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In Wireless Sensor Networks (WSNs), providing a robust security mechanism with limited energy resources is very challenging because of sensor node's limited resources (computation, bandwidth, memory). Asymmetric-key can fulfill the requirement, but if the number of nodes is large, symmetric-key cryptography is the best natural method because of its scalability. Asymmetric-key cryptography is power-hungry; nevertheless, Elliptic Curve Cryptosystems (ECC) are feasible and more flexible for sensor nodes. Scalar multiplication is the most widely used operation on ECC. Various methods for fast scalar multiplication exist, but they are based on the binary/ternary representation of the scalar. In this paper, we present a novel technique to make fast scalar multiplication on Elliptic Curve Cryptosystems over prime field for light-weight embedded devices like sensor nodes. Our method significantly reduces the computation of scalar multiplication by an equivalent representation of points based on point order in a given interval. Since our technique can act as a support for most existing methods, after an analytical and efficiency analysis, we implement and evaluate its performance in different scenari.

Introduction

Security in Wireless Sensor Networks has attracted more and more attention in recent years. Symmetric cryptography is the most suitable application in constrained platforms such as sensor devices. For a large number of devices, the natural method employed is the asymmetric key cryptography algorithm because of its scalability. Compared to other asymmetric cryptosystems like RSA, Elliptic Curve Cryptography is an emerging favorite due to its shorter key length requirements for the same level of security strength [START_REF] Robshaw | Elliptic Curve Cryptosystems, An RSA hbomtories Technical Note[END_REF]. The mathematical hierarchy of elliptic curve involves three arithmetic levels: scalar arithmetic, point arithmetic and field arithmetic [START_REF] Hankerson | Guide to Elliptic Curve Cryptography[END_REF]. Point operations involve points addition and doubling, tripling or quadrupling (or similar operations). Scalar multiplication denoted by kP where P represents a point on the ellipic curve and k represents a scalar. The scalar multiplication is the central and most time-consuming operation in ECC because it is used for key generation, encryption/decryption of data and signing/verification of digital signatures. To perform fast computation of scalar multiplication, which is the major computation involved in ECC, much research has been devoted to the point arithmetic level and the scalar arithmetic [START_REF] Gordon | A Survey of Fast Exponentiation Methods[END_REF][START_REF] Dimitrov | Efficient and secure elliptic curve point multiplication using double-base chains[END_REF][START_REF] Ciet | Trading inversions for multiplications in elliptic curve cryptography[END_REF][START_REF] Meloni | Elliptic curve scalar multiplication combining Yaos algorithm and double bases[END_REF][START_REF] Tian | An Efficient Elliptic Curves Scalar Multiplication Algorithm Suitable for Wireles Network[END_REF][START_REF] Imai | Faster Multi-Scalar Multiplication Based on Optimal Double-Base Chains[END_REF]. On the scalar arithmetic level, the double-and-add technique is the traditional binary algorithm which is based on points operations, namely doubling of a point and addition of points. Also, well-known algorithms, such as Non-Adjacent Form (NAF), window NAF, and sliding window [START_REF] Gordon | A Survey of Fast Exponentiation Methods[END_REF], can effectively reduce the number of point operations. Again, some other algorithms, such as double-base chains, have been developed to compute faster scalar multiplication by using binary and ternary representation [START_REF] Dimitrov | Efficient and secure elliptic curve point multiplication using double-base chains[END_REF], [START_REF] Ciet | Trading inversions for multiplications in elliptic curve cryptography[END_REF], [START_REF] Meloni | Elliptic curve scalar multiplication combining Yaos algorithm and double bases[END_REF]. Thus, algorithms, based on the aforementioned algorithms, optimize faster scalar multiplication [START_REF] Tian | An Efficient Elliptic Curves Scalar Multiplication Algorithm Suitable for Wireles Network[END_REF], [START_REF] Imai | Faster Multi-Scalar Multiplication Based on Optimal Double-Base Chains[END_REF]. In addition, on point arithmetic, some schemes use algebraic substitutions of the multiplication operations with squaring operations and other cheaper field operations such as addition, subtraction and multiplication or division by a small constant [START_REF] Longaanda | Fast and Flexible Elliptic Curve Point Arithmetic over Prime Fields[END_REF]. Recently, a new concept of using multiprocessor architectures to process several operations of scalar multiplication simultaneously has been developed. At the point arithmetic level, some algorithms parallelize ECC formulas to reduce the time complexity of scalar multiplication [START_REF] Longaanda | Fast and Flexible Elliptic Curve Point Arithmetic over Prime Fields[END_REF]. At the scalar arithmetic level, the algorithm in [START_REF] Ansari | Parallel Scalar Multiplication for Elliptic Curve Cryptosystems[END_REF] parallelizes the series of doubling and addition operations of a point on the binary algorithm with two processor architectures. For other solutions, parallelization is done by partitioning the scalar into n equal-length bit substrings on multiprocessor architectures [START_REF] Wu | Partitioned Computation to Accelerate Scalar Multiplication for Elliptic Curve Cryptosystems[END_REF], [START_REF] Lim | More flexible exponentiation with precomputation[END_REF]. In very recent research, this partitioning technique is used on the sensor nodes in [START_REF] Shou | Parallel Scalar Multiplication on Elliptic Curves in Wireless Sensor Networks[END_REF]. In this paper, we propose a method to accelerate scalar multiplication. For a given scalar multiplication k P, we replace it with an equivalent representation d P where the scalar d <k . Our technique is based on point order and the negative of point. Current research shows this is the first method based on this technique. All the above mentioned algorithms can basically use our technique to perform faster computation on scalar multiplication. The rest of this paper is organized as follows: Section 2 describes some preliminaries about ECC over prime fields; in Section 3, we present our new scalar reduction. After outlining the context of our first contribution (Section 3.1), we describe the new scalar reduction (Section 3.2), and make respectively, an analytical evaluation and efficiency analysis (Section 3.3) and (Section 3.4). In order to verify our claims we implemented a simulator in Java and analyze its performance (Section 3.5). Finally, Section 4 is related to our conclusions and perspectives.

In this section, a brief background description about ECC over finite prime fields is given. An elliptic curve E over finite field F (of order n ) denoted by E(F) can be defined by the long Weierstrass equation [START_REF] Hankerson | Guide to Elliptic Curve Cryptography[END_REF]:

E : y 2 + a 1 xy+a 3 y=x 3 +a 2 x 2 +a 4 x+a 6 .
(

) 1 
where a 1 , a 2 , a 3 ,a 4 and a 6 are elements in F.

The field generally used in cryptography relates to the prime field denoted by F p where p= q m and q a prime number called the characteristic of F p . If q m =p, F p is called a prime field. In this paper, we work with a prime field F p , where p >3.

For prime fields, if the characteristic is more than 3, the Weierstrass equation can transform to:

E : y 2 =x 3 +ax+b . ( 2 
)
where a and b ∈ F p .

To be used for cryptography, the necessary condition is the discriminant of polynomial:

f (x) = x 3 + ax + b, = 4a 3 + 27b 2 = 0. (3) 
The points (x, y), where integer coordinates x, y satisfy the above equation and the point at infinity denoted by ∞ is also a point on the curve and form an abelian group. The group law mainly consists of two basic operations: point doubling (2P ) and point addition (P+Q) where P and Q are two different points on the curve. Given P=(x p ,y p ) and Q=(x q ,y q ) two points ( = ∞ ) which are on the elliptic curve over F p denoted by E (F p ). The points addition P+Q=(x pq ,y pq ) or point doubling 2P=P+Q=(x pq ,y pq ) if P=Q can be calculated as:

x pq = λ 2 -x p -x q y pq = λ(x p -x p+q ) -y p (4)        λ = y q -y p x q -x p , ifP = Q λ = 3x 2 p + a 2y p , ifP = Q (5)
The negative of a point only involves the change of at most one of its coordinate values in the point representation. For example, the negative of a point P = (x p ,y p ) is its reflection in the x -axis: the point -P is (x p ,-y p ). Notice that for each point P on an elliptic curve, the point -P is also on the curve.

3 New scalar reduction method

Context

In this section, we present a new improvement in the scalar arithmetic level. This improvement is based on specific reduction of the scalar in a selected interval.

Assume that F p has a characteristic greater than 3. Let E (F p ) be an elliptic curve over a prime field. Let #E (F p ) denotes the number of points of the elliptic curve over E (F p ). #E (F p ) is also called the order of group of points. A wellknown theorem of Hasse states that [START_REF] Hankerson | Guide to Elliptic Curve Cryptography[END_REF]:

|#E (F p ) -p -1 ≤ 2 √ p |.
Let G be a cyclic group of E (Fp) of order n generated by a base point P (namely generator point). The points in G are expressed as multiples of P : G=P ={∞, P, 2P, ....., (n-2)P, (n-1)P }⊆ E (F p ) with nP =∞. The order of point P (denoted by #P ) is n.

Description of our new scalar reduction method

In our approach, we replace the point, namely kP, in the main scalar multiplication operation by an equivalent representation point dP (k and d two scalars

and k > d) in the interval [n/2+1, n-1],
where n/ 2 denotes the integer-part function of n/ 2. As the negative of a point is obtained freely, we use it to make fast computation. Given the point P=(x p , y p ) in affine coordinates, to compute the negative (inverse) of the point kP=(x kp , y kp ), we can compute kP=(x kp , y kp ) and then change the sign on the y-coordinate (y kp ). Notice that for each point P on an elliptic curve, the point -P is also on the curve. Thus, we can replace the point kP by an equivalent point representation dP utilizing the negative of point. For a secret scalar k (integer number), by the point kP, we get an equivalent points representation dP by following the equations, in a general case: We use an example of the above description in order to better express our reduction method.

                       a. If k > n , kP = dP where d = (k -k/2.n); b. If k ∈ ]n/2, n-1], kP = dP where d = (k -n); c. If k ∈ ]0, n/
Example: We choose the prime number p =23. Note that this process mainly reflects our new protocol. In real cases, the p is much bigger than this. If we consider the elliptic E over F 23 defined by E (F 23 ):

y 2 =x 3 +x+1, then # E (F 23 )=28, E (F 23
) is a cyclic group. Let P (0,1) be a generator point. The points in E (F 23 ) are shown below: general case from Figure 1 that the points -34P, -6P, 22P, 50P have the same coordinates. To process the point -6P (the negative of 6P ), we compute the point 6P and affix the minus sign to the y-coordinate. Thus, computation of -6P is free and almost equal to computing 6P . The scalar multiplication using our method in the the general case would be computed as follows:

to calculate 50P, we compute -6P by applying formula; (6.a) to calculate 22P, we compute -6P by applying formula; (6.b) to calculate -34P, we compute -6P by applying formula. (6.g) On the other hand, for the special case of ECC, we can see from Figure 2 |k|P , see formula [START_REF] Longaanda | Fast and Flexible Elliptic Curve Point Arithmetic over Prime Fields[END_REF].

n-1 k=1 kP = 2 n/2-1 k=1 kP + n 2 P + 2 n/2-1 k=1 kP (8) 
By using our method, the equation ( 8) can be replaced by equation ( 9):

n/2-1 k=1 kP + n/2-1 k=1 |k|P + n 2 P. (9) 
By scanning all scalars k for computation of kP in the interval [n/2+1, n-1 ],we can see from formulas ( 8)-( 9), that we gain a rate of n/2-1 k=1 2kP . The speed-up for a given scalar kP is 2(k-(n/2)). For example, in Figure 2, computing kP =22P, is equal to computing 6P, the speed-up is 2(22-(14/2))= 16P since 16P + 6P = 22P. In fact, the complexity of scalar multiplication is determined by the length bit of k which is equal tolog 2 (k)+1 or log 2 (k) if k=2 x , where x is an integer. In binary representation, log 2 (k) can be replaced in our method by:

log 2 (k -2(k - n 2 )) = log 2 (k) + log 2 (k + n -2k k ) ( 10 
)
Thus, the speed-up in length bit is:

|log 2 (k + n -2k k )| = |log 2 ( |d| k )|, where log 2 (k + n -2k k ) < 0.
Since our reduction method is not possible for n=1, from Figure 3 our method is not used since its design is only for the interval [n/2+1, n-1 ]. Consequently, it is very efficient in Figure 3,in which we only consider scalars in this interval. From formula [START_REF] Wu | Partitioned Computation to Accelerate Scalar Multiplication for Elliptic Curve Cryptosystems[END_REF], we make the average computation of all scalar k in interval[n/2 + 1, n -1], where our technique can be applied

1 n -1 -n/2 ( n-1 k=n/2+1 kP ) = 1 n -n/2 ( n/2-1 k=1 kP ). ( 11 
)
The average of scalar k can be found in Figure 4, where we can also apply our technique in the interval[n/2+1, n-1].

Optimization can be done in the interval [n/2+1, n-1] by using only even numbers for order n. If the order n >2 is an even number: If the order n ≥3 is an odd number:

3 n/2-1 k=1 kP > n-1 k=n/2+1 kP ≥ 2 n/2-1 k=1
kP . Figure 5 shows the speed-up between even and odd numbers. We can see that Fig. 5. Speed-up rate between even and odd order if n is even, the speed-up curve is a horizontal line whose equation is y=3. But if n is odd, the line y=3 is a horizontal asymptote for the speed-up curve. If we work with even order, the speed is three times faster. If the order is odd, the enhancement is > 2, and < 3.

Efficiency analysis

The unit of this speed-up can be the length bit or the number of doubling/addition operations. For example, NAF needs log 2 (k) doubling and log 2 (k)/3 addition. In the interval [n/2 + 1, n -1], three cases are possible for the speed-up:

-If log 2 (n)=x, where x is an integer, our method can speed up the scalar multiplication in interval [n/2 + 1, n -1] by reducing the length bit of k. -If log 2 (n)=x, where x is not an integer, our method can speed up the scalar multiplication only in interval [2 log2 n 2

+1

, n -1] -If k= (n-1), we reach the maximum speed-up, the length bit of the scalar k is maximum (equal to log 2 (n -1), where it is equal to one bit for d. In this case, our method does not require computation.

From Table 1 and Table 2, we can see the speed-up in length bit for some values of the scalar k.

Table 1. Speed-up S for some values of k for x integer.

Values of k n/2 + 1 >=(n/2 + 1) (n-1) Speed-up(bits) 1 1 < S < log2(k) log2(k)
Table 2. Speed-up S for some values of k for x not integer.

Values of k 2 log 2 n 2 +1 >= 2 log 2 n 2 +1 (n-1)
Speed-up(bits)

1 1 < S < log2(k) log2(k)

Performance Evaluation

To test the performance of our solution, we have implemented a simulator in Java. The program is then run on an Intel Core i5-2520 processor taking into account the computing power difference between this processor and a MSP 430 MCU. During the test, we choose an elliptic curve over F p using NIST-192 recommended parameters which are given in Table 3. p is the size of prime field F p , and a, b are coefficients of the simplified Weierstrass form of our curve. P (x P , y P ) is chosen as the generator point, and its order equals n.

As indicated in equation (6.b), when we need to perform a scalar multiplication kP for cryptographic purpose, we choose k < n where n is the order of the generator point P , which means nP = ∞. In addition, theoretically our method works only when k ∈] n 2 , n-1]. To prove this property, we have chosen 6 values of 192 bits for k which are distributed uniformly in ]0, n -1] (see table 4).

We have tested our method using both affine and jacobian coordinates, the scalars are represented respectively in binary and NAF form combined with the proposed scalar reduction method. The test results are given in tables 5 and 6, and illustrated graphically in figure 6 and7.

Parameter NIST-192 recommended values p 2 192 -2 64 -1 a -3 b 0x 64210519 e59c80e7 0fa7e9ab 72243049 feb8deec c146b9b1 xP 0x 188da80e b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012 yP 0x 07192b95 ffc8da78 631011ed 6b24cdd5 73f977a1 1e794811 n 0x ffffffff ffffffff ffffffff 99def836 146bc9b1 b4d22831 6279 6325 5320 6445 6556 28 Table 5. Running times (ms) using affine coordinates (SR: Scalar reduction) Fig. 6. Running times (ms) using affine coordinates

In both cases, we can notice that, firstly when the scalar is in NAF form, the computation is faster than the one using binary form. Secondly when k ∈]0, n 2 ], we cannot apply the proposed scalar reduction method. However, if k ∈] n 2 , n-1],

we may accelerate slightly the computation by reducing the scalar. Especially when the value of k is close to n-1, the computation can be done instantaneously since (n -1)P = -P . When we use jacobian coordinates, as we don't need to repeat the modular inverse (see equation ( 5)), the computation is obviously faster than the first case. Same as the results obtained using affine coordinates, our scalar reduction method can be used during the computation only when k ∈] n 2 , n -1]. When it's applied, the scalar is reduced, and the computation can run faster.

According to the results of performance evaluation, our scalar reduction method does speed up the computation of scalar multiplication on a standard NIST-192 elliptic curve. The acceleration rate strongly depends on the value of the scalar used. The scalar k can be reduced if k ∈] n 2 , n -1], and once applied, the computation task can be simplified and carried out more quickly.

Conclusion

In this paper, we have proposed a novel method based on point order and the negative of point to speed up the computation of scalar multiplication on elliptic curve cryptosystems. On one hand, the proposed method will significantly reduce the computation time in the interval [n/2+1, n-1 ]. On the other hand, we show that the usage of even order is more efficient than odd order. Our method is a very suitable tool for embedded devices such as WSNs. Also, it can be easily applied to almost all existing fast scalar multiplication methods as shown in NAF. Thus, that's comparisons are nor required regarding some existing schemes. Additionally, a thorough analysis and simulation based on evaluations will show that the proposed solution does speed up the computation of scalar multiplication on a standard NIST-192 elliptic curve. Our future research plans will be oriented towards experimenting our current technique on real sensor nodes with elliptic curves over finite prime fields.
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 1 Fig. 1. General elliptic curve case

  that computing the points from [15P,16P,.........26P, 27P ] can be replaced respectively by [-13P, -12P,.........,-2P, -P ]. In this case, computing 27P can be replaced by -P and is almost free.

Fig. 2 .kP

 2 Fig. 2. Elliptic Curve Cryptography case
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 3 Fig. 3. Sum of all k values function of order n in [n/2+1, n-1]

Fig. 4 .

 4 Fig. 4. Average of all k values function of order in [n/2+1, n-1]
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 7 Fig. 7. Running times (ms) using jacobian coordinates

Table 3 .

 3  recommended elliptic curve parameters

	k Value in hexadecimal
	n/6 0x 2aaaaaaa aaaaaaaa aaaaaaaa 99a5295e 58bca19d 9e2306b2
	n/3 0x 55555555 55555555 55555555 334a52bc b179433b 3c460d65
	n/2 0x 7fffffff ffffffff ffffffff ccef7c1b 0a35e4d8 da691418
	2n/3 0x aaaaaaaa aaaaaaaa aaaaaaaa 6694a579 62f28676 788c1aca
	5n/6 0x d5555555 55555555 55555555 0039ced7 bbaf2814 16af217a
	n -1 0x ffffffff ffffffff ffffffff 99def836 146bc9b1 b4d22830

Table 4 .

 4 Values of k chosen for performance evaluation

	√ √ √ √	6579 6572 7604 6555 6931 7471 6282 6326 5317 6239 6698 5114 6578 6573 7600 6416 6600 27

NAF SR n/6 n/3 n/2 2n/3 5n/6 n -1

Table 6 .

 6 Running times (ms) using jacobian coordinates (SR: Scalar reduction)

	NAF SR n/6 n/3 n/2 2n/3 5n/6 n -1 3066 3102 3621 3072 3202 3520 √ 3053 3074 3592 3071 3189 3541 √ 3070 3100 3622 3030 3107 9 √ √ 3050 3075 3597 3194 3136 9