Proof. For l a rational prime we denote by v l the l-adic valuation. Since b = ±1, the vector v = (v l (b)) l is not zero. Since r N ∈ b for all positive integers N , the vector v = (v l (r)) l is not a rational multiple of v. Hence, v and v are Q-linearly independent, i.e. there exist two (distinct) primes l 1 , l 2 such that Proof. Let α be as in the statement of the theorem. Thus there exists t ≥ 0 such that α ∈ Q(ζ p t , b 1/p t ). Let Λ be the set of couple (r, s) of integers with t ≥ r ≥ s ≥ 0 and such that there exists g ∈ ζ p t , b 1/p t for which α/g ∈ Q(ζ p r , b 1/p s ). We

v l 1 (r)v l 2 (b) -v l 2 (r)v l 1 (b) = 0 . Since α n = r n b x ∈ Q, we have v l (α n ) = nv l (r) + xv l (b). Therefore |v l 1 (α n )v l 2 (b) -v l 2 (α n )v l 1 (b)| = n|v l 1 (r)v l 2 (b) -v l 2 (r)v l 1 (b)| ≥ n .

  ) by a theorem of Schinzel ([8], Proposition 2.5), since b ∈ Q p p . A result of Kummer ([8], Lemma 5.1) shows now the desired assertion. By Theorem 5.5 of [8], the local extension Q p (ζ p r , b 1/p s )/Q p is totally ramified. This concludes the proof of 1).

Lemma 3 . 2 .

 32 Let r, b ∈ Q * and n, x ∈ Z with b = ±1 and n ≥ 1. Let us assume that r N ∈ b for all positive integers N . Put α = rb x/n . Then h(α) ≥ 1 3h(b).

For

  a ∈ Q we have |v l (a)| ≤ h(a)/ log l. Thus n ≤ |v l 1 (α n )| • |v l 2 (b)| + |v l 2 (α n )| • |v l 1 (b)| ≤ 2h(b)h(α n ) log l 1 log l 2 ≤ 3nh(b)h(α) , since 2/(log l 1 log l 2 ) ≤ 2/(log 2 log 3) ≤ 3.We can now state and prove a lower bound for the height in the infinite extensionQ(ζ p , b 1/p , ζ p 2 , b 1/p 2 , ζ p 3 , b 1/p 3 , . . .).Theorem 3.3. Let b ≥ 2 be an integer and let p ≥ 3 be a prime number. We assume that p b and p 2 (b p-1 -1). Then conjecture 1.2 holds for the subgroupΓ = ζ p t , b 1/p t t≥1 .More precisely, letα ∈ Q(ζ p , b 1/p , ζ p 2 , b 1/p 2 , ζ p 3 , b 1/p 3 , . . .)be a non-zero algebraic number. Then either there exists a positive integer N such that α N ∈ b or h(α)

i.e. (r, s) ≤ (r , s ) if and only if r ≤ r and s ≤ s .
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1 Introduction

remark that Λ is not empty, since (t, t) ∈ Λ. We select a minimal element (r, s) of Λ for the standard partial order 1 and we choose g ∈ ζ p t , b 1/p t such that

If r = s = 0, then α/g ∈ Q and, by lemma 3.2, either there exists a positive integer

.

Thus we may assume that r ≥ 1. Let L 0 and g as in (3.1):

We apply lemma 3.1. Assertions 1) and 2) of that lemma are clearly verified (the first one since gp t ∈ Q; the second one by the assumption p b). By lemma 3.1, either there exists an integer j such that α/gg j ∈ L 0 or

The first conclusion cannot hold. Indeed gg j ∈ ζ p t , b 1/p t and, by minimality assumption on (r, s) we deduce that α/gg j ∈ L 0 . Thus the second conclusion of lemma 3.1 must hold.

In the special case b = 2, p = 3 we have

This proves theorem 1.3.

Remark 3.4. As already remarked in the introduction, our method could in principle be generalized to prove lower bounds for the height in some more general situation. Let K be a number field, G be a finitely generated subgroup of K * , and S be a set of rational primes. We define the S-division group of G as the subgroup G div,S consisting of those g ∈ Q * such that there exists a positive integer n whose prime factors are in S for which g n ∈ G. The standard definition of division group agrees with this one taking for S the set of all primes. We also remark that, for G = 2 and S = {3} we have G div,S = ζ 3 t , 2 1/3 t t∈N . Let us assume that S is finite and that |g| v = 1 for all g ∈ G and for all place v of K dividing a prime of S. The method of this paper could potentially be extended, at the price of a deeper analysis on the ramification in radical extensions, to prove conjecture 1.2 for Γ = G div,S .