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Abstract

Numerical simulations of flows are required for numerous applications,
and are usually carried out using shallow water equations. We describe
the FullSWOF software which is based on up-to-date finite volume meth-
ods and well-balanced schemes to solve this kind of equations. It con-
sists of a set of open source C++ codes, freely available to the commu-
nity, easy to use, and open for further development. Several features make
FullSWOF particularly suitable for applications in hydrology: small wa-
ter heights and wet-dry transitions are robustly handled, rainfall and in-
filtration are incorporated, and data from grid-based digital topographies
can be used directly. A detailed mathematical description is given here,
and the capabilities of FullSWOF are illustrated based on analytic solu-
tions and datasets of real cases. The codes, available in 1D and 2D ver-
sions, have been validated on a large set of benchmark cases, which are
available together with the download information and documentation at
http://www.univ-orleans.fr/mapmo/soft/FullSWOF/.

Flow modeling is required in a large variety of natural or man-made situa-
tions. Originated by Saint-Venant (Barré de Saint-Venant, 1871) in the study of
floods and tides, the description of such phenomena by the so-called shallow
water equations has now become classical in flood forecasting, pollutant trans-
port, dam break, tsunami, soil erosion by overland flow, etc. Because in general
situations no explicit solutions to the shallow water equations are known, effi-
cient and robust numerical simulations are required.

Over the last forty years, numerous codes have been developed, making
use of various methods. The MacCormack scheme has been widely used for
scientific purposes (e.g., Zhang and Cundy, 1989; Esteves et al., 2000; Fiedler
and Ramirez, 2000). Although it is relatively easy to program and computes
quickly, it neither guarantees the positivity of water depths at the wet-dry tran-
sitions, nor preserves steady states, i.e., it is not well-balanced (Lee and Wright,
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2010), requiring some specific work if these issues shall be addressed (e.g.,
Esteves et al., 2000; Fiedler and Ramirez, 2000). In the industrial codes used
in engineering (e.g., CANOE (Tanguy and Chocat, 2013), HEC-RAS (Brunner,
2010), ISIS (Halcrow, 2012), MIKE11 (DHI Software, 2009)), the flow equations,
namely the shallow water equations, are often solved in non-conservative form
(Novak et al., 2010) with either Preissmann scheme or Abbott-Ionescu scheme,
leading to inaccurate calculations for transcritical flows and hydraulic jumps.

While all these pieces of software have been used for scientific research,
the codes of most of them have not been made available to the community,
raising a major issue about research reproducibility. Reproducibility is a key
component of the scientific method and has received an increasing interest in
the recent years in the computer modeling community. In fact numerical sim-
ulations rarely ensure this essential property, leading to a low confidence into
scientific results and undermining the advance of knowledge (Claerbout and
Karrenbach, 1992; Stodden et al., 2013). While the free availability of a source
code is not a sufficient condition to make numerical results reproducible, it is a
clear necessity (Peng, 2011).

Some programs have adopted a strategy consisting in proposing a set of
free, open source codes to solve the shallow water equations (e.g., GeoClaw
(Berger et al., 2011), Gerris (Popinet, 2011)). In an explicit effort to facilitate
reproducibility in water flow modeling and simulations, and considering that
“they are no valuable excuses not to make the code available” (Barnes, 2010),
the present paper describes a free software package for the resolution of the
shallow water equations: FullSWOF. The source code of FullSWOF has been
made public under a license that grants the freedoms to use, study, share, and
modify it. The use of a standard version of C++ (ANSI) helps in easing ac-
cessibility to numerous users, both in the education, in the science and in the
industry.

FullSWOF has been developed by a joint effort of mathematicians and hy-
drologists. Using a set of analytic solutions to the shallow water equations
detailed in Delestre et al. (2013), FullSWOF includes a validation procedure
that guarantees reproducibility to the users and non-regression to the devel-
opers. This procedure is, together with the version control system, the bug
tracking, etc., part of the quality assurance of FullSWOF. These also facilitate
contributions by third parties and make their inclusion clearly identifiable. To
make its use and development easier, a graphic user interface and both a one-
dimensional and a two-dimensional versions have been released. FullSWOF
can also be included in third parties software, as already done by openLISEM
from version 1.67 (Baartman et al., 2013).

As the GeoClaw and Gerris programs, FullSWOF makes use of finite vol-
ume methods, but specific features make it more oriented towards applications
in hydrology, hence its name: FullSWOF stands for Full Shallow Water equa-
tions for Overland Flow. In this context, it solves the complete shallow water
equations and not solely one of their approximations, such as the diffusive
wave or the kinematic wave (Moussa and Bocquillon, 2000; Novak et al., 2010).
It makes use of the finite volume method, which is preferred to the finite dif-
ference method, because it ensures the mass conservation and the positivity
of water depth. A well-balanced scheme guaranties the preservation of steady
states. Special attention has been paid to specific hydrological features: transi-
tions between wet and dry areas, small water heights, various friction models.
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Figure 1: Notations for 2D shallow water equations.

The software program incorporates rainfall and infiltration, and makes possi-
ble the direct use of digital topographic grids.

After presenting the physically-based model (section 1) and its most impor-
tant properties (section 2), the numerical methods are described in section 3.
Then we proceed with the description of the FullSWOF program in section 4.
Finally, in section 5, comparisons are made with explicit solutions representa-
tive of a wide variety of flow conditions, and application to three real cases —
a laboratory experiment, rain on a field plot, and a dam break — are reported.

1 Model: Shallow Water Equations

1.1 General Settings

The system of shallow water equations is a simplified model for a class of free
boundary incompressible Navier-Stokes flows that can occur in rivers or chan-
nels, in the ocean (tides, tsunami), but also in agricultural overland flow. They
are characterized by the fact that the water height h(t, x, y) [L] is small with
respect to the horizontal dimensions of the considered domain (Figure 1 and
Hervouet (2007, chap. 2)). In this context, two main hypotheses are assumed.
First, the fluid velocity is constant along the vertical direction, so that we can
use the horizontal components of the vertically-averaged velocity u(t, x, y) and
v(t, x, y) [L/T] instead of the three-component Navier-Stokes velocity vector.
Next, the pressure in the fluid is hydrostatic, so that after integration along
the vertical direction z the pressure field is given by p(t, x, y) = gh(t, x, y)2/2,
where g is the gravity constant [L/T2].

Under these assumptions, the averaged Navier-Stokes system can be rewrit-
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ten as the following balance laws
∂th + ∂x (hu) + ∂y (hv) = R− I,

∂t (hu) + ∂x

(
hu2 +

gh2

2

)
+ ∂y (huv) = gh(S0x − S f x),

∂t (hv) + ∂x (huv) + ∂y

(
hv2 +

gh2

2

)
= gh(S0y − S f y).

(1)

The first equation is actually the exact integrated form of the incompressibility
condition, and hence it is a mass balance. The other two equations are momen-
tum balances and involve forces such as gravity and friction. In particular, the
gh2/2 term is the hydrostatic pressure. Let us now describe each term, recalling
their physical dimensions:

1. zb is the topography [L]. Since we consider no erosion here, it is a given
function of space, zb(x, y), and we classically denote by S0x and S0y the
opposites of the slopes in the x and y directions respectively, S0x = −∂xzb(x, y)
and S0y = −∂yzb(x, y).

2. R is the rain intensity [L/T]. It is a given function R(t, x, y) ≥ 0. In
the current versions of FullSWOF, we consider the rain to be uniform
in space.

3. I is the infiltration rate [L/T]. This term I(t, x, y) ≥ 0 is defined through
the coupling with an infiltration model such as the bi-layer Green-Ampt
model (section 1.3).

4. S f =
(

S f x, S f y

)
is the friction force, which is in general a nonlinear func-

tion of the velocity and the water height (section 1.2).

We shall pay a particular attention to the one-dimensional version of sys-
tem (1) because, on the one hand, it has practical applications when the flow
can be considered homogeneous or when the effect of the edges can be ne-
glected (e.g., wide channels, flood propagation in river networks), and, on the
other hand, its study gives a better insight of the complete two-dimensional
model, from both theoretical and numerical viewpoints. It writes

∂th + ∂x(hu) = R− I,

∂t(hu) + ∂x

(
hu2 +

gh2

2

)
= gh(S0x − S f x).

(2)

In both systems (1) and (2), the homogeneous part, that is the left-hand
side, is called the transport (or convection) operator. It corresponds to the flow
of an ideal fluid on a flat bottom, without friction, rain or infiltration. In the
one-dimensional setting, this is exactly the model introduced by Barré de Saint-
Venant (1871). This operator contains several important properties of the flow,
hence in sections 2 and 3 we perform a careful analysis of the homogeneous
system, considering both theoretical and numerical studies.

1.2 Friction Terms

Friction terms depend on the flow velocity. In the formulæ below, ~u is the
velocity vector ~u = (u, v) with |~u| =

√
u2 + v2 and ~q is the discharge ~q =
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(hu, hv) = h~u. In hydrological models, there are two families of friction laws,
based on empirical considerations. On the one hand, the Manning-Strickler
friction law reads

S f = C f
~u|~u|
h4/3 = C f

~q|~q|
h10/3 , (3)

with C f = n2 or C f = 1/K2, where n is the Manning coefficient [L-1/3T] and
K is the Strickler coefficient [L-1/3T-1] respectively (Chow, 1959). On the other
hand, the laws of Darcy-Weisbach and Chézy write

S f = C f
~u|~u|

h
= C f

~q|~q|
h3 . (4)

Taking C f = f /(8g), with f a dimensionless coefficient, or C f = 1/C2, C
[L1/2T-1] we get the Darcy-Weisbach or Chézy friction law respectively. Read-
ers are referred to the chapter 5 of Chow (1959) for details and examples about
friction laws. Notice that the friction force may depend on the space variable,
especially on large domains, but this is not considered in the following.

1.3 Infiltration Model

Infiltration is computed at each cell using a Green-Ampt model (Green and
Ampt, 1911; Mein and Larson, 1973). The main idea is to assume the water
infiltrates as an advancing wetting front (at the depth Z f = Z f (t)), from a fully
saturated zone (with moisture content θs) to another zone with the initial water
content θi (Figure 2a).

wetting front

O hn
surf

θs − θi

Z

θ

Zn
f

θi θs

(a) Wetting front.

Ks

Zc Kc

(b) Geometry of the bi-layer model.

Figure 2: Notations for the Green-Ampt infiltration model.

Following Esteves et al. (2000), we implemented a bi-layer Green-Ampt
model (Hillel and Gardner, 1970; Delestre, 2010) in which the upper layer is
characterized by its thickness Zc and its hydraulic conductivity Kc, and the sec-
ond layer has an infinite extension and a hydraulic conductivity Ks (Figure 2b).
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Note that the ‘c’ and ‘s’ subscripts stand for ‘crust’ and ‘soil’ respectively. Zc
can be set equal to zero for cases where a single layer model is relevant. In the
following, we assume that the infiltration parameters can vary in space, but are
uniform in time.

At each cell, when there is water at the surface, the infiltration capacity IC
[L/T] at time tn is given by:

IC(tn) = In
C =



Ks

(
1 +

h f − hn
sur f

Zn
f

)
if Zc = 0,

Kc

(
1 +

h f − hn
sur f

Zn
f

)
if Zn

f ≤ Zc,

Kn
e

(
1 +

h f − hn
sur f

Zn
f

)
else.

(5)

In these equalities, Kn
e = Ke(tn) is the effective hydraulic conductivity at time

tn:

Kn
e =

Zn
f

Zn
f − Zc

Ks
+

Zc

Kc

=
1

1
Ks

(
1− Zc

∆θ

Vn
inf

)
+ Zc

∆θ

Vn
inf

1
Kc

.

The value of h f depends on the soil; it is sometimes denoted by Ψ in the lit-
erature and represents the suction head at the wetting front. The (positive)
quantity −hn

sur f = −hsur f (tn) is the water height at the surface of the cell that
is available for infiltration at the time tn. Finally, Zn

f = Z f (tn) is the gravity
force over the water column at time tn and can be written as Zn

f = Vn
inf /∆θ,

where Vn
inf is the infiltrated volume at time tn and ∆θ = θs − θi.

To avoid an infinite infiltration rate at the beginning (when the infiltrated
volume is still equal to zero), we add a threshold to get the infiltration rate
In = min(In

C, imax). Because the infiltrated volume cannot exceed the water
height at the surface, it is updated as follows:

Vn+1
inf = Vn

inf + min(−hn
sur f , In × ∆t)

Finally, the water height at the surface is updated.

2 Properties

In this section, we recall several mathematical properties of the shallow water
model, for both the 1D and 2D cases.

2.1 One-Dimensional Model

In order to emphasize the mathematical properties of the shallow water model,
we first rewrite the one-dimensional homogeneous equations using vectors:

∂tW + ∂xF(W) = 0, where W =

(
h

hu

)
, F(W) =

 hu

hu2 +
gh2

2

 , (6)
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with F(W) the flux of the equation. The transport is more clearly evidenced in
the following non-conservative form:

∂tW + A(W)∂xW = 0, A(W) = F′(W) =

(
0 1

−u2 + gh 2u

)
,

where A(W) is the matrix of transport coefficients. More precisely, when h > 0,
the matrix A(W) turns out to be diagonalizable, with eigenvalues λ1(W) =
u −

√
gh < u +

√
gh = λ2(W). This important property of having two

real and distinct eigenvalues is called strict hyperbolicity (e.g., Godlewski and
Raviart (1996) and references therein for more details). The eigenvalues are the
velocities of surface waves of the fluid, which are the fundamental character-
istics of the flow. Notice here that the eigenvalues coincide if h = 0, that is
for dry zones. In that case, the system is no longer hyperbolic, which induces
difficulties at both theoretical and numerical levels.

From these formulæ we recover a useful classification of flows, based on
the relative values of the velocities of the fluid, u, and of the waves,

√
gh.

Indeed if |u| <
√

gh the characteristic velocities u−
√

gh and u +
√

gh have
opposite signs, and information propagate upward as well as downward: the
flow is said to be subcritical or fluvial. On the other hand, when |u| >

√
gh, all

the information is going downward, and the flow is said to be supercritical or
torrential.

This classification has consequences for the numerical scheme. Since we
have two unknowns h and u (or equivalently h and q = hu), a subcritical flow
is determined by one upstream value and one downstream value, whereas a
supercritical flow is completely determined by the two upstream values. Thus
for numerical simulations, we use only one of the two variables for a subcritical
inflow/outflow boundary. For a supercritical inflow boundary, we have to
impose both variables, and, for a supercritical outflow boundary, the Neumann
free boundary conditions are considered (e.g., Bristeau and Coussin, 2001). In
this context, it is useful to be able to determine whether the flow is subcritical
or supercritical. To this end, we can consider two quantities. The first one is
the Froude number, given by

Fr =
|u|√

gh
.

The flow is subcritical or supercritical if Fr < 1 or Fr > 1, respectively. A more
visual criterion is obtained through the so-called critical height hc which writes

hc =

( |q|√
g

)2/3

,

for a given discharge q = hu. The flow is subcritical or supercritical if h > hc
or h < hc, respectively.

2.2 Source Terms and Equilibria

When source terms (e.g., topography, rain or friction) are involved, other prop-
erties have to be considered, in particular the occurrence of steady-state (or
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equilibrium) solutions, that is solutions which do not depend on time (∂t ≡ 0).
This amounts to some balance between the flux and the source terms:

∂x(hu) = R− I, ∂x

(
hu2 +

gh2

2

)
= gh(S0x − S f x).

Among these solutions, the homogeneous states are of particular interest,
namely the so-called parallel flows

∂x(hu) = R− I = 0, gh(S0x − S f x) = 0,

and lakes or puddles at rest

u = 0, h + z = const.

These solutions are important for two reasons: on the one hand, specific nu-
merical methods have to be designed in order to be able to capture them; on
the other hand, they furnish several explicit solutions that can be used as test
cases for numerical methods (see section 5 and Delestre et al. (2013)).

2.3 Two-Dimensional Model

The two-dimensional shallow water system (1) can be written under the fol-
lowing conservative form:

∂tU + ∂xG(U) + ∂y H(U) = S(U, t, x, y), (7)

where

U =

 h
hu
hv

 , G(U) =

 hu

hu2 +
gh2

2
huv

 , H(U) =

 hv
huv

hv2 +
gh2

2


and

S(U, t, x, y) =

 R− I
gh(S0x − S f x)
gh(S0y − S f y)

 .

If we denote by DGx and DHy the Jacobian matrices of the fluxes, namely

DGx =

 0 1 0
−u2 + gh 2u 0
−uv v u

 and DHy =

 0 0 1
−uv v u

−v2 + gh 0 2v

 ,

system (7) reads

∂tU + DGx ∂xU + DHy ∂yU = S(U, t, x, y).

The notion of hyperbolicity is defined here, following Godlewski and Raviart
(1996), by studying the flow along any direction. For any unit vector ξ =(
ξx, ξy

)
∈ R2, the velocity of the flow in the ξ direction is by definition uξ =
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ξxu + ξyv , and we define some kind of directional derivative as: DF(ξ) =
ξxDGx + ξyDHy. Then one can check that DF(ξ) has three eigenvalues:

λ1(ξ) = uξ −
√

gh, λ2(ξ) = uξ and λ3(ξ) = uξ +
√

gh. (8)

Outside the dry zones, that is if h > 0, the three eigenvalues satisfy λ1(ξ) <
λ2(ξ) < λ3(ξ), therefore the matrix DF(ξ) is diagonalizable for all ξ: the sys-
tem (7) is strictly hyperbolic. As in the one-dimensional case, this property is
no longer true inside the dry zones.

3 Numerical Methods

In this section, we detail the numerical methods well-adapted to the resolution
of the shallow water system and implemented in FullSWOF. For the resolution,
the shallow water system is divided in two parts: the transport (i.e., convec-
tive) operator and the source terms. First, we perform a convective step, where
the homogeneous part of the system is solved by a finite volume strategy. This
leads to a first-order accurate scheme, the second order accuracy in space being
obtained by reconstruction techniques. Second, this scheme is coupled with the
source terms, and specific methods are used to take into account steady states.
In case a second order approximation in time is looked for, Heun’s method is
used. These steps are described below in detail for the one-dimensional setting,
then extended to the two-dimensional case.

3.1 General Settings

Let us first introduce several notations which will be used throughout this sec-
tion. First consider the time discretization: let t0 = 0 be the initial time, we
fix a time step ∆t > 0, and for n ≥ 0 we set tn+1 = tn + ∆t. Next, the space
discretization is defined by constant positive space steps, ∆x in one dimension,
(∆x, ∆y) in two space dimensions, where a rectangular mesh is assumed. Fi-
nally, we compute piecewise constant approximations of the vectors W (in 1D)
or U (in 2D). More precisely, Wn

i and Un
ij are constant approximations of W on

[tn, tn+1[×]xi−1/2, xi+1/2[ and of U on [tn, tn+1[×]xi−1/2, xi+1/2[×]yj−1/2, yj+1/2[,
respectively (see Figure 3 for details of notations).

xi+1xi−1 xi−1/2 xi xi+1/2 x

∆x

tn+1

O

t

tn
∆t

(a) One-dimensional time and space
discretization.

xi−1 xi−1/2 xi xi+1/2 x

∆x

O xi+1

y

∆y
yj−1/2

yj

yj+1/2

(b) Two-dimensional space discretiza-
tion for every time step.

Figure 3: Discretization of time and space in FullSWOF.
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For each n ≥ 1, we compute the components of Wn and Un by explicit
schemes in time which take the general recursive form

Wn+1
i = Wn

i − ∆tΦ(Wn), Un+1
ij = Un

ij − ∆tΦ(Un). (9)

At this point, we briefly recall several fundamental properties required for an
effective numerical scheme (for detailed definitions, see Godlewski and Raviart
(1996)). First, the consistency error quantifies the ability of the scheme to mimic
the equation. It is obtained by replacing each occurrence of Wn

i in the for-
mula (9) by the exact solution W(tn, xi). If this error goes to 0 when ∆t and
∆x → 0, the scheme is consistent. If the error behaves as O(∆tq + ∆xp), the
scheme is of order q in time and p in space. Next, one is concerned with stabil-
ity, a notion that can take various forms. Usually, it is formulated by stating that
a given norm of the numerical solution at time tn is controlled by the norm at
time 0. Regarding the shallow water equations, a particularly important stabil-
ity property is the preservation of the positivity of the water height, especially
if wet-dry transitions and thin water layers are to be simulated. Formula (9) is
nothing more than an Euler scheme in time, where the function Φ is some dis-
cretization of the space derivatives and of the source terms. Formula (9) defines
a first-order scheme in time, regardless of the definition of Φ. There are several
ways to increase the accuracy of such schemes, following standard methods to
solve ordinary differential equations. We choose here Heun’s method (also re-
ferred as the modified Euler method), which is a prediction-correction method.
In the first two formulæ below, W∗i and W∗∗i are the predicted values, the last
one is the correction step:

W∗i = Wn
i − ∆tΦ(Wn), W∗∗i = W∗i − ∆tΦ(W∗), Wn+1

i =
Wn

i + W∗∗i
2

.

When Φ is determined, the numerical scheme is complete. The remaining
of this section explains step by step how to build the function Φ, which encodes
all the stability and accuracy properties of the scheme in the space variables.

3.2 Convective Step for the One-Dimensional Model

In order to solve system (2), the first step consists in using a finite volume strat-
egy to solve the homogeneous system (6). The idea is to integrate the system of
equations on each time-space cell as depicted by the blue rectangle in Figure 3a.
We obtain the following approximation formula

Wn+1
i = Wn

i −
∆t
∆x

(Fn
i+1/2 − Fn

i−1/2), (10)

where Fn
i+1/2 and Fn

i−1/2 are approximations of the flux on the edges xi+1/2
and xi−1/2, respectively. At this stage, the finite volume scheme is not com-
pletely determined yet: we need to specify a formula to compute this flux ap-
proximation on each edge. We choose here to set, for all indexes i, Fn

i+1/2 =

F (Wn
i , Wn

i+1), where F (WL, WR) is called the numerical flux, a given function
of the states on the left and right of the interface.

Among the numerical fluxes proposed in the literature, such as Rusanov,
HLL, VFRoe-ncv, kinetic (see Bouchut (2004) for explicit formulæ and addi-
tional references), several are available in FullSWOF. In this paper, we choose
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to present the HLL flux (introduced in Harten et al. (1983)) because it offers
a good compromise between simplicity, computing time and robustness as
shown numerically in Delestre (2010). It writes

F (WL, WR) =


F(WL) if 0 ≤ c1
c2F(WL)− c1F(WR)

c2 − c1
+

c1c2

c2 − c1
(WR −WL) if c1 < 0 < c2

F(WR) if c2 ≤ 0

,

(11)
with two parameters c1 < c2 which are the approximations of the slowest and
fastest wave speeds, respectively. We refer to Batten et al. (1997) for further
discussion on the wave speed estimates. In FullSWOF, we have implemented

c1 = inf
W=WL ,WR

( inf
j∈{1,2}

λj(W)) and c2 = sup
W=WL ,WR

( sup
j∈{1,2}

λj(W)),

where λ1(W) = u −
√

gh and λ2(W) = u +
√

gh are the eigenvalues of the
one-dimensional model (section 2.1). This numerical flux is said to be upwind,
i.e., it mimics the waves propagation. Indeed when the flow is supercritical
(0 ≤ c1 or c2 ≤ 0), all information are going from upstream to downstream,
thus the numerical flux is calculated from upstream values only. While for
subcritical flow (c1 < 0 < c2), information are coming from both upstream and
downstream, thus the flux is calculated using both upstream and downstream
values.

As described above, except for a few specific numerical fluxes, the scheme is
first-order accurate in space. To obtain second order accuracy, we perform a lin-
ear reconstruction on the variables W = (h, hu), thus obtaining new variables
on each interface i + 1/2, namely Wi+1/2− on the left, Wi+1/2+ on the right. Us-
ing F (Wi+1/2−, Wi+1/2+) in the finite volume scheme instead of F (Wn

i , Wn
i+1)

leads to a second order approximation in space. Among the existing formulæ
for the linear reconstruction (e.g., MUSCL, ENO, see Bouchut (2004)), several
are implemented in FullSWOF.

We conclude this section by an important remark about time discretization.
Explicit schemes imply a control on the time step, which cannot be too large
for a given space step. More precisely, for a three-point scheme as defined
above (Wn+1

i depends only on Wn
i−1, Wn

i and Wn
i+1), the numerical speed of

propagation is ∆x/∆t. To avoid any loss of information, this velocity has to be
larger than any possible physical velocity, which reads

C
∆x
∆t
≥ sup

(t,x)

{
|u(t, x)|+

√
gh(t, x)

}
,

where the supremum is taken over the whole time-space domain of interest
and C is a parameter depending on the dimension and on the order of the
scheme which are considered (in 1D, at the first order C = 1 and at the sec-
ond order C = 0.5; in 2D, at the first order C = 0.5 and at the second order
C = 0.25). When this condition is violated, the scheme becomes unstable, and
oscillations appear. This theoretical formulation of the limitation, known as
the CFL condition (Courant, Friedrichs, Lewy) (Godlewski and Raviart, 1996),
is hardly useful because, due to the nonlinearity, the right-hand side is difficult
to estimate. On the other hand, even if one gets such an estimate, it can lead to
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an underestimated fixed time step when there are no large variations of h and
u. Thus the computation of the time step could be replaced by a sequence of
variable time steps ∆tn according to the following rule:

∆tn =
C∆x

sup
i
{|un−1

i |+
√

ghn−1
i }

. (12)

However, when water heights converge toward zero, time steps will tend to be-
come infinite, which is not reasonable. Consequently, we add an upper bound
to the computation, which leads to the following formulation, implemented in
FullSWOF_2D:

∆tn = C min

∆x,
∆x

sup
i
{|un−1

i |+
√

ghn−1
i }

 .

3.3 Source Terms

When source terms are involved, specific methods have to be introduced to
capture equilibrium states. Numerical schemes that preserve stationary equi-
libria are called equilibrium schemes, or well-balanced schemes (Bermúdez
and Vázquez, 1994; Greenberg and LeRoux, 1996). A first class of methods
consists in splitting-type methods, where the transport equation and the source
term are solved somehow independently. Another strategy consists in apply-
ing a specific reconstruction technique, thus modifying the flux computation.
It turns out that this last method is well adapted to the topography term, but
not quite so for the friction term. Hence, in FullSWOF, these two approaches
are used: the topography is solved using a well-balanced scheme (section 3.3.1)
and the friction with a semi-implicit method (section 3.3.2).

3.3.1 The Hydrostatic Reconstruction

The hydrostatic reconstruction (Audusse et al., 2004; Bouchut, 2004), as its
name suggests, reconstructs new variables to be injected in the numerical flux.
It is designed to get a well-balanced scheme, in the sense that it preserves at
least the steady state at rest (i.e., the hydrostatic equilibrium), as well as the
positivity of the water height. The hydrostatic reconstruction procedure is ap-
plied at once to the original variables Wn

i , thus leading to a first-order scheme.
Here, we detail how to get a second order version, which is used in FullSWOF.

The second order scheme consists in first performing the linear reconstruction
(chosen for the convective step), not only to W = (h, hu) as before, but also to
h + zb. Then, the hydrostatic reconstruction is applied to these modified vari-
ables. Notice that this strategy introduces an artificial time dependence on the
topography, which is in some sense reconstructed as well. This is mandatory to
cope with steady equilibrium states and preserve the positivity of h (Audusse
et al., 2004). The linear reconstruction gives values (hi+1/2−, zi+1/2−, ui+1/2−)
on the left of the interface i + 1/2, and (hi+1/2+, zi+1/2+, ui+1/2+) on its right.
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The final formula for the hydrostatic reconstruction can now be written as

hi+1/2L = max (hi+1/2− + zi+1/2− −max (zi+1/2−, zi+1/2+) , 0) ,

Wi+1/2L =

(
hi+1/2L

hi+1/2Lui+1/2−

)
,

hi+1/2R = max (hi+1/2+ + zi+1/2+ −max (zi+1/2−, zi+1/2+) , 0) ,

Wi+1/2R =

(
hi+1/2R

hi+1/2Rui+1/2+

)
.

(13)

For a given space discretization, it may exhibit abnormal behaviors for some
combinations of slope and water height (Delestre et al., 2012). Particularly ob-
vious for the order one scheme and on a coarse mesh, they disappear when
refining the mesh, and are hardly noticeable at order two.

When applying the hydrostatic reconstruction, formula (10) has to be mod-
ified to preserve the consistency of the scheme. It rewrites Wn+1

i = Wn
i −

∆tΦ(Wn) with

Φ(Wn) =
1

∆x
(

Fn
i+1/2L − Fn

i−1/2R − Fcn
i
)

,

where Fn
i+1/2L and Fn

i−1/2R are given by
Fn

i+1/2L = F (Wn
i+1/2L, Wn

i+1/2R) +

 0
g
2

((
hn

i+1/2−
)2
−
(

hn
i+1/2L

)2
) ,

Fn
i−1/2R = F (Wn

i−1/2L, Wn
i−1/2R) +

 0
g
2

((
hn

i−1/2+

)2
−
(

hn
i−1/2R

)2
) ,

where Wn
i+1/2L and Wn

i+1/2R are computed by formula (13). The additional
centered term Fcn

i is determined to preserve consistency and well-balancing
(Audusse et al., 2004):

Fcn
i =

(
0

− g
2

(
hn

i−1/2+ + hn
i+1/2−

) (
zn

i+1/2− − zn
i−1/2+

)) .

3.3.2 Friction

A possible way to handle friction in a well-balanced scheme consists in first
introducing the friction in the topography term, and then applying the hydro-
static reconstruction (section 3.3.1): this approach is therefore named “apparent
topography”. This method has been used for example to solve the shallow wa-
ter system with a Coriolis force (Bouchut, 2004) and with a Coulomb friction
(Bouchut, 2004; Mangeney et al., 2007). The main idea is to use the modified
topography zapp defined by zapp = zb − b, with ∂xb = S f x. The use of this class
of methods gives rise to a well-balanced scheme for friction as well as topogra-
phy, hence computing neatly equilibrium states. However it is not completely
satisfactory on transitory solutions, as noticed in Delestre et al. (2009) and De-
lestre and James (2010): a spurious peak appears at the wet-dry front before the
equilibrium is reached. Therefore we turned to splitting methods. The explicit
discretization, despite its simplicity, is not relevant for the type of problems
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we are interested in because it leads to instabilities and overestimates of the
velocity at wet-dry interfaces (Paquier, 1995). On the other hand, the fully im-
plicit method has a high computational cost, and cannot be generalized to the
two-dimensional system due to the nonlinear form of the friction law. Another
possibility consists in using a Strang time splitting to reach the second order in
time, however this leads to a more complicated algorithm and, moreover, there
is no significant gain in accuracy compared to first-order methods (Liang and
Marche, 2009). Finally, it turns out that the best compromise between accuracy,
stability and computational complexity lies in semi-implicit methods (Fiedler
and Ramirez, 2000; Bristeau and Coussin, 2001; Liang and Marche, 2009). We
choose the semi-implicit treatment proposed in Bristeau and Coussin (2001),
not only because it preserves steady states at rest, but also for its stability. At
the first order in time, after a convective step W∗i = Wn

i − ∆tΦ(Wn), the value
Wn+1

i is given by:

Wn+1
i =

(
hn+1

i
qn+1

i

)
=


h∗i

q∗i

1 + gn2∆t
|qn

i |

hn
i

(
hn+1

i

)4/3


−1


for the Manning friction law (3), and by

Wn+1
i =

(
hn+1

i
qn+1

i

)
=

 h∗i

q∗i

(
1 + ∆t

f
8
|qn

i |
hn

i hn+1
i

)−1


for the Darcy-Weisbach friction law (4). Notice the simplicity of the method,
which gives an explicit value for Wn+1

i .

3.3.3 Rain and Infiltration

Unlike the friction and the topography source terms, rain and infiltration in-
volve no particular numerical difficulties such as steady-state or stability preser-
vations. Moreover, dealing with infiltration implicitly would make more dif-
ficult the integration of other infiltration models (such as Richard’s or Darcy’s
models) into FullSWOF. For these reasons, we have chosen to treat the rain and
infiltration terms explicitly.

3.4 Convective Step for the Two-Dimensional Model

In general, the 2D system can be treated in the same way as the 1D system
because calculations are done on each interface of each cell (and so do not de-
pend on the cell geometry). Digital elevation models (DEM) (i.e., digital to-
pographic maps) are mainly represented as structured grids. Some DEM can
be represented as a vector-based triangular network (TIN). Because TIN can
easily be converted into DEM, we chose to make developments dedicated to
structured meshes (Figure 3b). To get a 2D version, we perform the linear re-
construction of U and zb and the hydrostatic reconstruction as in one dimen-
sion (equation (13)). We get U•L,• and U•R,• along the x-direction, and U•,•L
and U•,•R along the y-direction.
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Then, the two-dimensional finite volume scheme reads

U∗i,j = Un
i,j−

∆t
∆x

(
Gn

i+1/2L,j − Gn
i−1/2R,j − Gcn

i,j

)
− ∆t

∆y

(
Hn

i,j+1/2L − Hn
i,j−1/2R − Hcn

i,j

)
with 

Gn
i+1/2L,j = G

(
Un

i+1/2L,j, Un
i+1/2R,j

)
+ Sn

i+1/2L,j,

Gn
i−1/2R,j = G

(
Un

i−1/2L,j, Un
i−1/2R,j

)
+ Sn

i−1/2R,j,

Hn
i,j+1/2L = H

(
Un

i,j+1/2L, Un
i,j+1/2R

)
+ Sn

i,j+1/2L,

Hn
i,j−1/2R = H

(
Un

i,j−1/2L, Un
i,j−1/2R

)
+ Sn

i,j−1/2R,

where

Sn
i+1/2L,j =


0

g
2

((
hn

i+1/2−,j

)2
−
(

hn
i+1/2L,j

)2
)

0

 ,

Sn
i−1/2R,j =


0

g
2

((
hn

i−1/2+,j

)2
−
(

hn
i−1/2R,j

)2
)

0

 ,

Sn
i,j+1/2L =


0
0

g
2

((
hn

i,j+1/2−
)2
−
(

hn
i,j+1/2L

)2
)
 ,

Sn
i,j−1/2R =


0
0

g
2

((
hn

i,j−1/2+

)2
−
(

hn
i,j−1/2R

)2
)
 .

G and H are the numerical fluxes for the resolution of the homogeneous sys-
tem. The first two components of G, G1 and G2, as well as the first and third
components of H, H1 and H3, are computed as the components of F . The
HLL Riemann solver (equation (11)) being a two-wave numerical flux, this as-
sumption is correct only for hyperbolic systems of two equations, such as the
one-dimensional shallow water equations. In two space dimensions, there are
three equations, hence three eigenvalues (equation (8)). It turns out that in this
case the HLL solver described in equation (11) is not precise enough because
it involves only two waves. To address this issue, Toro proposed an extension
of HLL called the HLLC solver (Toro et al., 1994). The solver we propose in
FullSWOF is inspired by this reference, and defines G3 andH2 as:

G3

(
Un

i+1/2L,j, Un
i+1/2R,j

)
=vn

i+1/2L,jG1

(
Un

i+1/2L,j, Un
i+1/2R,j

)
if un

i+1/2L,j + un
i+1/2R,j > 0,

vn
i+1/2R,jG1

(
Un

i+1/2L,j, Un
i+1/2R,j

)
if un

i+1/2L,j + un
i+1/2R,j ≤ 0,
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H2

(
Un

i,j+1/2L, Un
i,j+1/2R

)
=un

i,j+1/2LH1

(
Un

i,j+1/2L, Un
i,j+1/2R

)
if vn

i,j+1/2L + vn
i,j+1/2R, > 0,

un
i,j+1/2RH1

(
Un

i,j+1/2L, Un
i,j+1/2R

)
if vn

i,j+1/2L + vn
i,j+1/2R, ≤ 0.

4 Description of the FullSWOF Software Package

FullSWOF stands for “Full Shallow Water equations for Overland Flow”. The
names FullSWOF_1D and FullSWOF_2D define the one-dimensional and the
two-dimensional versions, respectively.

FullSWOF having been designed to encourage research reproducibility, the
source codes (in C++) are available and can be downloaded from the web-
sites https://sourcesup.renater.fr/projects/fullswof-1d/ for the one-
dimensional version and https://sourcesup.renater.fr/projects/fullswof-2d/
for the two-dimensional one. The common optional graphic interface is named
FullSWOF_UI (“UI” for User Interface), is developed in Java, and is available
for download at https://sourcesup.renater.fr/projects/fullswof-ui/. Each
piece of software is distributed under the CeCILL-V2 (GPL compatible) free
software license, which allows to use the software package without any limita-
tion as to its fields of application. For more details, we refer to the documenta-
tions on the websites.

The structure of the source code is designed to make future evolutions easy,
especially for new developers: for example, a new friction law can easily be
added in the libfriction library by creating a new friction file. The documen-
tation for programmers is included directly into the C++ code using doxygen
specific comments (van Heesch, 2013). This leads to the automatic extraction
of the programmer’s manual and simplifies the documenting task. Thanks to
the hosting on a software forge, FullSWOF takes benefits of systems of version
control, bug tracking, package release, etc.

The one-dimensional program is primarily designed, of course, to carry 1D
flow simulations. It is also used as a development tool to test new numerical
methods (e.g., fluxes) and to introduce new features in the models (such as new
friction and infiltration laws). The new code can then be later integrated into
the two-dimensional program: as the 2D mesh is a structured mesh, it is easy to
adapt the code from 1D to 2D. Also, a parallel version (MPI) of FullSWOF_2D
has been developed in order to run large test cases (such as the Malpasset dam
break (section 5)). Currently considered in an early stage of development, it
is, at the moment, available only in a dedicated branch of the version control
system.

The FullSWOF pieces of software are designed to use point-wise defined
topographies and/or initial conditions. At the moment, several topographies
and initialization values are hard-coded (e.g., a parabolic topography, the wet
dam-break initial data). For other cases, input text files can be read. Friction
can be chosen between Manning and Darcy-Weisbach laws. Several boundary
conditions are available (e.g., wall, Neumann, periodic, imposed height). The
rain is constant in space, but can vary in time. Several numerical methods
are implemented for the flux, the linear reconstruction and the order of the
scheme. Based on a study of numerical methods for overland flows (Delestre,

https://sourcesup.renater.fr/projects/fullswof-1d/
https://sourcesup.renater.fr/projects/fullswof-2d/
https://sourcesup.renater.fr/projects/fullswof-ui/
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2010), default values have been selected for a HLL-type method for the flux,
the MUSCL formula for the reconstruction and a second order scheme. We
refer to the documentations for more details.

Some classical benchmarks and analytic solutions from the literature are
defined in FullSWOF. They have been chosen among the ones gathered in
Delestre et al. (2013). They are used to validate each new version of the code
before its release, assuring the software quality. This validation is partially
automatic thanks to a dedicated script and is useful to both users (who can
check their results do not differ from reference results — and do not depend
on their compiler, operating system or hardware) and developers (who can
check their changes do not cause a regression in the result quality). Additional
test cases could be added to validate new conditions introduced in the code.

5 Numerical Illustrations

In this section, we illustrate some results of FullSWOF on a few classical test
cases, on analytic solutions available in the literature, and also on three real
datasets. This is by no means an analysis of the performances of FullSWOF. It
merely aims at demonstrating the ability of FullSWOF to simulate a wide range
of flow conditions. In particular, the real datasets in section 5.3 are used with-
out any filtering of the data (no smoothing, etc.). Note that the illustrated test
cases and analytic solutions are part of the benchmark set delivered with the
FullSWOF_1D or FullSWOF_2D codes. In the following, FullSWOF_1D ver-
sion 1.01.00 (2013-05-17) and FullSWOF_2D version 1.04.08 (2013-11-07) have
been used.

5.1 Classical Test Cases

We begin by running FullSWOF on three analytic cases: one steady state, and
two classical transitory solutions. These examples correspond to the original
shallow water system with variations in space of the topography: there is no
friction, no rain and no infiltration.

5.1.1 Lake at Rest with an Emerged Bump

This one-dimensional steady-state solution has been developed in Delestre
(2010) and Delestre et al. (2013, §3.1.2) as a test case for the preservation of
steady states and the boundary conditions treatment. It is based on the topog-
raphy provided by Goutal and Maurel (1997). The initial condition satisfies the
hydrostatic equilibrium

h + z = const and q = 0 m2 s−1. (14)

The domain length is set to L = 25 m with a topography given by

z(x) =
{

0.2− 0.05(x− 10)2 if 8 m < x < 12 m,
0 else.

The maximum water height is smaller than the amplitude of the topogra-
phy in order to simulate a lake at rest with an emerged bump (Figure 4a). In
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such a configuration, starting from the steady state, the velocity must remain
null and the water surface should stay flat. This is the exact behavior simulated
by FullSWOF_1D, showing the interest of a well-balanced scheme (Figure 4).
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Figure 4: Lake at rest with an emerged bump: comparison of the analytic solu-
tion with the FullSWOF_1D results. Simulation with 500 cells at T = 100 s.

5.1.2 Dam Break on a Dry Domain without Friction

We turn now to a transitory one-dimensional case, namely the analytic solu-
tion of a dam break on a dry domain without friction on a flat and horizontal
topography (Delestre et al., 2013, §4.1.2). This case is known as Ritter’s solu-
tion (Ritter, 1892; Hervouet, 2007). The difficulties here are (a) the existence of
a shock, and (b) a wet-dry transition. This case also tests whether the scheme
preserves the positivity of the water height, as this property is usually violated
near the wetting front.

The initial condition for this configuration is the following Riemann prob-
lem

h(x) =

{
hl = 0.005 m for 0 m ≤ x ≤ 5 m,
hr = 0 m for 5 m < x ≤ 10 m,

with u(x) = 0 m s−1.
At the beginning of the evolution, the free surface exhibits the following

structure: starting from upstream, there is a constant water height at rest (with
h = 0.005 m) connected by a parabola to a dry zone downstream (with h =
0 m). The left extremity of the parabola moves upstream, while its right end
slides downstream. Figure 5 displays this solution at time t = 6 s.

There is an overall agreement between FullSWOF_1D results and the ana-
lytic solution: the code is able to represent the shock, to locate and to treat cor-
rectly the wet-dry transition, and to preserve the positivity of the water height.
However, differences are observed at the two connections between the constant
states and the parabola. These differences get smaller when the space step is
decreased (results not shown).

5.1.3 Planar Surface Rotating in a Paraboloid

Finally we present a transitory two-dimensional solution: a planar water sur-
face rotating in a paraboloid (Delestre et al., 2013, §4.2.2). In the literature,
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Figure 5: Dam break on a dry domain without friction: comparison of the
analytic solution with the FullSWOF_1D results. Simulation with 500 cells at
T = 6 s.

this analytic solution is known as Thacker’s 2D case, named after its author
(Thacker, 1981). The topography is a paraboloid of revolution and the shore-
line is a moving circle. The free surface has a periodic motion and remains
planar in time. To visualize this case, one can think of a glass with some wine
in rotation inside (cross-section on Figure 6a). This is a solution with a variable
slope (in space) for which the wet-dry transitions are constantly moving. Be-
cause there is no friction, the rotation should not damp with time. Hence, this
case tests both the ability of the schemes to simulate flow with comings and
goings and the numerical diffusion of the scheme (which causes a damping in
the water height over time). The analytic solution at t = 0 s is taken as initial
condition for the computation. The results are considered after three periods.

Overall, FullSWOF_2D gives results in good agreement with the analytic
solution (Figure 6). There is no spurious point at the wet-dry transitions, ex-
emplifying the capability of well-balanced schemes to compute properly these
common situations for natural surface flows. The slope of the water surface
given by FullSWOF_2D is slightly lower than the one of the analytic solution.
Also, the water flow is slightly lower than expected. This is a consequence of
the numerical diffusion of the scheme. Several techniques could be applied
to improve the results of this specific case, but they may not be relevant for
the general case, as they would increase the complexity of the method and the
computational cost.

5.2 MacDonald Type Solutions

We turn now to a class of stationary solutions, more complex than the previous
ones (section 5.1) in the sense that the model is now complete, with friction and
rain. These solutions are obtained by the procedure introduced by I. MacDon-
ald: the water height profile and the discharge are given and the corresponding
topography is then computed. In the original works, the Manning friction law
was considered (MacDonald, 1996; MacDonald et al., 1997), but the method
allows many variants: other friction laws, rain, diffusion, etc.

The three selected solutions show the ability of a scheme to cope with sta-
tionary states induced by topography and friction in a wide range of flow con-



20 FullSWOF: A Free Software Package for Shallow Flows Delestre et al.

0 0.5 1 1.5 2 2.5 3 3.5 4

x (m)

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

H
e

ig
h

t 
(m

)

FullSWOF_2D

Analytic

Topography

(a) Water heights and topography.

0 0.5 1 1.5 2 2.5 3 3.5 4

x (m)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

F
lo

w
 (

m
²/

s
)

FullSWOF_2D

Analytic

(b) Water fluxes.

Figure 6: Planar surface rotating in a paraboloid: comparison of the analytic
solution with the FullSWOF_2D results. Cross-sections at y = 2 m. Simulation
with 100 cells in x and y, at T = 13.4571 s.

ditions.

5.2.1 Short Channel with a Smooth Transition and a Shock

The length of the channel is 100 m and the discharge at steady state is q =
2 m2 s−1 (Figure 7). The flow is subcritical both upstream and downstream
(Delestre et al., 2013, §3.2.2). In the intermediate part, the flow is supercritical.
Hence, the flow goes from subcritical to supercritical via a sonic point, and then
— through a shock (located at x = 200/3 ≈ 66.67 m) — becomes subcritical
again (Figure 7a). The Manning friction coefficient n is equal to 0.0328 m−1/3 s.
The run was carried out with a resolution of 0.2 m.

The water flow simulated by FullSWOF_1D matches the analytic solution
except at the shock (Figure 7b). A careful examination showed the mismatch is
limited to two cells. This is a numerical artifact due to the product of approxi-
mations of two discontinuous functions (u and h) on a discretization grid. Fur-
ther testing showed the shock was better represented with finer grids, which
is the expected behavior. Future developments — by us or by others, since
FullSWOF is a free software — could improve the result of this test case.

5.2.2 Rain on a Long Channel with a Supercritical Flow

This analytic case is similar to the previous one, but includes rain (Delestre
et al., 2013, §3.3.2). The channel length is set equal to 1000 m (Figure 8). As the
flow is supercritical along the whole channel, we consider a constant discharge
and a constant water height at inflow and a free outflow. In the simulation,
at initial time, the channel is dry. There is no rain until 1500 s; after this mo-
ment, the rain intensity is set to 0.001 m s−1 until the end. The Darcy-Weisbach
friction coefficient is f = 0.065 and the inflow discharge is q0 = 2.5 m2 s−1

(Figure 8).
FullSWOF_1D results match quite well the analytic solution, showing the

inclusion of the rain source term in the model and its implementation in the
code are satisfactory.
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Figure 7: Short channel with a smooth transition and a shock: comparison of
the analytic solution with the FullSWOF_1D results. Simulation with 500 cells
at T = 1500 s.
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Figure 8: Rain on a long channel with a supercritical flow: comparison of the
analytic solution with the FullSWOF_1D results. Simulation with 500 cells in x
at T = 3000 s.
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5.2.3 Pseudo-2D Channel with a Supercritical Flow

In this section, we consider a pseudo-2D shallow water system in a channel
with a varying width. By pseudo-2D we mean an intermediate model between
the one-dimensional and the two-dimensional models. More precisely, the
pseudo-2D shallow water equations are obtained by averaging all quantities
both in the vertical direction and on the width of the channel (y−direction), i.e.,
on the perpendicular to the flow (recall that the two-dimensional shallow water
equations involve an average solely in the vertical direction). The derivation is
detailed in Goutal and Sainte-Marie (2011). In this paper, the authors showed
that the new terms that appear in the pseudo-2D shallow water system due to
the y-averaging bring numerical difficulties that must be treated carefully. We
perform a simulation of the full two-dimensional equations with a topography
and a discharge corresponding to a stationary state for the pseudo-2D system,
which allows some comparisons.

We consider a 200-m long channel with a rectangular cross-section. The
width and the slope of the channel depend on x (Figure 9a). The flow is fixed
at inflow q = 20 m3 s−1 and the water height is prescribed at outflow (Delestre
et al., 2013, §3.5.2). The Manning coefficient is set to 0.03 m−1/3 s. The chan-
nel is initially dry, with a little puddle downstream (because of the outflow
condition).

At steady state, FullSWOF_2D produces a depth profile similar to the an-
alytic solution (Figure 9b). In fact, an exact match is not to be expected since
the results of a 2D code are compared with the analytic solution of a pseudo-2D
case.
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(a) Water height simulated by FullSWOF_2D.
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Figure 9: Pseudo-2D channel with a supercritical flow: comparison of the an-
alytic solution with the FullSWOF_2D results. Simulation with 400 cells in x
and 201 cells in y, at T = 200 s.

5.3 Real Datasets

Finally, we give the results of FullSWOF on three real datasets. The first case is
an original laboratory experiment, the second one comes from an experimental
plot in Senegal, and the third is the well-known Malpasset dam break. We do
not pretend to give new insights about the occurring phenomena, but merely
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show the ability of FullSWOF to simulate real situations without data filter-
ing. Refined calibration of the parameters and comparison with other piece of
softwares will be the topic of future works.

5.3.1 Flow over a Corrugated Bottom

This first example is an experimental flow over an inclined channel having a
corrugated bottom (Figure 10). The discharge is imposed upstream (measured
value: 0.69 l m−1 s−1). Water heights are measured at steady state along a 55-
cm long profile with a 0.5-mm resolution using the device described in Legout
et al. (2012). FullSWOF_1D is run using the measured topography profile as
input. The only calibrated parameter is the Manning friction coefficient n =
0.0127 m−1/3 s.

The comparison of the computed and measured values shows that FullSWOF_1D
is able to reproduce the qualitative behavior after the first bump (x > 0.06 m)
(Figure 10b). FullSWOF_1D reproduces all the hydraulic jumps (for x > 0.13 m)
and locates them correctly at the minima of the measured solution. However,
the simulated solution exhibits shocks which are steeper than the measured
ones. This, as well as the poor restitution at the beginning of the channel
(around x = 0.05 m), is probably due to a lack in the model. Indeed, in this
range of water heights and velocities, the surface tension likely cannot be ne-
glected. This is a possible extension of the FullSWOF software.

(a) Close-up photography of the
experimental setup. The red line is
the measured profile.
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Figure 10: Experimental flow over a corrugated bottom.

5.3.2 Rain over a Field Plot (Thiès, Senegal)

The purpose of this section is to confront FullSWOF_2D to a real system: the
plot of Thiès, Senegal (Tatard et al., 2008; Mügler et al., 2011), an experimental
system instrumented by IRD. It consisted in an artificial rainfall of about 2
hours with an intensity close to 70 mm h−1 on a sandy-soil plot of 4× 10 m2.
The plot had the classical configuration of Wooding’s open book, with 1% slope
along Ox and Oy axes. The complete dataset is freely available at http://www.
umr-lisah.fr/Thies_2004/. FullSWOF_2D is used with a variable time step

http://www.umr-lisah.fr/Thies_2004/
http://www.umr-lisah.fr/Thies_2004/
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(the CFL value is fixed at 0.4) and with the same parameters as in Tatard et al.
(2008): f = 0.26, h f = 0.06 m, θs − θi = 0.12, Ks = 4.4 10−6 m s−1 and Kc = 0.

Qualitatively, the results (Figure 11) are similar to the ones obtained with
other pieces of software (Tatard et al., 2008; Mügler et al., 2011). At this stage,
these results illustrate the ability of FullSWOF_2D to simulate a dynamic flow
without any filtering of the data, contrarily with the previously-used pieces of
software. A comparison will be carried out in a more detailed study.

5.3.3 The Malpasset Dam Break: a Large Dataset Demanding the Parallel
Version of FullSWOF_2D

This section is devoted to a large scale test case. This is the well-known Mal-
passet dam break, that actually happened in 1959 in the south of France (Her-
vouet (2000), Hervouet (2007, p.281-288)). Because of its varying topography
and complex geometry, this is a classical test for numerical methods and hy-
draulics software validation. For this case, we used the parallel version of
FullSWOF_2D (Cordier et al., shed), in order to have only a few hours of com-
putation. The dimensions of the computing domain are Lx = 17273.9 m with
1000 cells and Ly = 8381.3 m with 486 cells. The topography comes from a
map published before the disaster and then digitized. We consider the Man-
ning law with n = 0.033 m−1/3 s as advised in Hervouet (2000). No calibration
was done for this simulation, which has a total time of T = 4000 s.

The results are presented in Figure 12 a–d at four time steps. A scaled phys-
ical experiment was built by the Laboratoire National d’Hydraulique in 1964,
in order to study the dam-break flow (for more details see Hervouet (2000)
and Hervouet (2007)). The maximum water level was recorded at nine gauges
(named from 6 to 14) during the physical experiment (Figure 12e). The max-
imum water elevations of the scaled experiment are quite well captured by
FullSWOF_2D (Figure 12f).

6 Conclusions

The FullSWOF software project grew out of a long-time collaboration between
mathematicians and hydrologists in Orléans (France). Several specific features
make it particularly suitable for applications in hydrology: it takes into account
rain, infiltration, classical frictions laws, and can operate with DEMs. Moreover
it has shown its ability to deal with a wide range of flow conditions. The last
releases of its three codes (FullSWOF_1D, FullSWOF_2D and FullSWOF_UI)
are fairly stable and robust. They are freely available for people outside the
original team for industrial, scientific and educational purposes.

The project is still undergoing several improvements. Apart from the usual
bug correction work, several ameliorations on the current codes (e.g., non-
homogeneous friction) are regularly performed and a parallel 2D version is
under development. More conceptual modifications are under consideration,
such as the introduction of erosion and sedimentation models. Another direc-
tion of improvement concerns the surface tension. While, at the moment, these
modifications originate mainly from the initial development team, we empha-
size that external contributions are welcome.



Delestre et al. FullSWOF: a Free Software Package for Shallow Flows 25

0 1 2 3 4

x (m)

0

1

2

3

4

5

6

7

8

9

10
y
 (

m
)

(a) Topography (without the
1% slope along y).

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

W
a
te

r 
d
e
p
th

 (
m

)

-4

-3

-2

-1

0

1

2

3

4

5

6

T
o
p
o
g
ra

p
h
y
 (

c
m

)

0 1 2 3 4

x (m)

(b) Water depth.

0 1 2 3 4

x (m)

(c) Velocity.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

V
e
lo

c
it
y
 (

m
/s

)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

F
ro

u
d
e
 n

u
m

b
e
r

0 1 2 3 4

x (m)

(d) Froude number.

Figure 11: Results of FullSWOF_2D for the Thiès field plot.
Simulation with 160 cells in x and 200 cells in y, at T = 7400 s.
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