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HAMILTONIAN SPLITTING FOR THE

VLASOV–MAXWELL EQUATIONS

by

Nicolas Crouseilles, Lukas Einkemmer & Erwan Faou

Abstract. — A new splitting is proposed for solving the Vlasov–Maxwell
system. This splitting is based on a decomposition of the Hamiltonian of the
Vlasov–Maxwell system and allows for the construction of arbitrary high order
methods by composition (independent of the specific deterministic method
used for the discretization of the phase space). Moreover, we show that for
a spectral method in space this scheme satisfies Poisson’s equation without
explicitly solving it. Finally, we present some examples in the context of
the time evolution of an electromagnetic plasma instability which emphasizes
the excellent behavior of the new splitting compared to methods from the
literature.
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1. Introduction

The time evolution of an ensemble of charged particles in a plasma or a
propagating beam is described by the Vlasov equation. This kinetic model
describes the plasma response to electromagnetic fields. The unknown of the
Vlasov equation is the distribution function f(t, x, v) of the considered plasma
system, which depends on the time t, the space x, and the velocity v. The
coupling of the Vlasov equation with Maxwell’s equations takes into account
the self-consistent fields, i.e. the electric E and magnetic field B generated by
the particles in the plasma.

The so-obtained Vlasov–Maxwell system is nonlinear and thus analytical
solutions are not available in general. Therefore, numerical simulations have to
be conducted in order to study realistic physical phenomena (such as magnetic
field generation).

Historically, Particle In Cell (PIC) methods have been widely used to nu-
merically solve high dimensional Vlasov–Maxwell problems. The main advan-
tage of this class of methods is their low computational cost [2, 3]. In these
methods, the trajectories of macro-particles are advanced by using the char-
acteristics curves of the Vlasov equation whereas the electromagnetic fields
are computed by gathering the charge and current densities of the simulated
particles on a grid in physical space. Note that this grid is only up to three
dimensional (as the electric and magnetic fields do not depend on velocity)
whereas the phase space can consist of up to six dimensions.

More recently, deterministic methods have been developed [6, 15, 9, 12].
In this approach, a phase space grid is used so that finite volumes, finite el-
ements, or finite differences can be employed to approximate the differential
operators. These methods usually require more memory when high dimen-
sional problems are considered. However, they do not suffer from numerical
heating and statistical noise. In most of the literature, a time splitting ap-
proach is employed; in such a scheme the transport in the spatial variable is
split from the transport in the velocity variable ([23, 24, 20, 12, 4]). The
electromagnetic fields are then advanced by approximating Maxwell’s equa-
tions using a suitable time integrator. Finally, let us emphasize that it is well
known that for both approaches (PIC and deterministic), the Poisson equa-
tion needs to be satisfied to machine precision (even if Poisson’s equation is
not solved directly in the numerical method). This is the charge conservation
problem ([24, 5, 17, 25, 1, 11]).

In this work, we propose new time splitting schemes for the numerical solu-
tion of the Vlasov–Maxwell system using the deterministic approach outlined
above. These splitting methods enjoy the following properties:

– they are symplectic, in the sense that they preserve the mechanical Hamil-
tonian structure of the equation;
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– they can be generalized to arbitrary high order in time by composition
(first order for the Lie splitting, second order for Strang splitting, fourth
order for the triple Jump method, . . . );

– Poisson’s equation is exactly satisfied at the semi-discrete level as well
as at the fully discrete level for standard space discretization methods.

– they can be easily combined with arbitrary high order schemes in phase
space (finite volume, semi-Lagrangian, spectral, . . . ).

These splitting methods are based on a decomposition of the Hamiltonian
of the Vlasov–Maxwell equations. Splitting methods are widely used in the
context of systems of ordinary differential equations governed by Hamilton’s
equations. In the case of velocity independent potentials for example, the
application of the Strang splitting algorithm leads to the well known Störmer-
Verlet method. Recently, these methods have been extensively studied in the
literature (see, for example, [16] for an overview): as they are symplectic, they
exhibit excellent long time behavior and energy preservation properties.

As far as partial differential equations are concerned, splitting methods are
also well developed in the context of linear and semi-linear Hamiltonian equa-
tion such as the Schrödinger equation (see for instance [18, 13]). However,
in the case of strongly nonlinear equation, where the highest order derivative
depends on the solution itself, the formulation as a Hamiltonian system is
significantly less common. Nevertheless, it is well known that the Vlasov–
Maxwell equations can be considered as an infinite dimensional Hamiltonian
system (see [22, 21]) where the Hamiltonian structure is non canonical, and
depends on the solution itself (Poisson structure). This is of interest, as con-
trary to the Vlasov–Poisson equation for which the natural splitting between
spatial advection and velocity advection is also a Hamiltonian splitting (see
[8]), it is not clear to decide from the structure of the Vlasov–Maxwell which
choice of splitting scheme yields a priori good conservation properties. Fur-
thermore, as we will discuss in more detail in section 5, the splitting methods
for the Vlasov–Maxwell equations constructed in the literature have exclu-
sively focused on two-term splittings (motivated by the two transport terms
in space and in velocity) and therefore have used rather ad-hoc procedures in
order to obtain methods of second order. This also impedes the construction
of high order methods by composition (which is relatively straightforward for
the Vlasov–Poisson equation, see [8]) as the resulting scheme are no longer
symmetric.

In this paper, we outline the construction and numerical validation of these
new splitting methods and apply them to the reduced 1+1/2 dimensional
Vlasov–Maxwell system. Several numerical tests have been conducted and
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comparisons with two numerical schemes of the literature ([24, 20]) are per-
formed for Landau damping, a Weibel type instability, and a magnetically
induced two-stream instability.

The rest of the paper is organized as follows: first, the Vlasov–Maxwell
model and its Hamiltonian structure are recalled. Then, the Hamiltonian
splitting is presented and applied to the reduced 1+1/2 dimensional Vlasov–
Maxwell system. Finally, numerical experiments are conducted with the new
methods and comparisons with classical methods from the literature are per-
formed.

2. Hamiltonian structure of the Vlasov–Maxwell system

We consider the Vlasov–Maxwell system that is satisfied by the electron
distribution function f = f(t, x, v) and the electromagnetic fields (E,B) =
(E(t, x), B(t, x)) ∈ R3 × R3. Here, the spatial variable is denoted by x ∈ X3

(X3 being a three dimensional torus), the velocity variable is denoted by v ∈
R3, and the time is denoted by t ≥ 0. Using normalized units, the Vlasov–
Maxwell system can be written as

(2.1)

∂tf + v · ∇xf + (E + v ×B) · ∇vf = 0,

∂tE = ∇x ×B −
∫
R3

vf(t, x, v) dv,

∂tB = −∇x × E.
The two constraints on the electromagnetic fields (E,B) are given by

(2.2) ∇x · E = ρ(t, x) :=

∫
R3

f(t, x, v)dv − 1, ∇x ·B = 0.

Note that if these constraints are satisfied at the initial time, they are satisfied
for all times t > 0. Moreover, the total mass is preserved; that is,∫

X3

∫
R3

f(t, x, v) dx dv =

∫
X3

∫
R3

f(0, x, v) dx dv = 1

holds true for all time t > 0. Note, however, that this is not always the
case when numerical approximation are considered. For a unique solution the
Vlasov–Maxwel system has to be supplemented with initial conditions for the
distribution function as well as the field variables; that is, we have to specify

f(t = 0, x, v) = f0(x, v), E(t = 0, x) = E0(x), B(t = 0, x) = B0(x).

The Hamiltonian associated with the Vlasov–Maxwell system is given by
(see [22] and [21])

H =
1

2

∫
X3

|E|2 dx+
1

2

∫
X3

|B|2 dx+
1

2

∫
X3×R3

|v|2f dv dx

= HE +HB +Hf .(2.3)
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The three terms corresponding to electric energy, magnetic energy, and ki-
netic energy, respectively. For a given functional K(f,E,B), we denote by
δK/δf , δK/δE and δK/δB the Fréchet derivatives of K with respect to f , E

and B respectively(1). The Poisson bracket of two functionals K(f,E,B) and
G(f,E,B), is then defined as

[K,G] =

∫
X3×R3

f{δK
δf
,
δG
δf
}dx dv(2.4)

+

∫
X3

δK
δE
· (∇x ×

δG
δB

)− δG
δE
· (∇x ×

δK
δB

) dx

+

∫
X3×R3

δK
δE
· ∇vf

δG
δf
− δG
δE
· ∇vf

δK
δf

dx dv

+

∫
X3×R3

δK
δB
· (∇vf × v)

δG
δf
− δG
δB
· (∇vf × v)

δK
δf

dx dv,

where for two functions h(x, v) and k(x, v),

{h, k} =
3∑
i=1

(
∂h

∂xi

∂k

∂vi
− ∂h

∂vi

∂k

∂xi

)
denotes the standard microcanonical Poisson bracket. With this notation, the
Vlasov–Maxwell system (2.1) is equivalent to the equation

(2.5) ∂tK = [K,H] = [K,HE ] + [K,HB] + [K,Hf ],

for any functional K(t) = K(f(t), E(t), B(t)) evaluated along the solution of
(2.5) (note that here, we assume that the solution (f,E,B) and the functional
K are smooth enough to ensure the validity of the equations).

As is outlined in the next section, this formulation provides the basis for
the splitting methods proposed in this paper.

3. Hamiltonian splitting

In this section, we propose new splitting methods to compute the solution
of the Vlasov–Maxwell system. These splitting are based on exact computa-
tions of the three parts of the Hamiltonian HE ,HB and Hf given by (2.3)
respectively.

Let us start by detailing the equations associated with the different parts
of the Hamiltonian. Note that these evolution equations can be derived by
plugging in a representation for HE , HB, and Hf into the right hand side of
equation (2.5).

(1)Note that in the absence of domain boundaries, this definition of functional derivative is
not ambiguous.
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3.1. Equations for HE. — The equations associated with the Hamiltonian
HE are given by

(3.1)
∂tf + E(x) · ∇vf = 0,
∂tE = 0,
∂tB = −∇x × E.

For a given initial data (f0, E0, B0) at time t = 0, the solution of this system
at time t is given explicitly by

(3.2)
f(t, x, v) = f0(x, v − tE0(x)),
E(t, x) = E0(x),
B(t, x) = B0(x)− t∇x × E0(x).

Formally we can write this solution as

F (t) := (f,E,B)T (t) = exp(HEt)(f0, E0, B0)T .

Moreover, if E0 and f0 satisfy the relation ∇x ·E0 =
∫
R3 f0(x, v) dv−1, then

it holds that∇x·E(t, x) =
∫
R3 f(t, x, v) dv−1; this can be easily seen by the fact

that E(t, x) is constant in time, and that the transformation v 7→ v − tE0(x)
preserves the volume.

Let us further remark that if ∇x ·B0 = 0, then this property holds true for
any later time as well. This is easily shown by considering the divergence of
the last equation

∇x ·B(t, x) = ∇x ·B0(x)− t∇x · (∇x × E0(x)) = ∇x ·B0(x) = 0.

The previous relations can be easily carried over to the fully discrete case by
using for example a spectral discretization in x and an interpolation procedure
in v to compute f(t, x, v) from f0(x, v). The volume preservation in this case
can be easily ensured as the advection is just a translation with constant
coefficients.

3.2. Equations for HB. — The equations associated with the Hamiltonian
HB are given by

(3.3)
∂tf + (v ×B(x)) · ∇vf = 0,
∂tE = ∇x ×B,
∂tB = 0.

Note that in the right hand side of the first equation the following cross product
term appears

v ×B =

v2B3 − v3B2

v3B1 − v1B3

v1B2 − v2B1

 =

 0 B3 −B2

−B3 0 B1

B2 −B1 0

 v =: JBv.

Two important properties of this term have to be remarked. First, the k−th
component of (v × B) does not depend on vk (for k = 1, 2, 3). Second, the
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3× 3 matrix JB is constant in time (which follows immediately from the third
evolution equation).

For a given initial data (f0, E0, B0) at time t = 0, the solution of this system
at time t is therefore given explicitly by

(3.4)
f(t, x, v) = f0(x, exp(−JBt)v),
E(t, x) = E0(x) + t∇x ×B0(x),
B(t, x) = B0(x).

As before, we will denote this formally by

F (t) := (f,E,B)T (t) = exp(HBt)(f0, E0, B0)T .

Let us remark that if ∇x · E0 =
∫
R3 f0(x, v) dv − 1, then considering the

divergence of the second equation leads to ∇x · E(t, x) = ∇x · E0(x).
Now as JB is skew-symmetric, the transformation v 7→ exp(−JBt)v pre-

serves the volume, and we thus follow that

(3.5)

∫
R3

f0(x, v) dv =

∫
R3

f0(x, exp(−JBt)v) dv

which ensures that the Poisson equation is satisfied after one integration step.
Note that in contrast with the previous case, the relation (3.5) is in gen-

eral difficult to ensure by standard 3D (or 2D) interpolation at the fully dis-
crete level. To remedy this difficulty, one possibility is to further approximate
f(t, x, v) by directional splitting. Indeed, due the structure of the cross prod-
uct, i.e. since

v ×B =

v2B3 − v3B2

v3B1 − v1B3

v1B2 − v2B1

 ,

the evolution equation for f(t, x, v) can be written as

∂tf + (v2B3 − v3B2)∂v1f + (v3B1 − v1B3)∂v2f + (v1B2 − v2B1)∂v3f = 0,

which can be further split into the following three equations

∂tf = −(v2B3 − v3B2)∂v1f

∂tf = −(v3B1 − v1B3)∂v2f

∂tf = −(v1B2 − v2B1)∂v3f.

Each of these equations can be solved explicitely by a linear advection with
constant coefficients. For example the speed of the advection in the v1 direction
does only depend on the perpendicular velocities v2 and v3. As proposed in
[20], a Strang splitting (or high order splitting) can be performed here.
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3.3. Equations for Hf . — Finally, the equation associated with the Hamil-
tonian Hf is given by

(3.6)
∂tf + v · ∇xf = 0,
∂tE = −

∫
R3 vf(t, x, v) dv,

∂tB = 0.

For a given initial data (f0, E0, B0) at time t = 0, the solution at time t is
given explicitly by

(3.7)

f(t, x, v) = f0(x− tv, v),
B(t, x) = B0(x),

E(t, x) = E0(x)−
∫ t

0

∫
R3

vf0(x− sv, v) dv ds.

We will denote this solution formally by

F (t) := (f,E,B)T (t) = exp(Hf t)(f0, E0, B0)T .

Let us remark that the Poisson equation is propagated with time. Indeed,
considering the divergence of the last equation leads to

∇x · E(t, x) = ∇x · E0(x)−
∫ t

0

∫
R3

v · ∇x[f0(x− sv, v)] dv ds

=

∫
R3

f0(x, v) dv − 1 +

∫ t

0

∫
R3

∂s[f0(x− sv, v)] dv ds

=

∫
R3

f0(x, v) dv − 1 +

∫
R3

[f0(x− tv, v)− f0(x, v)] dv

=

∫
R3

f0(x− tv, v) dv − 1

=

∫
R3

f(t, x, v) dv − 1,

which implies that the splitting method proposed here satisfies the charge
conservation property.

The preservation of the charge conservation at the fully discrete level relies
on a good approximation of the time integral in the previous formula, in
combination with the interpolation procedure in the v variable. We will give
an example in the next section where E(t, x) is easily computed using Fourier
spectral approximations in the x variable.

3.4. Hamiltonian splitting. — The solution F (t) = (f,E,B)T (t) of the
Vlasov–Maxwell system up to first order can be written as (this is the well
known Lie splitting)

F (t) = exp(HEt) exp(HBt) exp(Hf t)F (0).
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The Strang splitting scheme (which is a second order accurate splitting
method) is given by

F (t) = exp(HEt/2) exp(HBt/2) exp(Hf t) exp(HBt/2) exp(HEt/2)F (0).

Higher order methods can be constructed using composition (see [16, III.3]).
For example the well known triple jump scheme (see [16, II, Example 4.2])
based on the Strang splitting yields a method of order four, as the original
Strang splitting is symmetric.

4. Application to the reduced 1 + 1/2 dimensional model

In this section, we apply the splitting method proposed in this paper to a
fully discretized 1+1/2 model of the Vlasov–Maxwell system. This model has
been studied in [23, 7] and retains most of the properties of the full Vlasov–
Maxwell system. All the numerical simulations in this paper will be conducted
in the framework of this reduced model.

4.1. Reduced 1+1/2 model. — We consider the phase space (x1, v1, v2) ∈
X × R2, where X is a one-dimensional torus, and the unknown functions
f(t, x1, v1, v2), B(t, x1) and E(t, x1) = (E1, E2)(t, x1) which are determined
by solving the following system of evolution equations

(4.1)

∂tf + v1∂x1f + E · ∇vf +BJ v · ∇vf = 0,
∂tB = −∂x1E2;

∂tE2 = −∂x1B −
∫
R2

v2f(t, x1, v) dv,

∂tE1 = −
∫
R2

v1f(t, x1, v) dv,

where v = (v1, v2) and J denotes the symplectic matrix

J =

(
0 1
− 1 0

)
.

This reduced system correspond to choosing an initial value of the form

E(x1, x2, x3) =

E1(x1)
E2(x1)

0

 and B(x1, x2, x3) =

 0
0

B(x1)


and a f depending on x1 and (v1, v2) only. Then it can be easily checked that
this structure is preserved by the flow of (2.1) and that the equations reduce
to (4.1). We refer the reader to [7] for more details.
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4.2. Phase space integration. — Consistent with most of the literature,
we consider the periodic case in the x1 direction. Thus, one natural method in
this direction is the Fourier spectral approximation. It simplifies the computa-
tion of the evolution corresponding to Hf , and the exact charge conservation
can be easily recovered. In the evolutions corresponding to HE and HB, we
compute an approximation to the transport of f by using a third order finite
volume numerical scheme (see [15, 10]) whereas the equations for the electric
field E and the magnetic field B are solved in Fourier space.

Let us consider the evolution corresponding to Hf in more detail. By em-
ploying the Fourier transform in space (that is in the x1 variable) and denot-

ing the corresponding functions by f̂k, k ∈ Z, (that is, f̂k denotes the Fourier
transform of f(x) and does still depend on v1 and v2) gives

∂tf̂ + v1ikf̂ = 0, ∂tÊ1 = −
∫
R2

v1f̂ dv.

The first equation can be solved exactly in time, given the initial condition
f̂(tn):

∀ k ∈ Z, f̂(t) = f̂(tn) exp(−iv1k(t− tn)),

which inserted into the second equation (which we have integrated in time
from tn to tn+1) yields the approximation

Ên+1
1 = Ên1 −

∫ tn+1

tn

∫
R2

v1f̂(tn) exp(−iv1k(t− tn)) dv dt

= Ên1 −
∫
R2

v1f̂(tn)

∫ tn+1

tn
exp(−iv1k(t− tn)) dtdv

= Ên1 −
∫
R2

v1f̂(tn)

[
−1

ikv1
(exp(−ikv1∆t)− 1)

]
dv.

For the long time properties of the numerical scheme it is vital that the total
charge is conserved exactly and that Poissons equation is satisfied. The charge
is not part of the formulation of our numerical algorithm, but it can be shown
that our scheme satisfied the charge conservation property. Indeed, assuming
that Poisson’s equation is satisfied initially, we can prove that it is satisfied
for all times.

Assuming that Poisson equation is satisfied at time tn, that is ikÊ1
n

= ρ̂n,
where ρ̂n is an approximation of the charge density ρ(t, x) in Fourier, see (2.2),
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we get from the last equation

Ên+1
1 = Ên1 −

∫
R2

v1f̂(tn)

[
−1

ikv1
(exp(−ikv1∆t)− 1)

]
dv

=
ρ̂n

ik
+

1

ik

∫
R2

f̂(tn)(exp(−ikv1∆t)− 1) dv

=
1

ik

[
ρ̂n +

∫
R2

f̂(tn) exp(−ikv1∆t) dv − ρ̂n − 1

]
=

1

ik
ρ̂n+1,

which shows that Poisson’s equation is also true at time tn+1, assuming a
sufficient accuracy in the discretization of the integral in v. Note that k = 0
does not pose any additional difficulties as the average of the electric field is
imposed to be zero by total mass conservation. This is a necessary condition
to impose as periodic boundary conditions do not give a unique solution for
the electric field.

Once the three steps are solved, the global time integration is given in
subsection 3.4.

5. Numerical experiments

In this section, the Hamiltonian splitting is numerically studied by solving
the 1+1/2 dimensional reduced Vlasov–Maxwell system introduced in the pre-
vious section. We also compared our numerical scheme to two methods of the
literature: VALIS (from [24], recalled in subsection 6.2) and Mangeney (from
[20], recalled in 6.1).

5.1. Landau damping. — Landau damping is a classic test case for the
Vlasov–Poisson equations. In this context a number of numerical schemes
have been proposed (see e.g. [15, 10, 8]). However, even though the equation
we try to solve does not explicitly determine the electric field from the charge
density (as is usually done for methods constructed in the context of the
Vlasov–Poisson equations) it clearly reduces to the Vlasov–Poisson equation
if no magnetic effects are present in a given configuration. Compared to the
simulation discussed in sections 5.3 and 5.2 this problem does not rely on
magnetic effects. Thus, it serves as a first, but rather limited, consistency
check for the numerical schemes considered in this paper. However, the charge
conservation property is crucial in this test; if it is not satisfied exactly, the
solution of the Vlasov–Poisson system is not recovered.
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For this test, the initial value for the distribution function f is given by

f0(x1, v1, v2) =
1

2π
e−

1
2
|v|2 (1 + α cos kx1) ,

where x1 ∈ X = [0, 2π/k], v ∈ R2 and we have chosen α = 0.5 and k = 0.4,
a configuration usually called strong (or nonlinear) Landau damping. The
electric field, at the initial time, is determined by Poisson’s equation, i.e.

∂x1E1(t = 0, x1) =

∫
R2

f0(x1, v) dv − 1,

whereas a vanishing magnetic and perpendicular electric field (i.e. E2) is pre-
scribed in order to completely specify the initial value.

The quantity of interest is the potential energy stored in the electric field

Epot(t) =
1

2

∫
X
|E(t, x1)|2 dx1,

and the total energy (sum of the potential and kinetic energy)

Etot(t) = Epot(t) + Ekin(t),

where

Ekin(t) =
1

2

∫
X

∫
R2

|v|2f(t, x1, v) dv dx1.

Note that the total energy is conserved with time.
In Figure 1, the time history of the electric energy is shown for a Strang

Hamiltonian splitting, using 32 points in the spatial direction, 64 points in
each velocity direction and a time step ∆t = 0.05. Note that compared to
the linear case (i.e. α = 0.01, for example) the electric energy does only
decay exponentially for a brief period of time before presenting an oscillating
behavior for large times. The results is in a good agreement with results
available in the literature (see [19]).

In Figure 2 the time history of the total energy error is plotted for a Lie and
Strang Hamiltonian splitting (the scheme proposed in this paper) as well as
the VALIS scheme described in [24] (for more details see appendix 6). On the
upper figure, we consider a phase space mesh of 32×64×64 and the time step
is ∆t = 0.1. We can first observe that the three methods behave well as the
error in energy is less than 1%. However, the Lie splitting leads to oscillations
which is not the case when a second order charge preserving method (Strang
splitting or VALIS) is used. When the numerical parameters are refined (lower
figure), these two methods show virtually indistinguishable results (the error
is about 0.1%) and we do not seem to experience a significant growth over
the time period considered in this simulation. Let us remark that the charge
conservation is very important with respect to energy conservation. If charge
conservation is not exact, the accuracy of the algorithm is significantly reduced.
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Figure 1. Time evolution of the electric energy Epot (semi-log scale)
for the Landau damping test using the Hamiltonian Strang splitting
with 32x64x64 grid points and ∆t = 0.05. Top figure: nonlinear
Landau damping (α = 0.5); bottom figure: linear Landau damping
(α = 0.01). The analytic decay rate γ ≈ 0.066 is shown for compari-
son in case of the linear Landau damping.
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This is more pronounced if we consider an increased number of grid points in
space. The scheme proposed in [20] for that reason only performs satisfactory
if a significantly smaller time step is chosen (as compared to Hamiltonian
splittings and VALIS). This phenomenon can be observed in all the simulations
conducted in this section and we will therefore omit it from the plots. We will,
however, show a comparison for a reduced step size in the fully magnetized
case (section 5.3).

5.2. Weibel instability. — In this section, we will discuss an incarnation
of the Weibel instability. This instability includes a genuine magnetic effect.
Following [23], we impose the following initial particle density

f0(x1, v1, v2) =
1

πvth

√
Tr

e(v21+v22/Tr)/vth(1 + α cos(kx1)),

where x1 ∈ X = [0, 2π/k], v ∈ R2 and we have chosen vth = 0.02, Tr = 12,
k = 1.25, and α = 10−4. The electric field E1 is initialized by solving Poisson’s
equation and E2 is set to zero at t = 0. The magnetic field is prescribe as

B0(x1) = β cos(kx1),

where we have chosen β = 10−4.
From Figure 3 we see that the electric field in the y-direction does show

an exponential growth in magnitude. The (analytically derived) growth rate

is proportional to k/
√

1 + k2 and, for the parameters, chosen here is approx-
imately equal to 0.031. We observe that, similarly to [24], the agreement to
the theory is as well as one would expect given that the analytical growth rate
is derived using the linearized Vlasov–Maxwell equations. Let us also note
that even though the qualitatively features of the solution are well resolved on
a grid with 32x64x64 points, quantitatively the result is wrong by at least an
order of magnitude.

As in the previous example, we observe that the scheme proposed by Man-
geney does not produce accurate results with respect to energy conservation,
except if the chosen step size is significantly smaller than what is necessary
in case of the VALIS or the Hamiltonian splitting scheme (several orders of
magnitude). However, compared to the simulation presented in the previ-
ous section, for sufficiently long integration times, we observe a better energy
conservation for the Hamiltonian Strang splitting scheme as compared to the
VALIS implementation (which is a scheme of second order as well).

Finally, let us investigate the behavior of the VALIS scheme more closely.
As can be seen from Figure 5, if a time step close to the CFL condition
is chosen we can observe (unphysical) oscillations in the solution. Let us
duly note that such oscillations are not present in our Hamiltonian splitting
approach. In fact, we can verify that these oscillations disappear for the VALIS
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Figure 2. Time evolution of the error in energy (semi-log scale) for
the Landau damping test |Etot(t) − Etot(0)|. Top figure: 32x64x64
grid points and ∆t = 0.1; bottom figure: 256x256x256 grid points
and ∆t = 0.0125.

scheme when the time step size is sufficiently small. This behavior implies
that for the problem under considered in this section, the VALIS scheme has
a significantly higher computational cost compared to the Hamiltonian Strang
splitting scheme proposed in this paper.
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Figure 3. Time evolution of the k = 1.25 Fourier mode of the elec-
tric and magnetic fields (semi-log scale) for Weibel instability using
the Hamiltonian Strang splitting method. Top figure: 32x64x64 grid
points and ∆t = 0.2; bottom figure: 256x256x256 grid points and
∆t = 0.0125.

5.3. Two-stream instability. — As the final example, we will consider
the two-stream instability. That is, the initial particle density is constructed
from two Gaussian velocity profiles which are different with respect to their
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Figure 4. Weibel test: time evolution of the total energy error
|E(t) − E(0)| (semi-log scale). Top figure: 32x64x64 grid points and
∆t = 0.2; bottom figure: 256x256x256 grid points and ∆t = 0.0125.

average velocity

f0(x1, v1, v2) =
1

2πβ
e−v

2
2/β(e−(v1−0.2)2/β + e−(v1+0.2)2/β),



18 NICOLAS CROUSEILLES, LUKAS EINKEMMER & ERWAN FAOU

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 50 100 150 200 250 300 350 400 450 500

E
2
(k

=
1
.2
5
)

time

Lie (τ = 0.2)
VALIS (τ = 0.2)

VALIS (τ = 0.05)
VALIS (τ = 0.025)

Figure 5. Weibel test: time evolution of the first mode of E2 (semi-
log scale). Comparison between VALIS, and Strang splitting scheme
using 32x64x64 grid points.

where x1 ∈ X = [0, 2π], v ∈ R2 and β = 2 · 10−3. The resulting instabil-
ity is usually driven by a perturbation in the particle density. However, as
we are more interested in magnetic effects we will drive the instability by a
perturbation in the magnetic field only

B0(x1) = α sin(x1),

where we have chosen α = 10−3.
The result of the simulation is shown in Figure 6. Even though we drive

the instability by a magnetic perturbation only, we observe, after an initial
oscillatory regime, an exponential increase and a saturation in the electric
field.

In Figure 7 the error in energy for different schemes is shown. Note that
for the scheme proposed by Mangeney, even for a relatively coarse space dis-
cretization, the step size has to be reduced by at least an order of magnitude in
order to get comparable results to the VALIS and Hamiltonian Strang split-
ting schemes. In addition, we observe that, especially for a sufficiently fine
space discretization, the error in energy for the VALIS and our Hamiltonian
Strang splitting scheme is almost indistinguishable.

5.4. Order. — To conclude the discussion we consider the order achieved
by Hamiltonian Lie and Strang splitting schemes as well as for the triple jump
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Figure 6. Time evolution of the electric, potential and total energies
(semi-log scale) for the two-stream instability test using the Strang
splitting scheme with 32x64x64 grid points and a time step of

∆t = 0.1.

scheme. The order of the triple jump scheme is of particular interest as the
results provided in this section demonstrate that we can in fact use composition
to obtain a method that is of order four. The numerical results for the Weibel
instability are shown in Table 1 for a space discretization using 64 grid points
and in Table 2 for a space discretization using 256 grid points. In both cases
we compute the l1 error of the field variables (i.e. the two components of
the electric field and the single component of the magnetic field) by using a
reference solution for which a sufficiently small time step has been chosen.

6. Appendix: Other algorithms

We present in this section some algorithms found in the literature [24].
The algorithms only differ from the computation of the Maxwell equations.
The computation of the distribution function through the Vlasov equation is
always performed using a Strang splitting

– f̂? = f̂n exp(−ikv1∆t/2) solution of ∂tf + v1∂x1f = 0 on ∆t/2,
– compute f?? by solving ∂tf+(E+BJ v)·∇vf = 0 on ∆t, using a splitting

procedure,
– f̂n+1 = f̂?? exp(−ikv1∆t/2) solution of ∂tf + v1∂x1f = 0 on ∆t/2.
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Figure 7. Time evolution of the error in energy |Etot(t) − Etot(0)|
(semi-log scale) of the two-stream instability test. Top figure:
32x64x64 grid points and ∆t = 0.1 for VALIS, Strang and Lie, and
∆t = 0.01 for Mangeney; bottom figure: 256x256x256 grid points
and ∆t = 0.0125.

6.1. Predictor-Corrector. — At time tn, the electric field En and the
magnetic field Bn−1/2 are known, together with fn.

– compute the current Jn1,2(x1) =
∫
R2 v1,2f

n(x1, v) dv
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Lie splitting scheme
stepsize l1 error order
0.2 1.881556551139132e-06
0.1 8.769892305391039e-07 1.1013
0.05 4.237597343971976e-07 1.04931
0.025 2.083331679902264e-07 1.02435
0.0125 1.033058984634212e-07 1.01197
0.00625 5.144678908873264e-08 1.00577

Strang splitting scheme
stepsize l1 error order
0.2 2.124324456920513e-07
0.1 5.27651798019974e-08 2.00935
0.05 1.315400004930548e-08 2.00408
0.025 3.276015657686228e-09 2.00549
0.0125 8.068242472080718e-10 2.02162
0.00625 1.86093775964047e-10 2.11622

Triple jump splitting scheme
stepsize l1 error order
0.2 1.321445314225445e-08
0.1 8.095000243664432e-10 4.02894
0.05 5.162111972126581e-11 3.971
0.025 2.031275496535852e-12 4.6675
0.0125 4.297134131610342e-13 2.24094

Table 1. Order determination for the Hamilton Lie, Strang, and
triple jump splitting scheme in case of the Weibel instability intro-
duced in section 5.2. In these simulations 64 grid points are used in
each dimension and the system is integrated up to final time t = 1.

– compute Bn+1/2 = Bn −∆t/2 ∂x1E
n
2

– compute E
n+1/2
2 = En2 −∆t/2 ∂x1(Bn−1/2 +Bn+1/2)/2−∆t/2Jn2

– compute E
n+1/2
1 = En1 −∆t/2 Jn1

– compute fn+1 with Strang splitting, the fields (En+1/2, Bn+1/2) being

known at time tn+1/2,
– compute the current Jn+1

1,2 =
∫
R2 v1,2f

n+1(x1, v) dv

– compute En+1
2 = En2 −∆t∂x1B

n+1/2 −∆t/2(Jn2 + Jn+1
2 )

– compute En+1
1 = En1 −∆t/2(Jn1 + Jn+1

1 )

6.2. Valis. — At time tn, the electric field En and the magnetic field Bn−1/2

are known, together with fn.
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Lie splitting scheme
stepsize l1 error order
0.2 1.823383817066824e-06
0.1 8.465392041182712e-07 1.10697
0.05 4.082184424389359e-07 1.05224
0.025 2.004799316967084e-07 1.02588

Strang splitting scheme
stepsize l1 error order
0.2 2.271250317272867e-07
0.1 5.640193594261031e-08 2.00967
0.05 1.407771489982866e-08 2.00233
0.025 3.51820025143404e-09 2.0005

Triple jump splitting scheme
stepsize l1 error order
0.05 5.922461122797243e-11
0.025 3.371093950592525e-12 4.13491

Table 2. Order determination for the Hamilton Lie, Strang, and
triple jump splitting scheme in case of the Weibel instability intro-
duced in section 5.2. In these simulations 256 grid points are used in
each dimension and the system is integrated up to final time t = 1.

Note that this algorithm conserves the charge.

– compute the current Jn1,2(x1) =
∫
R2 v1,2f

n(x1, v) dv

– compute Bn+1/2 = Bn −∆t/2 ∂x1E
n
2

– compute E
n+1/2
2 = En2 −∆t/2 ∂x1(Bn−1/2 +Bn+1/2)/2−∆t/2Jn2

– compute E
n+1/2
1 = En1 −∆t/2 Jn1

– compute fn+1 and the current
• from f̂?, compute and store
Ĵ?1,2 =

∫
R2 v1,2f̂

? dv =
∫
R2 f̂

n(exp(−ikv1,2∆t/2)− 1)/(ik∆t/2) dv

• compute f?? by solving the (conservative) advection in v1, v2, the

fields being known at time tn+1/2,
• from f̂n+1, compute and store
Ĵ??1,2 =

∫
R2 v1,2f̂

n+1 dv =
∫
R2 f̂

??(exp(−ikv1,2∆t/2)−1)/(ik∆t/2) dv

– compute the current Ĵ
n+1/2
1,2 = (Ĵ?1,2 + Ĵ??1,2)/2,

– compute En+1
2 = En2 −∆t∂x1B

n+1/2 −∆tJ
n+1/2
2

– compute En+1
1 = En1 −∆tJ

n+1/2
1
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In [24], the current is extracted from the two x1-advection steps. Using
Fourier transforms, it is written

f̂? = f̂n exp(−ikv1∆t/2) = f̂n − ik∆t

2
f̂n [exp(−ikv1∆t/2)− 1] /(ik∆t/2),

which becomes, after integration in v ∈ R2, ρ̂? = ρ̂n − ik∆t
2 Ĵ

?
1 with

Ĵ?1 =

∫
R2

f̂n [exp(−ikv1∆t/2)− 1] /(ik∆t/2) dv.

Similarly the second part of the current is denoted by

Ĵ??1 =

∫
R2

f̂?? [exp(−ikv1∆t/2)− 1] /(ik∆t/2) dv.

Gathering these two steps, we can compute the density at time tn+1 by inte-
grating in v each step of the splitting for f

ρ̂n+1 = ρ̂?? − ik∆t

2
Ĵ??1

= ρ̂? − ik∆t

2
Ĵ??1 (since the advection in v is conservative)

= ρ̂n − ik∆t

2
Ĵ?1 − ik

∆t

2
Ĵ??1

= ρ̂n − ik∆t

2

[
Ĵ?1 + Ĵ??1

]
= ρ̂n − ik∆tĴ

n+1/2
1

Assuming the Poisson equation satisfied at time tn, we get ikÊn1 = ρ̂n and

since the current is used Ĵ
n+1/2
1 to advance the Ampère equation Ên+1

1 =

Ên1 −∆tĴ
n+1/2
1 , we have

ρ̂n+1 = ikÊn1 + ik(Ên+1
1 − Ên1 ) = ikÊn+1

1 ,

which is exactly the Poisson equation at time tn+1. Note that this can be
generalized for finite volume method following the ideas of [24].

7. Conclusion

In this work, a new time splitting is proposed for the numerical solution of
the Vlasov–Maxwell system. This splitting is based on a decomposition of the
Hamiltonian of the Vlasov–Maxwell system. Each step can be solved exactly
in time so that the error is only due to the splitting procedure (first order
for Lie, second order for Strang, fourth order for the triple jump scheme). In
addition to the fact that methods of arbitrary high order can be constructed
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by composition, we prove that when one uses a spectral method for the spa-
tial discretization, the charge is exactly preserved. Several numerical tests
show the very good behavior of the splitting compared to methods from the
literature, especially regarding the conservation of total energy.

Several further perspectives of this work can be envisaged. First, a gen-
eralization to finite volumes methods for the spatial discretization have to
be performed, taking care of the charge conservation property. We are con-
fident this can be achieved by combining ideas of [24] and [11]. Second, a
more detailed study of high order splittings (such as the triple Jump scheme)
is necessary, since the use of small steps due to the CFL condition imposed
by the Maxwell equations is a limiting factor. A substepping methodology
would alleviate this problem. Finally, considering more realistic problems in
4 or 5 dimensions will require the parallelization of the code in the context of
distributed memory architectures (i.e. using MPI). Due to the fact that the
VALIS method requires more temporary variables than the splitting method
proposed in this paper, a more efficient MPI parallelization of our Hamiltonian
splitting seems to be possible and this will constitute further research.
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