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The optimization of diamond-based unipolar electronic devices such as pseudo-vertical Schottky

diodes or delta-doped field effect transistors relies in part on the sequential growth of nominally

undoped (p–) and heavily boron doped (pþþ) layers with well-controlled thicknesses and steep

interfaces. Optical ellipsometry offers a swift and contactless method to characterize the thickness,

roughness, and electronic properties of semiconducting and metallic diamond layers. We report

ellipsometric studies carried out on delta-doped structures and other epitaxial multilayers with various

boron concentrations and thicknesses (down to the nanometer range). The results are compared with

Secondary Ion Mass Spectroscopy and transport measurements. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4861860]

Spectroscopic ellipsometry has been introduced quite

early on as an efficient way of characterizing the nucleation

and subsequent coalescence and growth of polycrystalline di-

amond on silicon substrates induced by chemical vapor dep-

osition (CVD), either in situ1–7 or ex situ.8–13 The main

ingredients of this approach were the optical transparency of

diamond in the visible range and the sizable difference

between the refractive index of diamond (around 2.4) and

that of the silicon substrate (around 3.5) over this spectral

range.14 In the case of homoepitaxial growth, no such dis-

continuity was expected between film and substrate, so that

equivalent studies have not been published. Actually, in con-

trast to other semiconductors, spectrometric ellipsometry has

not been a popular way to determine optical constants of sin-

gle crystal diamond. Indeed, even in the ultraviolet region,

close to the direct gap, artefacts most probably related to the

surface roughness of the polished crystals may well have

affected the few reported values.15,16

However, at the heavy boron doping levels leading to me-

tallic properties in diamond (above 4� 1020 [B]/cm3 (Ref.

17)), a noticeable change in refractive index has been detected

by reflectance spectroscopy,18 first in the mid-infrared, then

up to the near ultraviolet range.19 As confirmed by other stud-

ies in the far infrared,20 the contribution of free holes was

fairly well described by an additional Drude component to the

pseudo dielectric function of diamond, and the change of re-

fractive index could be evaluated over the whole spectral

range. A consequence of this observation is that stacks of

well-defined metallic (pþþ) and semiconducting (p� or p)

layers are expected to have spectral characteristics in the visi-

ble range that could be measured and simulated as those of

any optical multilayer, providing an access to their respective

thickness and electronic microscopic properties at optical fre-

quencies. Such epitaxial metallic diamond layers of micromet-

ric to nanometric thickness, which have been proposed as

buried electrical contacts for both n/i/p and Schottky

pseudo-vertical devices,21–23 as source and drain in field effect

transistors (FET) or even as a pseudo-channel24 in

delta-doped metal-insulator semiconductor FETs, have been

recently investigated, and new results about their chemical

profiles25–27 or temperature-dependent transport proper-

ties26,28,29 have been published. It is the purpose of the present

letter to show that spectroscopic ellipsometry provides a

time-effective but yet powerful characterization of metallic

layers or alternating p�/pþþ epitaxial diamond multilayers

similar (before patterning) to those involved in the monolithic

devices mentioned above.

To this aim, we have studied the ellipsometric response

of various diamond homoepitaxial stacks, including

uncapped and capped delta-doped structures and two series

of pþþ epilayers where either the thickness or the doping

level were varied. We report the experimental spectra and

their fits with standard model dielectric functions specific to

each epilayer. Thicknesses, optically determined room tem-

perature resistivities, and carrier concentrations will then be

compared with Secondary Ion Mass Spectroscopy (SIMS)

and DC transport measurements.

A TE10 standing microwave field was obtained in a rec-

tangular waveguide of a microwave plasma-assisted CVD

(MPCVD) reactor where the reaction chamber composed of

a quartz tube was positioned at a maximum of the electric

field. The H2 þ CH4 plasma was ignited close to the dia-

mond substrate, which was held at 910 �C for the non inten-

tionally doped p� layers, and at 830 �C for heavily boron

doped (pþþ) growth resulting from adding diborane (B2H6)

to the gas mixture. The total flow rate was kept to 100 sccm

at a pressure of 40 mbar. Three sets of samples were grown,

labeled as “thickness,” “doping,” and “capped.” The

“thickness” series involved pþþ layers where only the

growth duration was changed between 1 and 60min (CH4/H2

molar ratio of 4%, B2H6/CH4 molar ratio 600 ppm) resulting

in epilayers thicknesses ranging from 30 to 1800 nm. The

samples of the “doping” series are pþþ layers about

1 lm-thick where the diborane to methane ratio was varied

between 150 and 6000 ppm leading to solid state concentra-

tions ranging17,30 from 2� 1020 and 2� 1021 [B]/cm3. The

samples of these two series were considered as metallic at

room temperature. The third set involved three samples

where the pþþ layer was overgrown with a p� “cap layer”

(CL). For one sample dubbed “thick stack,” the growth
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conditions of the pþþ layer were those of the thickness se-

ries, and the resulting pþþ and cap p� epilayer were a few

lm-thick. For the other two samples dubbed “delta 1” and

“delta 2,” the conditions were changed, with CH4/H2 and

B2H6/CH4 molar ratios in the gas phase of 0.5% and 3000

ppm, respectively, while the total pressure was raised to 67

mbar and the total flow rate to 2 slm in order to reduce the

residence time of the gas species. Under these conditions,

the growth rate decreased from typically 30 to 6 nm/min and

much thinner epilayers were grown. Additionally, as

described elsewhere,29,31 O2 þ H2 gas mixtures were used to

etch in situ the ultra-thin pþþ layers down to the required

thickness without turning off the plasma.

Spectroscopic ellipsometry was performed with a J.A.

Woollam M2000 ellipsometer running under the CompleteEase

software. The ellipsometric angles (W, D) defined by the ratio

of the reflection coefficients for electric fields, respectively, par-

allel (p) and perpendicular (s) to the incidence plane

(rp/rs¼ tan(W)eiD) were acquired over the 240–1000nm wave-

length range at a 75� incidence angle. These data were simu-

lated using a Cauchy model for the optical constants of

diamond in the case of non-intentional doped layers or sub-

strates, and adding a Drude component to UV oscillators for

metallic layers. Contrary to the epitaxial layers, the 0.3 to

0.5mm-thick undoped [100]-oriented diamond substrate (either

type-Ib or type IIa optical grade crystals) was described as an

incoherent optical layer where only the intensities of the multi-

ple reflected beams should be summed (instead of amplitudes).

A random surface roughness parameter (in nm) was also intro-

duced in the simulation, for the top surface only.

To perform Hall effect measurements, the cap and the

delta-doped layers have been delineated by Reactive Ion

Etching to fabricate a Hall bar. Ohmic contacts have been

fabricated by annealing at 750 �C under vacuum (<10�8

mbar) during 30min the Ti/Pt/Au pads. The sheet carrier

density measurements have been carried out at room temper-

ature in vacuum with a DC magnetic field (amplitude of

0.8 T) in the standard configuration (magnetic field parallel

and current density perpendicular to the growth axis [100]).

In some cases, four terminal silver paste resistivity measure-

ments have also been performed.

The metallic layer optical response has been fitted by

adding a Drude component to the interpolated dielectric

function enid of undoped diamond14

e xð Þ ¼ enidðxÞ þ i
Ne2s

e0m0m�

x

1� ixs
; (1)

with x the wavenumber (or reciprocal wavelength 1/k), N

the free carriers (here holes) concentration, s the scattering

time, e the elementary electron charge, m0 the electron rest

mass and m* the relative effective mass of the holes. Beside

the thickness d of the pþþ layer, and the top surface rough-

ness, the two fit parameters were the relaxation time s and

the N/m* ratio. This simple relaxation time approximation of

a Fermi metal provides a direct access to the optical resistiv-

ity at zero frequency

q xð Þ ¼ q0ð1� ixsÞ ¼
m0m

�

Ne2s
ð1� ixsÞ: (2)

After each fit, beside the overall minimum mean square devi-

ation (MSE), a table was calculated showing the correlation

coefficients (from 0, no correlation, to 1, fully correlated)

between the fit parameters corresponding to the various

layers of the stack (see Table I).

As shown in Fig. 1(a), in the case of an optically thick

pþþ film (no reflected light coming from the back interface)

the spectral dependence of the two ellipsometric angles W

and D was measured and then simulated by the optical

response of a rough semi-infinite medium with a complex

wavelength-dependent pseudodielectric function e(k) or

refractive index n(k)þik(k). A similar approach can be

applied to polished insulating bulk diamond.

In the case of commercial diamond substrates, the fitted

pseudodielectric functions taking their roughness into

account lie close to those deduced from the n and k values

found in a classical handbook,14 which were as usual readily

interpolated over the present spectral range by a Cauchy

law.14 The real part n of the refractive index was found

slightly higher in yellow type Ib substrates grown at high

pressure and high temperature (HPHT) than in optical grade

TABLE I. Correlation table for the fit of both ellipsometric angles measured

on sample delta-1. The influence of strongly correlated parameters (correla-

tion coefficient close to6 1) cannot be disentangled.

d dCL q s

d 1 �0.8 0.1 �0.9

dCL �0.8 1 0.3 0.9

q 0.1 0.3 1 �0.1

s �0.9 0.9 �0.1 1

FIG. 1. (a) Spectral variation of the ellipsometric angles for an optically

thick pþþ diamond layer. (b) Optical indices deduced from (a), compared

with reflectometry measurements and the refractive index of type-Ib

(HPHT) and type-IIa (CVD) diamond substrates.
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CVD substrates (Fig. 1(b)). This can be explained by the

high density of isolated Nitrogen in the Ib substrates leading

to an optical absorption above 1.7 eV (below 729 nm). In the

case of the thick metallic diamond layer, in order to obtain

satisfactory simulations, it was necessary to add to e(k) of

undoped diamond a Drude component17 parameterized here

by the zero frequency limit q0 of the frequency-dependent

optical resistivity and by the microscopic relaxation time s,

as defined above. The experimental optical constants n and k

are shown in Fig. 1(b) to be very similar to those previously

published for similar films,18 with a real part n becoming sig-

nificantly weaker than in undoped diamond at longer wave-

lengths. This sizable contrast in refractive index (�20% at

1lm wavelength) between insulating (or p�) and metallic

(pþþ) diamond led us to study optically various stacks of p�

and pþþ epilayers.

The first case that comes to mind is that of uncapped

and thin metallic diamond films grown on commercial sub-

strates, similar to those used in superconductivity27 or delta-

doping25,32 studies. The spectral dependence of the ellipso-

metric angles for two such films (“thickness series”) is given

in Figs. 2(a) and 2(b), with best fit simulations of the Fabry-

Perot fringes yielding thicknesses d of 29 nm and 167 nm for

1 and 5min growth times, within 10% of the thicknesses

expected from the nominal deposition rate of 31 nm/min. A

third example is given on Fig. 2(c), that of a “thick stack”

involving a p� layer grown on top of a pþþ layer grown on a

commercial CVD substrate. The amplitude of the fringes is

smaller, mostly because of an increased surface roughness,

but still determined by the contrast in refractive index, which

increases with the wavelength. The thicknesses resulting

from the fit, d¼ 1.5 lm for the pþþ bottom layer, and

dCL¼ 3.8 lm for the top p� cap layer, were also within 10%

of the values expected from previous boron concentration

SIMS and neutron depth profiles.30 Because the present spec-

tral range was limited to 1lm in the infrared, the maximum

thicknesses measurable in this non-destructive way for such

bilayers were dCL¼ 8 lm for the top p� cap layer and

d¼ 2 lm for the underlying pþþ epilayer.

In the case of uncapped metallic diamond epilayers, as

shown in Fig. 3(a), the reliability of the thickness values

deduced from ellipsometry spectra was confirmed over almost

two orders of magnitude for the whole “thickness series.”

Over this series, the q0 value deduced from the best fit for

each of these samples was almost constant. Once multiplied

by the optically determined thickness d, an average optical

sheet resistivity was determined, and compared in Fig. 3(b) to

the DC value measured at room temperature by the 4-terminal

probe method. In both cases the �1 slope of the log-log plot

was compatible with a constant resistivity value over the

whole thickness range. This resistivity value was 2.4mX.cm

for DC measurements, higher than extrapolated from the opti-

cal data (1.7mX.cm). This discrepancy was tentatively

FIG. 2. Spectral dependence of the experimental and simulated ellipsometry

parameters for a (a) 29 nm- and (b) 167 nm-thick uncapped pþþ layer and

(c) a bilayer p�/pþþ stack.

FIG. 3. (a) Thickness expected from the growth rate, as a function of the

optically determined thickness. The solid line corresponds to a constant

growth rate of 31 nm/min. (b) Thickness dependence of the sheet resistance

deduced from spectroscopic ellipsometry and DC measurements. The

straight and the dashed lines correspond to average resistivity values of 1.7

and 2.4mX.cm.
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attributed to the limited optical spectral range which did not

extend far enough below the plasmon edge to take into

account scattering events occurring at lower frequencies.

Spectroscopic ellipsometry was also performed on the

“doping series” of epilayers. We used the N/m* ratio as a pa-

rameter of the Drude model and compared in Fig. 4 the

results to the boron concentration previously determined29,30

by SIMS. The carrier concentrations deduced from ellipsom-

etry seemed be significantly higher than the boron concentra-

tion, as observed previously for optical18 as well as Hall

effect measurements.18,29 If, however, the optical mass was

fixed at 0.3 m0, the agreement became acceptable. This value

is much lower than the optical effective mass 0.74 m0 which

has been deduced from the optical excitation spectrum of the

boron acceptor.33

For reasons explained elsewhere,23,28,34,35 we also

undertook the study of two delta-doped structures made of a

few nm-thick metallic layer overgrown with a few tens of

nm-thick p� doped cap layer (delta-1 and delta-2). The spec-

tral dependence of the ellipsometric angles was simulated

yielding nominal thicknesses of, respectively, 3 nm and

1.3 nm for the metallic films and 36 nm and 28 nm for the

cap layers (lowest MSE). As illustrated by Fig. 5, the

experimental D spectra was reproduced almost equally well

by a set of pairs of geometrical thicknesses d and dCL. For

example, the fit of the delta-1 sample obtained for d¼ 3 nm

and dCL¼ 36.5 nm is only slightly better than the one using

d¼ 6 nm and dCL¼ 33.5 nm or, for that matter, than the sim-

ulation assuming d¼ 1.5 nm and dCL¼ 39 nm. As shown by

the inset of Fig. 5, the fit was more sensitive in the

near-infrared region of the spectrum, so that an extension to

longer wavelengths should reduce this uncertainty. The fact

that these two fitting parameters are far from being independ-

ent from one another is also illustrated by Table I, where the

corresponding values of the correlation coefficients are close

to unity.

However, while the resistivity q0 value of the Drude

metal affected the simulation quite independently of both

thicknesses values, Table I also shows that the latter were

strongly correlated to the scattering time value. An extension

of the spectral range of the ellipsometer to the infrared

should increase the sensibility of the measurements to the

optical absorption attributed to the free carriers, and thus

lower the correlation coefficients.

In conclusion, we have shown that spectroscopic ellips-

ometry is a powerful non-destructive tool to probe the thick-

nesses, the optical parameters and the electronic properties

of semiconducting and metallic single crystal diamond epi-

layers and multilayers. Two series of uncapped metallic epi-

layers with either various boron concentrations or various

thicknesses have been grown and measured. Thicknesses and

sheet resistance values deduced from the simulations were

close to those expected from the growth rate and DC four

points probe measurements. A similar agreement between

carrier concentrations extracted from the simulations and bo-

ron concentrations deduced from SIMS profiles was obtained

assuming an optical mass of about 0.3 m0. Spectroscopic

ellipsometry was also performed on two capped delta-doped

layers with thicknesses in the nm range. The simulation of

the spectra was found much more sensitive to the sum rather

than to the individual values of the delta layer and the cap

layer thicknesses. Moreover, the strong correlation of those

two parameters with the scattering time deduced from the

Drude model limited the precision on the delta layer thick-

ness and electronic properties. We suggest that this situation

would be significantly improved by extending the spectral

range of the spectrometer to the infrared.

The authors would like to acknowledge the significant

contribution of Dr. P. Achatz who grew some of the thicker

pþþ samples. This work was partially supported by the

French FUI project “DiamondX2.”

1R. W. Collins, Y. Cong, Y.-T. Kim, K. Vedam, Y. Liou, A. Inspektor, and

R. Messier, Thin Solid Films 181, 565 (1989).
2R. W. Collins, Y. Cong, H. V. Nguyen, I. An, K. Vedam, T. Badzian, and

R. Messier, J. Appl. Phys. 71, 5287 (1992).
3Y. Hayashi, W. Drawl, R. W. Collins, and R. Messier, Appl. Phys. Lett.

60, 2868 (1992).
4Y. Hayashi, X. Li, and S. Nishino, Appl. Phys. Lett. 71, 2913 (1997).
5B. Hong, J. Lee, R. W. Collins, Y. Kuang, W. Drawl, R. Messier, T. T.

Tsong, and Y. E. Strausser, Diamond Relat. Mater. 6, 55 (1997).
6J. Lee, P. I. Rovira, I. An, and R. W. Collins, Appl. Phys. Lett. 72, 900

(1998).

FIG. 4. Normalized free carrier concentration deduced from ellipsometry as

a function of the boron concentration deduced from SIMS profiles of lm-

thick films (“doping” series).

FIG. 5. Fitted and experimental spectral dependence of D angle for delta-1

and delta-2 samples. Models for delta-1 at nominal thickness (d¼ 3 nm) and

other fixed values (d¼ 1.5 nm and d¼ 6 nm) are presented. Inset: details of

the delta-1 spectra in the near infrared region.

021905-4 Bousquet et al. Appl. Phys. Lett. 104, 021905 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

147.173.64.73 On: Tue, 14 Jan 2014 16:19:09



7J. Lee, B. Hong, R. Messier, and R. W. Collins, Thin Solid Films

313–314, 506 (1998).
8Y. Cong, R. W. Collins, G. F. Epps, and H. Windischmann, Appl. Phys.

Lett. 58, 819 (1991).
9N. Cella, H. E. Rhaleb, J. P. Roger, D. Fournier, E. Anger, and A. Gicquel,

Diamond Relat. Mater. 5, 1424 (1996).
10I. Pint�er, P. Petrik, E. Szilagui, Sz. Katai, and P. Deak, Diamond Relat.

Mater. 6, 1633 (1997).
11S. Gupta, B. R. Weiner, and G. Morell, J. Appl. Phys. 90, 1280 (2001).
12S. Gupta, A. Dudipala, O. A. Williams, K. Haenen, and E. Bohannan,

J. Appl. Phys. 104, 073514 (2008).
13A. Zimmer, O. A. Williams, K. Haenen, and H. Terryn, Appl. Phys. Lett.

93, 131910 (2008).
14D. E. Edwards and H. R. Philipp, in Handbook of Optical Constants of

Solids, edited by E. Palik (Academic Press Inc. 1985), pp. 665–673.
15S. Logothetidis, J. Petalas, H. M. Polatoglou, and D. Fuchs, Phys. Rev. B

46, 4483 (1992).
16N. Kumagai, S. Yamazaki, and H. Okushi, Diamond Relat. Mater. 13,

2092 (2004).
17T. Klein, P. Achatz, J. Kacmarcik, C. Marcenat, F. Gustafsson, J. Marcus,

E. Bustarret, J. Pernot, F. Omnès, B. E. Sernelius, C. Persson, A. F. da

Silva, and C. Cytermann, Phys. Rev. B 75, 165313 (2007).
18E. Bustarret, F. Pruvost, M. Bernard, C. Cytermann, and C. Uzan–Saguy,

Phys. Status Solidi A 186, 303 (2001).
19E. Bustarret, E. Gheeraert, and K. Watanabe, Phys. Status Solidi A 199, 9

(2003).
20M. Ortolani, S. Lupi, L. Baldassare, U. Schade, P. Calvani, Y. Takano, M.

Nagao, T. Takenouchi, and H. Kawarada, Phys. Rev. Lett. 97, 097002

(2006).
21T. Makino, S. Tanimoto, Y. Hayashi, H. Kato, N. Tokuda, M. Ogura, D.

Takeuchi, K. Oyama, H. Ohashi, H. Okushi, and S. Yamasaki, Appl. Phys.

Lett. 94, 262101 (2009).

22A. Nawawi, K. J. Tseng, Rusli, G. A. J. Amaratunga, H. Umezawa, and S.

Shikata, Diamond Relat Mater. 35, 1 (2013).
23H. Umezawa, Y. Kato, and S. Shikata, Appl. Phys. Express 6, 011302

(2013).
24R. S. Balmer, I. Friel, S. M. Woolard, C. J. H. Wort, G. A. Scarsbrook, S.

E. Coe, H. El-Hajj, A. Kaiser, A. Denisenko, E. Kohn, and J. Isberg,

Philos. Trans. R. Soc., A 366, 251 (2008).
25Y. G. Lu, S. Turner, J. Verbeek, S. D. Janssens, P. Wagner, K. Haenen,

and G. Van Tendeloo, Appl. Phys. Lett. 101, 041907 (2012).
26R. S. Balmer, I. Friel, S. Hepplestone, J. Isberg, M. J. Uren, M. L.

Markham, N. L. Palmer, J. Pilkington, P. Huggett, S. Madji, and R. Lang,

J. Appl. Phys. 113, 033702 (2013).
27A. Fiori, F. Jomard, T. Teraji, S. Koizumi, J. Isoya, E. Gheeraert, and E.

Bustarret, Appl. Phys. Express 6, 045801 (2013).
28S. Kitagoh, R. Okada, A. Kawano, M. Watanabe, Y. Takano, T.

Yamaguchi, T. Chikyow, and H. Kawarada, Physica C 470, S610

(2010).
29G. Chicot, T. N. T. Thi, A. Fiori, F. Jomard, E. Gheeraert, E. Bustarret,

and J. Pernot, Appl. Phys. Lett. 101, 162101 (2012).
30P. Achatz, F. Omnès, L. Ort�ega, C. Marcenat, J. Vacik, V. Hnatowicz, U.

K€oster, F. Jomard, and E. Bustarret, Diamond Relat. Mater. 19, 814

(2010).
31A. Fiori, T. N. T. Thi, G. Chicot, F. Jomard, F. Omnès, E. Gheeraert, and

E. Bustarret, Diamond Relat. Mater. 24, 175 (2012).
32R. Edgington, S. Sato, Y. Ishiyama, R. Morris, R. B. Jackman, and H.

Kawarada, J. Appl. Phys. 111, 033710 (2012).
33E. Gheeraert, S. Koizumi, T. Teraji, H. Kanda, and M. Nesladek, Phys.

Status Solidi A 174, 39 (1999).
34A. Fiori, J. Pernot, E. Gheeraert, and E. Bustarret, Phys. Status Solidi A

207, 2084 (2010).
35H. El-Hajj, A. Denisenko, A. Kaiser, R. S. Balmer, and E. Kohn, Diamond

Relat. Mater. 17, 1259 (2008).

021905-5 Bousquet et al. Appl. Phys. Lett. 104, 021905 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

147.173.64.73 On: Tue, 14 Jan 2014 16:19:09


