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1 Introduction

Recently Rémond suggests a very general conjecture ([6], conjecture 3.4) on lower
bounds for the height in A where A is either an abelian variety of dimension n or
a power G of the multiplicative group.

Let h(-) be the (absolute, logarithmic) Weil’s height on Q. Let I' C Q" be a
subgroup of finite rank k = dimg (I’ ®7 Q). As usual we define the division group
of I' as

Pagiv ={g € Q" such that 3n € Z>1, g~ €T}

Let Kt = Q(T) be the field of rationality of I'. In this special setting (A = Gy,),

Rémond’s conjecture reads as follows.

Conjecture 1.1 (Rémond 2011). Let a € Q \Tgiy and put d = [Kp() : Kr).
Then:

e (strong form) There exists a positive constant cp such that h(a) > cr/d.

o (weak form) For any € > 0 there exists a positive constant cr(g) such that
h(a) > er(e)/d'Te.

Two cases of conjecture 1.1 were intensively studied. Let first I' = {1}. Thus
Kr = Q and I'g;y is the subgroup @:Ors of torsion points (= roots of unity). The
strong form reduces to the celebrated Lehmer’s problem, while the weak form is a
well-known theorem of Dobrowolski [3]. Remark that the case d =1 is trivial.



Let now I' = {1}giy = Q.. Then, by Kronecker-Weber theorem, Kp =
Q2 and obviously I'giy = I'. The strong form reduces to the so-called “relative
Lehmer’s problem”, while the weak form is the main theorem of [2]. In this
situation, even the case d = 1 is not trivial. It reduces to the main result of [1]:

log 5
12

Vo € (Qab)*\@:ory h(Oé) 2

To our knowledge, there are no non-trivial results for subgroup of positive rank,
even if d = 1. Let us restate conjecture 1.1 in this special case.

Conjecture 1.2. Let I' C @* be a subgroup of finite rank. Then there exists a
constant cr > 0 such that for any o € Q(I')*\I'qiy we have h(a) > cr.

The main purpose of this paper is to give some new evidence to conjecture 1.2.

Let us consider a simple example: T' = (2)4;,. Given a positive integer n we
denote by (, a primitive n-th root of unity. Then conjecture 1.2 states in this
case that for any non-zero o € Q(CQ,QVQ,§3,21/3,C4,21/4, ...) either there exists
a positive integer N such that o™ € (2) or h(a) > ¢ for some absolute constant
¢ > 0. We are not able to give a positive answer to conjecture 1.2 for I' = (2) gy
However, we can prove it for the rank 1 subgroup (g, 2/ 3t>t21 of (2)giv-

Theorem 1.3. Conjecture 1.2 holds for the subgroup
T = (G, 2% )51 .
More precisely, let a be a non-zero algebraic number in the infinite extension
Q(C3,2"3, ¢y, 2% 33,2V )
Then either there exists a positive integer N such that o™ € (2) or
h(a) > log(3/2)/18 .

Let us briefly explain why we are not able to prove conjecture 1.2 for I' = (2) iy
but we can prove it for T' = (g, 2/ 3t)t21. All the known proofs of the weak form
of conjecture 1.1 for I' = {1}g;y (even in dimension > 1, or in other settings,
for instance for abelian varieties or in a recent result by Habegger [5]) rest on
a dichotomy already present in [1]. Roughly speaking, the core of the diophan-
tine proof (the extrapolation step) consists of two metric properties. The first
one, which comes from the standard Frobenius (or, if we prefer, Fermat’s Small
Theorem) argument, works if there is no ramification. The second one is useful
if instead we have ramification. In the present situation we do not succeed to
generalize the first metric property and thus we cannot solve conjecture 1.2 even
in the said special case. However, we are able to generalize the second metric
property in some extensions which are totally ramified at some fixed primes p,
as Q((3r,2Y3") (r > s > 1) for p = 3. We hope that in the future someone
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will also be able to extend the full method of [1] to solve the height problem for
the extension Q((n,2""),>1. This would probably allow to solve conjecture 1.2
and even the weak form of conjecture 1.1 for an arbitrary subgroup I of finite rank.

There is nothing special in the numbers 2 and 3 which appear in theorem 1.3,
and indeed we shall prove (theorem 3.3) a lower bound for the height in the infi-
nite extension Q(¢,,b'/?, Cp2s bL/p?, Cp3 bl/P .), where p is a prime number and
b > 2 is an integer such that p { b and p? { (b»~1 — 1). While the first condi-
tion is important for our method, the second one can be probably relaxed. More
generally, our method could be generalized, at the price of a deeper analysis on
the ramification in radical extensions, to get some partial results in the case of an
arbitrary subgroup of finite rank (see remark 3.4). Since we are not able to solve
conjecture 1.2 even in the special case I' = (2)4;,, we have preferred to avoid such
technical generalizations.

The plan of this paper is as follows. In section 2 we recall some results on higher
ramification groups of the radical extension Q((pr, bt/ P*) for r > s > 1 which have
been completely and explicitly described in Viviani’s Master Thesis [8], written
under the supervision of Dvornicich. In section 3 we prove our main result and we
discuss some possible generalizations of our method.

Acknowledgement We would like to thank Sinnou David who first draw our
attention to Conjecture 1.1. We are indebted to Gaél Rémond for thorough reading
of a preliminary version of this paper and for the reference [7]. We also thank Sara
Checcoli, Ilaria Del Corso and Roberto Dvornicich for a number of interesting and
helpful remarks.

2 Ramifications

We are concerned with lower bounds for the height in the infinite extension

Q(va bl/pv Cp27 bl/an Cp37 bl/ps) . )

where b > 2 is an integer and p > 3 is a prime which will remain both fixed for
the rest of the paper. For technical reasons, we assume p { b and p? { (bP~! — 1).
We remark that, under the first assumption, the second hypothesis is equivalent
to b & Qb.

Let r, s be integers with r > s > 0. We need some facts about the radical
extension

Lr,s = Q(Cp’“, bl/ps) .

We easily see that L,,/Q is Galois (since r > s) of degree ¢(p")p®. The last
assertion is proved in [8], Corollary 2.7 if » = s. The same proof works if r > s.
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Indeed, since b ¢ Qf, we have b ¢ QP which in turns implies b & Q((yr)? by
a theorem of Schinzel ([8], Proposition 2.5) and thus zP" — b is irreducible over
Q(¢pr) by a theorem of Capelli ([8], Theorem 2.1). By standard Galois Theory

Gal(Lys/Q) = C(p®) x G(p") (2.1)
where C(p®) = Z/p*Z and G(p") = (Z/p"Z)*. The isomorphism is given by
o + (i,k) where i and k are uniquely determined by o(b'/?") = C;sbl/ps and
o(Gr) = C;fr. For later reference we recall that G(p") has a filtration given by the
subgroups G(p")? := {k € G(p") such that k = 1 mod p’} (j =0,...,r). Remark
that G(p")’ is cyclic of order p"~/ for j = 1,...,r, while G(p")° = G(p").

We now recall some facts on the ramifications in the extension L, ,/Q.

Proposition 2.1. Let r, s be integers with v > s> 0 and r > 1. Then:

1) p is totally ramified in L, . Thus pOr, , = Q° with
€ = [LT,S : Q] = pT_1+S(p - 1) .

2) Let Gy be the last non trivial ramification group. Then

2p2371_p+1

; p+1 ) ZfT =35
= —1 2s_ 1 1 .
(» z))Efl ) +p23(pr 1-s 1), ifr>s.

3) The fixed field of Gy is

Lys_1, ifr=s;
LG =
r,s
Ly_1s, ifr>s.

Proof. Let for short L = L, .

There is only one prime Q above p in the extension L/Q and the completion
of L with respect to Q is Q,((pr, bl/P*). If r = s, this is proved in [8], Corollary
2.7. The same proof works if r > s, as we briefly show. The minimal polynomial
XP° —b of bY/P° over Q(¢pr) is still irreducible over Q,(¢pr) by a theorem of Schinzel
([8], Proposition 2.5), since b ¢ Qb. A result of Kummer ([8], Lemma 5.1) shows
now the desired assertion.

By Theorem 5.5 of [8], the local extension Q,((yr, b'/P")/Q, is totally ramified.
This concludes the proof of 1).

For the proof of 2), see [8], Theorem 5.8. This theorem also gives

C(p), if r =s;
G =
G, ifr>s
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where the two groups on the right are naturally identified with subgroups of C'(p®)
G(p") and where the isomorphism is the restriction of (2.1). Assertion 3) easily
follows.

g

We also need the following elementary computation:

Lemma 2.2. Let r, s, e and | be as in Lemma 2.1. Then p*(I + 1) > e (and
moreover p(l+ 1) >eif s=0 orr >s+2).

Proof. Let us assume first » = s. Then, according to Proposition 2.1, e =
p* 1(p—1) and

_ 2p2371 —p+ 1 . 2(p2371 + 1)
p+1 p+1 '

Thus

Q(Z N 1) L 2p2(p2371 4 1) _ p2sfl(p2 _ 1) _ p2s+1 + 2p2 _~_p2sfl -0
b p+1 p+1 '

Let now r > s. Proposition 2.1 gives e = p"~!17%(p — 1) and

(p—1(p* —1)
p+1

2(p* - 1)

+p (T T ) 1 =p T p+1

I+1=

Thus, if s = 0 we have p(l + 1) = p" > p"1(p — 1) = e. Similarly, if r > s + 2,

2p(p* — 1)

p(l + 1) —e— pr—l—l-s .

If instead s > 1 and r = s + 1 we still have

B 2p2(p2s _ 1)

b1 Z(p2—3p+1)p25>0.

p’(I+1)—e=(p*—p+1)p*

3 Metric properties and proof theorem 1.3.
Let r > s > 0 with r > 1. Put for short L = Q((pr, bl/ps) and

s—1

Lo =Q(Gr,b"7), g=0b""" ifr=s
Ly = Q(Cpr—l,bl/ps), g = Cpr, if r>s.
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Thus L = Ly(g) and L/Ly is a cyclic extension of degree p — 1 or p, depending on
whether (r,s) = (1,0) or not, with Galois group G; (see proposition 2.1 point 3).
We choose one of its generators o. In both cases og/g is a non trivial p-th root of
unity.

The following lemma is the key ingredient of our proof. It generalizes the
metric property of the ramified case of the lower bound for the height in abelian
extensions ([1], lemma 2 and proposition 1). In the proof we use a simplification
due to Habegger (see [5], lemma 4.2), which allow us to avoid the use of the Strong
Approximation Theorem made in [1] (cf. lemma 1 therein).

Given a place v, we denote by |- |, the corresponding absolute value normalized
to induce on Q the underlying standard absolute value.

Lemma 3.1. Let o, g € Q" such that a/g € L. We assume:
1) There ezists an integer n such that g" € Lo;
2) For any place v|p we have |g|, = 1.

Then either there exists an integer j such that a/gg’ € Lo or

log(p/2)
h(a) > o

Proof. We put for short 5 = a/g € L. Let E be the Galois closure of L(a) =
L(g) over Ly. We still denote by the same letter o an arbitrary extension of o to
E. We make some elementary remarks.

Remark.

i) By 1) we have 0g = (g for some root of unity ( € E. Thus 08 = ca/(g and
oB” = 8" = (00 — (Ca)") /(CO)"" .

ii) Let v be a place of E dividing p. By 2) we have |g|, = 1. Thus |5], = |af,
and, by the previous remark, |of3|, = |oaf, and

087" — B, = |oa?” — (Ca)’|, .

Let us now go on with the proof. Assume first Jﬁp2 = ﬁp2. Let w:=03/p € L.
Then w is a p?-th root of unity. Since L contains the p-th roots of unity, cw? = wP
and thus cw = nw for some p-th root of unity n € Ly. From 0 = wf and ow = nw
we deduce that o7 = n'+TU=1wi 8 and thus § = 0?8 = wPB which tells us that
w is indeed a p-th root of unity. Since og/g is a non trivial p-th root of unity,
there exists j such that w = 0¢’/¢’. But then 03/8 = ¢’ /¢’ which shows that
a/§g’ = B/g’ is in the subfield Ly fixed by o, as required.



Assume now o3P° # 8P, By remark i) ocaP’ + (¢ a)pz. We want to apply the
product formula to oa?” — (Ca)P”.

Let v be a place of F dividing p and let w be the the restriction of v at L.
Assume for the moment 5 € O, the ring of integers of the completion of L at w.
By Proposition 2.1 points 1) and 2) we have pOr, = Q¢ and o8 — € Q. By
Lemma 2.2, we have p?(I + 1) > e. Thus

UBPQ — 6192 = (o — 6)p2 = 0 mod pO,
and , ,
loB” —BP |, <p .

If 8 € O, we have f~! € O,, and the argument before gives \Uﬂ_pQ —B_pz\v <p!
from which we easily deduce that

|aﬁp2 _ 5p2|v < p~ ! max(1, |Uﬂ|v)p2 max(1, |ﬁ|v)p2
Hence this inequality holds in both cases 8 € O,, and 5_1 € Oy. By remark ii)
00 — (¢, < p~" max(L, oal,)” max(L, o], )"
For the other places v of ¥ we use the trivial inequality
l0a?* — (¢a)"], < C(v) max(1, [oa],)”" max(1,|al,)*

with C(v) = 1 if v { oo and C(v) = 2 otherwise. Collecting these inequalities in
the product formula we get

0 < —logp +log2 4 p*h(ca) + p*h(a) = 2p*h(a) — log(p/2) .

Hence

log(p/2)
h(a) > 22
as required.

0

Let I" be a subgroup of Q" and let a be a non-zero algebraic number. Following
Silverman (as quoted in [4]), we define the I'-height of « as

hr(a) = inf{h(ga) such that g € T'} .

For I' = {1} 4iy this is the usual Weil height of . Obviously, hr(a) =0ifa € I'. On
the other hand we cannot hope to reverse this statement for an arbitrary subgroup.
However, for saturated (i.e. I'g;,y = I') subgroups of finite rank, Rémond [7] proves
an explicit lower bound of the shape hr(a) > ¢(I', [Q(a) : Q]) > 0 for a« ¢ I'. We
state a special case (which is enough for our purposes) of his result in the following
lemma.



Lemma 3.2. Letr, b€ Q" and n, x € Z with b # +1 and n > 1. Let us assume
that N & (b) for all positive integers N. Put o = rb%/™. Then

1
h(«) Zm.

Proof. For! a rational prime we denote by v; the l-adic valuation. Since b # +1,
the vector v = (uv;(b)); is not zero. Since rV ¢ (b) for all positive integers N, the
vector v/ = (v;(r)); is not a rational multiple of v. Hence, v and v’ are Q-linearly
independent, i.e. there exist two (distinct) primes I, lo such that

vty (1)1, (b) — iy (r)vr, (b) # 0 .
Since o™ = r™"b* € Q, we have v;(a™) = nv(r) + xv;(b). Therefore
|Ul1 (an)vlz (b> — Ul (an)vh (b)| = n‘vh (T)Ulz (b) — Uiy (T)Ull (b)‘ >n.
For a € Q we have |v(a)| < h(a)/logl. Thus

2h(b)h(a™)

n < foi (@®)] - o (0)] + vy (@) - o, (B)] < - < 3nh(b)h(e) ,

glylogly —
since 2/(log ;1 logla) < 2/(log2log3) < 3.

g

We can now state and prove a lower bound for the height in the infinite exten-
sion Q(Cp, b7, Cpo, BYP°, (s, BI/PP ).

Theorem 3.3. Let b > 2 be an integer and let p > 3 be a prime number. We
assume that p1 b and p? § (=1 —1). Then conjecture 1.2 holds for the subgroup

L= (G 07 )iz
More precisely, let
@ € Q(Cp, b7, Cpa, b7 G, BP0 L)
be a non-zero algebraic number. Then either there exists a positive integer N such

that o™ € (b) or
1 log(p/Q)} _

h(a) > min {3h(b)’ o

Proof. Let « be as in the statement of the theorem. Thus there exists ¢ > 0 such
that a € Q(Cpt,bl/pt). Let A be the set of couple (r,s) of integers with ¢t > r >

s > 0 and such that there exists g € ((,t, or which «/g € . . We
0 and such that th ists § € (Cyr,b'/?") for which a /g € Q(Cpr, bH/P"). Wi



remark that A is not empty, since (¢,t) € A. We select a minimal element (r, s) of
A for the standard partial order! and we choose § € (Gt bt/ pt) such that

a/je L :=Q((,b/7).

If r =5 =0, then /g € Q and, by lemma 3.2, either there exists a positive integer

N such that o € (b) or

1
h(a) > )

Thus we may assume that » > 1. Let Ly and g as in (3.1):

Lo = Q(¢pr, 077, g =07, if r = s;

Lo = Q((pr1, b7, g =", if r > s.

We apply lemma 3.1. Assertions 1) and 2) of that lemma are clearly verified (the
first one since gl’t € Q; the second one by the assumption p { b). By lemma 3.1,
either there exists an integer j such that a/gg’ € Lo or

1 2
h(a) > og(pg/ )
2p
The first conclusion cannot hold. Indeed gg’ € <Cpt,b1/pt> and, by minimality
assumption on (r,s) we deduce that a/jg’ & Log. Thus the second conclusion of

lemma 3.1 must hold.

g

In the special case b = 2, p = 3 we have

in { 1 log(p/Q)} log(3/2)

18

3h(b) 2p?

This proves theorem 1.3.

Remark 3.4. As already remarked in the introduction, our method could in
principle be generalized to prove lower bounds for the height in some more general
situation. Let K be a number field, G be a finitely generated subgroup of K*, and
S be a set of rational primes. We define the S-division group of G as the subgroup
Giv,s consisting of those g € Q" such that there exists a positive integer n whose
prime factors are in S for which g™ € G. The standard definition of division group
agrees with this one taking for S the set of all primes. We also remark that, for
G = (2) and S = {3} we have Ggiv,s = <C3t,21/3t>t€N. Let us assume that S is
finite and that |g|, = 1 for all g € G and for all place v of K dividing a prime
of S. The method of this paper could potentially be extended, at the price of a
deeper analysis on the ramification in radical extensions, to prove conjecture 1.2
forI' = Gdiv,S~

1

i.e. (rys) < (r',¢') if and only if r <7’ and s < &'.
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