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ABSTRACT
Saliency detection techniques have been widely used in var-
ious 2D multimedia processing applications. Currently, the
emerging applications of stereoscopic display require new
saliency detection models for stereoscopic images. Different
from saliency detection for 2D images, depth features have
to be taken into account in saliency detection for stereoscopic
images. In this paper, we propose a new stereoscopic salien-
cy detection framework based on the feature contrast of color,
intensity, texture, and depth. Four types of features including
color, luminance, texture, and depth are extracted from DC-
T coefficients to represent the energy for image patches. A
Gaussian model of the spatial distance between image patch-
es is adopted for the consideration of local and global contrast
calculation. A new fusion method is designed to combine the
feature maps for computing the final saliency map for stereo-
scopic images. Experimental results on a recent eye track-
ing database show the superior performance of the proposed
method over other existing ones in saliency estimation for 3D
images.

Index Terms— stereoscopic images, 3D Saliency Detec-
tion, stereoscopic saliency detection, visual attention

1. INTRODUCTION

Visual attention is an important characteristic in the Human
Visual System (HVS) for visual information processing. With
large amount of visual information, visual attention would se-
lectively process the important visual information by filtering
out others to reduce the complexity for scene analysis. These
important visual information is also termed as salient regions
or Regions of Interest (ROIs) in natural images. There are two
different approaches for visual attention mechanism: bottom-
up and top-down. Bottom-up approach, which is data-driven
and task-independent, is a perception process for automatic
salient region selection for natural scenes [1]-[7], while top-
down approach is a task-dependent cognitive processing af-
fected by the performed tasks, feature distribution of targets,
and so on [8]-[9].

Over the past decades, many studies have tried to propose
computational models of visual attention for various multime-
dia processing applications, such as visual retargeting [5, 7],
visual quality assessment [11], visual coding [12], etc. Ac-
cording to the Feature Integration Theory (FIT) [13], the ear-
ly selective attention causes some image regions to be salient
due to their different features (such as color, intensity, tex-
ture, depth, etc.) from their surrounding regions. Based on
the FIT, many bottom-up saliency detection models have been
proposed for 2D images/videos recently [1]-[6].

Itti et al. proposed one of the earliest computational
saliency detection model based on the neuronal architecture
of the primates’ early visual system [1]. Bruce et al. de-
signed a saliency detection algorithm based on information
maximization [2]. Le Meur et al. proposed a computational
model of visual attention based on characteristics of the HVS
including contrast sensitivity functions, perceptual decompo-
sition, visual masking, and center-surround interactions [10].
Hou et al. proposed a saliency detection method by a con-
cept of Spectral Residual [3]. The saliency map is comput-
ed by the log spectra representation of the image calculat-
ed from Fourier Transform. Based on Hou’s model, Guo et
al. designed a saliency detection algorithm based on phase
spectrum, in which the saliency map is calculated by Inverse
Fourier Transform on a constant amplitude spectrum and the
original phase spectrum [12]. Recently, many saliency de-
tection models have been proposed by patch-based contrast
and obtain promising performance for salient region extrac-
tion [4, 5, 6]. In [6], a context-based saliency detection model
is proposed based on patch-contrast from color and intensity
features. Fang et al. introduced a saliency detection model in
compressed domain for the application of image retargeting
[5].

Recently, there are various emerging applications with the
development of stereoscopic display [15, 16, 17]. Compared
with saliency detection for 2D images, the depth cue has to
to be taken into account in saliency detection for 3D images.
Currently, there are several studies exploiting the 3D salien-
cy detection [18]-[23]. Zhang et al. designed a stereoscop-



ic visual attention algorithm for 3D video based on multiple
perceptual stimuli [18]. Chamaret et al. built one Region of
Interest (ROI) extraction method for adaptive 3D rendering
[19]. Both studies [18] and [19] adopt depth map to weight
the 2D saliency map to calculate the final saliency map for
3D images. Another method of 3D saliency detection model
is built by incorporating depth saliency map into the tradi-
tional 2D saliency detection methods. In [20], Ouerhani et
al. extended a 2D saliency detection model for 3D saliency
detection by taking depth cues into account. Potapova et al.
introduced a 3D saliency detection model for robotics tasks by
incorporating the top-down cues into the bottom-up saliency
detection [21]. Recently, Wang et al. proposed a computa-
tional model of visual attention for 3D images by extending
the traditional 2D saliency detection methods [23].

From the above description, the key of the 3D saliency
detection model is how to adopt the depth cue besides the tra-
ditional 2D low-level features such as color, intensity, orienta-
tion, etc. Previous studies from neuroscience indicate that the
depth feature would cause human beings’ attention focusing
on the salient regions as well as other low-level features such
as color, intensity, motion, etc. [13, 14]. Therefore, an accu-
rate 3D saliency detection model should take depth contrast
into account as well as contrast from other common low-level
features.

In this paper, we propose a novel saliency detection
framework based on the feature contrast from color, lumi-
nance, texture, and depth. The proposed model is basically
built on the energy contrast between image patches, which is
used to represent the center-surround differences for image
patches. It is well accepted that the DCT (Discrete Cosine
Transform) is a superior representation for energy compaction
and most of the signal information is concentrated on a few
low-frequency components of the DCT [24]. Due to its en-
ergy compactness property, the DCT have been widely used
in various signal processing applications in the past decades.
In the proposed algorithm, the input image and depth map are
firstly divided into small image patches. Color, luminance and
texture features are extracted based on DCT coefficients for
each image patch in the original image, while depth feature
is extracted based on DCT coefficients for each image patch
in the depth map. The feature contrast is calculated based on
the center-surround feature differences between image patch-
es, weighted by a Gaussian model of spatial distances for the
consideration of local and global contrast. Based on the com-
pactness property of feature maps, a new fusion method is
designed to fuse the feature maps to get the final saliency
map for 3D images. Experimental results on the eye-tracking
database demonstrate the much better performance of the pro-
posed model compared with other existing ones.

The rest of the paper is organized as follows. In Section 2,
the proposed model is introduced in detail. Section 3 provides
the experimental results between the proposed method with
other existing ones. The final section gives the discussion and

conclusion for the study.

2. THE PROPOSED MODEL

In the proposed model, we calculate the saliency map based
on the patch-based energy contrast from color, luminance,
texture and depth features. In this section, we firstly intro-
duce the feature extraction for the proposed model. Then the
feature map calculation is described. In the final subsection,
we present the new fusion method on how to combine feature
maps to calculate the final saliency map for the 3D image.

2.1. Feature Extraction

In this study, the input image is divided into small image
patches and then the DCT coefficients are adopted to repre-
sent the energy for each image patch. The input RGB image
is firstly converted to YCbCr color space due to its percep-
tual property. In YCbCr color space, the Y component rep-
resents the luminance information, while Cb and Cr are two
color components. In the DCT, DC coefficients represent the
average energy over all pixels in the image patch, while AC
coefficients represent the detailed frequency properties for the
image patch. Thus, we use the DC coefficient of Y compo-
nent to represent the luminance feature for the image patch as
L = YDC (YDC is the DC coefficient of Y component), while
the DC coefficients of Cb and Cr components are adopted to
represent the color feature as C1 = CbDC and C2 = CrDC

(CbDC and CrDC are the DC coefficients from Cb and Cr
components respectively).

Since the Cr and Cb components mainly include the color
information, we use the AC coefficients from only Y com-
ponent to represent the texture feature for the image patch.
The existing study in [25] demonstrate that the first 9 low-
frequency AC coefficients in zig-zag scanning can represen-
t most energy for the detailed frequency information in one
8× 8 image patch. Based on the study [25], we use the first 9
low-frequency AC coefficients to represent the texture feature
for each image patch as T = {YAC1, YAC2, ..., YAC9}.

For the depth feature, we firstly calculate the perceived
depth information based on the disparity. The depth map M
for the image pair can be calculated as [23]:

M = V/(1 +
d ·H
P ·W

) (1)

where V represents the viewing distance of the observer; d
denotes the interocular distance; P is the disparity between
pixels; W and H represent the width (in cm) and horizontal
resolution of the display screen, respectively.

Similar with feature extraction for color and luminance,
we adopt the DC coefficient from image patches in depth map
in Eq. (1) as D = MDC (MDC represents the DC coefficient
for the image patch in depth map M ).



As described above, we can extract five features of color,
luminance, texture and depth (L,C1, C2, T,D) for the input
stereoscopic image. We will introduce how to calculate the
feature map based on these extracted features in the next sub-
section.

2.2. Feature Map Calculation

According to FIT [13], the salient regions in visual scenes will
pop out due to their feature contrast from their surrounding
regions. Thus, the direct method to extract salient regions in
visual scenes is to calculate the feature contrast between im-
age patches and their surrounding patches for visual scenes.
In this study, we estimate the saliency value for each image
patch based on the feature contrast between this image path
and all the other patches in the image. It is well accepted that
the HVS is highly space-variant due to the different densi-
ties of cone photoreceptor cells in the retina [26]. The visual
acuity decreases with the increasing eccentricity from the fix-
ation region, which means that the HVS is more sensitive to
the feature contrast from nearer neighborhood patches com-
pared with that from farther neighborhood patches. Thus, we
take this property of the HVS into consideration during the
saliency estimation. Due to the generality of the Gaussian
model, we use a Gaussian model of spatial distance between
image patches to weight the feature contrast for feature map
calculation. The saliency value F k

i of the image patch i in the
feature k can be calculated as:

F k
i =

∑
j ̸=i

1

σ
√
2π

e
l2ij

2σ2 Uk
ij (2)

where k represents the feature and k ∈ {L,C1, C2, T,D}; lij
denotes the spatial distance between image patches i and j;
Uk
ij represents the feature difference between image patches

i and j from feature k; σ is the parameter for the Gaussian
model and it determines the degree of local and global con-
trast for the saliency estimation. From this equation, we can
see that the saliency value of each image patch is calculated
based on feature contrast from all other image patches. Due
to the different weighting values for image patches from d-
ifferent spatial distances, the proposed model considers both
local and global contrast for saliency estimation.

Since the color, luminance and depth features are repre-
sented by DC coefficients, the feature contrast between two
image patches i and j can be calculated as the difference be-
tween DC coefficients as follows.

Um
ij =

Bm
i −Bm

j

Bm
i +Bm

j

(3)

where Bm represents the feature and Bm ∈ {L,C1, C2, D};
The texture feature is represented as 9 low-frequency AC

coefficients and we calculate the feature contrast from texture

U
′

ij between two image patches i and j as:

U
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where t represents the AC coefficients and t ∈ {1, 2, ..., 9};
B

′
represents the texture feature.

2.3. Feature Map Fusion

After obtaining feature maps indicated in Eq. (2), we fuse
these feature maps from color, luminance, texture and depth
to calculate the final saliency map. Most existing studies of
3D saliency detection (e.g. [23]) use simple linear combina-
tion to fuse the feature maps to obtain the final saliency map.
The weighting for the linear combination is set as constant
values and is the same for all images. In this study, we pro-
pose a new method to assign adaptive weighting for the fusion
of feature maps.

Generally, the salient regions in a good saliency map
should be small and compact, since the HVS always focus
on some specific interesting regions in images. Therefore, a
good feature map should detect small and compact regions in
the image. During the fusion of different feature maps, we
can assign more weighting for those feature maps with smal-
l and compact salient regions and less weighting for others
with more spread salient regions. Here, we define the mea-
sure of compactness by the spatial variance of feature maps.
The spatial variance υk of feature map Fk can be computed
as follows.

υk =

∑
(i,j)

√
(i− Ei,k)2 + (j − Ej,k)2 · Fk(i, j)∑

(i,j) Fk(i, j)
(5)

where (i, j) is the spatial location in the feature map;k rep-
resents the feature channel and k ∈ {L,C1, C2, T,D};
(Ei,k, Ej,k) are the spatial expectation location of the salient
regions which are calculated as:

Ei,k =

∑
(i,j) i · Fk(i, j)∑
(i,j) Fk(i, j)

(6)

Ej,k =

∑
(i,j) j · Fk(i, j)∑
(i,j) Fk(i, j)

(7)

We use the normalized υk values to represent the com-
pactness property for feature maps. With larger spatial vari-
ance values, the feature map is supposed to be less compact.
We calculate the compactness βk of the feature map Fk as
follows.

βk = 1/(eυk) (8)

where k represents the feature channel and k ∈
{L,C1, C2, T,D}.



Based on spatial variance values of feature maps calculat-
ed in Eq. (8), we fuse the feature maps for the final saliency
map as follows.

S =
∑
k

βk · Fk +
∑
p̸=q

βp · βq · Fp · Fq (9)

The first term in Eq. (9) represents the linear combina-
tion of feature maps weighted by corresponding compactness;
while the second term is adopted to enhance the common
salient regions which can be detected by any two different
feature maps. Different from existing studies using the con-
stant weighting values for different images, the proposed fu-
sion method assign different weighting values for different
images based on their compactness property.

3. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the proposed
model based on the eye tracking database [28] proposed in
the study [23]. To the best of our knowledge, this is the on-
ly available eye tracking database for 3D images in the re-
search community. The ground-truth maps in this database
are represented as fixation density maps generated from the
data recorded by a SMI RED 500 remote eye-tracker. This
database includes various types of stereoscopic images such
as outdoor scenes, indoor scenes, scenes including objects,
scenes without any various object, etc. Some samples of the
left images and corresponding ground-truth maps are shown
in the first and last columns of Fig. 1, respectively.

In this experiment, we use the similar measure method-
s as the study [23] to evaluate the performance of the pro-
posed method. The performance of the proposed model is
measured by comparing the ground-truth map and the salien-
cy map from the saliency detection model. As there are left
and right images for any stereoscopic image pair, we use the
saliency result of the left image to do the comparison, similar
with the study[23]. The PLCC (Pearson Linear Correlation
Coefficient), KLD (Kullback-Leibler Divergence), and AUC
(Area Under the Receiver Operating Characteristics Curve)
are used to evaluate the quantitative performance of the pro-
posed stereoscopic saliency detection model. Among these
measures, PLCC and KLD are calculated directly from the
comparison between the fixation density map and the predict-
ed saliency map, while AUC is computed from the compari-
son between the actual gaze points and the predicted saliency
map. With larger PLCC and AUC values, the saliency detec-
tion model can predict more accurate salient regions for 3D
images. In contrast, the performance of the saliency detec-
tion model is better with the smaller KLD value between the
fixation map and saliency map.

The quantitative comparison results are given in Table 1.
In Table 1, Model 1 in [23] represents the fusion method from
2D saliency detection model in [1] and depth model in [23];

Table 1. Comparison results of PLCC, KLD and AUC values
from different stereoscopic saliency detection models.

Models PLCC KLD AUC
Model 1 in [23] 0.356 0.704 0.656
Model 2 in [23] 0.424 0.617 0.675
Model 3 in [23] 0.410 0.605 0.670

The Proposed Model 0.5499 0.3589 0.7032

Model 2 in [23] represents the fusion method from 2D salien-
cy detection model in [2] and depth model in [23]; Model
3 represents the fusion method from 2D saliency detection
model in [3] and depth model in [23]. From this table, we can
see that the PLCC and AUC values from the proposed mod-
el is larger than those from models in [23], while KLD value
from the proposed model is lower than those from models in
[23]. This means that the proposed model can estimate more
accurate saliency maps compared with other models in [23].

To better demonstrate the advantages of the proposed
model, we provide some visual comparison samples from d-
ifferent models in Fig. 1. From the second column of this
figure, we can see that the stereoscopic saliency maps from
the fusion model by combining Itti’s model [1] and depth
saliency [23] mainly detect the contour of salient regions in
images. The reason for this is that the 2D saliency detection
model in [1] calculates saliency map mainly by local contrast.
Similarly, there is the same drawback for the saliency maps
from the third column of Fig. 1. For the saliency results from
the fusion model by combing 2D saliency model in [2] and
depth saliency in [23], some background regions are detected
as salient regions in images, as shown in saliency maps from
the fourth column of Fig. 1. In contrast, the saliency results
from the proposed stereoscopic saliency detection model can
estimate much more accurate salient regions with regard to
the ground truth map from eye tracking data, as shown in Fig.
1.

4. DISCUSSION AND CONCLUSION

As demonstrated in the experimental part, the proposed model
can obtain much better performance than other existing ones
in saliency estimation for 3D images. The superior perfor-
mance might be caused by top-down cue besides bottom-up
mechanism. The ground-truth maps used in this study were
collected based on the fixation data during 15 seconds, and
they include the fixations resulting from both bottom-up and
top-down mechanisms [27]. Since the proposed algorithm is
a patch-based saliency detection method and it can detect the
ROIs including the complete salient objects in 3D images (as
shown in the experimental results), the top-down mechanis-
m might be included in the proposed method. In contrast,
the existing models in [23] which incorporate the 2D saliency
methods [1, 2, 3] are designed for only bottom-up mechanis-



Fig. 1. Visual comparison of stereoscopic saliency detection models. Column 1: original left images; Columns 2 - 6: saliency
maps by Model 1 in [23], Model 2 in [23], Model 3 in [23], the proposed model and the ground truth, respectively.

m. Therefore, the proposed method can obtain much better
performance than the ones in [23] for saliency estimation of
3D images.

Overall, we propose a new stereoscopic saliency detec-
tion model for 3D images in this study. The features of color,
luminance, texture and depth are extracted from DCT coeffi-
cients to represent the energy for small image patches. The
saliency is estimated based on the energy contrast weight-
ed by a Gaussian model of spatial distances between image
patches for the consideration of both local and global con-
trast. A new fusion method is designed to combine the fea-
ture maps for the final saliency map. Experimental results
show the promising performance of the proposed saliency de-
tection model for stereoscopic images based on a recent eye
tracking database.
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