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Abstract Structured light methods achieve 3D mod-
elling by observing with a camera system a known pat-

tern projected on the scene. The main drawback of sin-
gle projection structured light methods is that moving
the projector changes significatively the appearance of

the scene at every acquisition time. Classical multi-view

stereovision approaches based on appearance matching

are then not useable. The presented work is based on a

two-cameras and one single slide projector system em-

bedded in a hand-held device for industrial applications
(reverse engineering, dimensional control, . . . ). We pro-
pose a method to achieve multi-view modelling for cam-

era pose and surface reconstruction estimation in a joint

process. The proposed method is based on the exten-

sion of a stereo-correlation criterion. Acquisitions are

linked through a generalized expression of local homo-

graphies. The constraints brought by this formulation

allow an accurate estimation of the modelling parame-

ters for dense reconstruction of the scene and improve
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1 Introduction

Modelling a scene in 3D from images consists in map-
ping image pixels with real world 3D points. Since the

imaging process is a projection from a 3D space to a

2D space, some information is lost and one would need

more than a single image to fully recover a real world

point. The process is then the problem of retrieving a

scene structure from a set of images. This is done by

jointly estimating camera poses at acquisition times and

inferring the structure from different point of views of
the surface.

With the development of stereo vision methods and

3D modelling from vision, scanning devices and meth-

ods have greatly increased. Industrial applications ac-

tors are increasingly using 3D modelling for a wide

range of problems. Among the main applications, one

can note reverse engineering, dimensional control, sim-
ulation, design, industrial maintenance, etc.

In these applications, some objects can be challeng-

ing for vision technologies : untextured, with details or
sharp edges, specular surfaces, and so on. Basic stereo
vision setups – that is to say with simply a pair of
cameras for instance – are often unable to accurately

and densely model such objects. Untextured objects pe-
nalize matching process in stereo images, edges cause
occlusions and ambiguities. To overcome these limita-

tions, active vision systems propose to provide a mea-

surable energy to the scene, often in visible or near
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infrared regions of the light spectrum or using laser.

Among active vision systems, structured light methods

project a specific pattern on the scene. This pattern

can be known and its projector calibrated to act like

an inverted camera in a stereo system, or can be un-

known and used to add texture in a peak detection [4]

or in an appearance correlation approach [40]. The pro-

jection can be a set of patterns with temporal coding.
This imposes that the system is not moving during the
projection. Structured light methods based on a sin-

gle projection are, on the contrary, useable in moving

devices, such as hand-held 3D modelling systems.

Recently, important research efforts have been di-

rected towards the design of small and portable 3D

modelling systems [39,20]. Hand-held systems allow an

eased scanning process due to a more dexter handling

compared to fixed systems. Most hand-held 3D mod-
elling devices are based upon laser triangulation tech-
niques or time-of-flight measurements. Hand-held struc-
tured light devices remain rare due to the projector

limitations [12]. If the projector is placed in the room,

independently from the scanning device, the operator

has to take care of the occlusions of the lights causing

shadows in the scene. Moreover, the setup of such a sys-
tem can be complicated (more than one projector may
be needed, the projectors have to be placed judiciously

to cover the entire object, . . . ) which is contrary to the

initial purpose of simplicity of hand-held devices. If the

projector is embedded in the device, the scene changes

every time the device moves. Indeed, since the operator

has to move the scanner to cover the entire scene, every
acquisition leads to a new device position, and then to
a new projector position, changing the projected light

on the scene, that is to say changing the scene texture

(figure 1).

A classical approach for multi-view 3D modelling

from cameras is to match appearance information in a

set of images and optimize a system consisting of cam-

era poses and scene surface parameters. Using a hand-

held structured light device with an embedded projec-

tor does not allow such approach due to the appear-

ance changing when the device is moving. Frequently

the modelling process operates as a range scanning task:
3D information – 3D point cloud – is retrieved from im-
ages at every acquisition, and registration is achieved
using geometrical methods [33,37,7].

However, interest of using a multi-view approach
has been demonstrated by a number of works [14,36,6].

This kind of approach utilizes more information in the

modelling process. It tends to give more robust and ac-

curate results when compared to standard pairwise ap-

proaches. Multi-view stereo (MVS) provides an efficient

way to retrieve a complex, dense and accurate shape

Fig. 1 The structured light device projects a specific pattern.
The appearance of the scene changes when the device moves

from a set of images. A taxonomy and evaluation of

MVS is presented by Scharstein and Szeliski [34]. Some

of the best-performing methods are even available in a

software package and allows to reconstruct very larges

scenes [13,15]. Many MVS methods start from an initial

surface, refined afterward during an optimization step.

The initial shape can be acquired from Structure-From-

Motion techniques or from traditional stereo methods

[41]. In an industrial context, mechanical parts control

applications for instance, a CAD model can be used

as a reference in this process. Normals to the surface

are often the optimized parameters as they encode the

3D position of points and the direction of the surface.

MVS is known to perform particularly well for suffi-

ciently textured scenes. Untextured areas are processed

considering priors like surface smoothness. These priors

may result in inaccurate results on the final 3D model.

Most stereovision algorithms use local planar approx-

imation models – correlation windows, for instance –

that may oversmooth the surface. MVS approaches take

advantage of the number of views to refine 3D surfaces

using simple planar models. Other approaches use more

complex surface models like surfels [5]. The complexity

of these models make them hard to use in multi-view

formulations.
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Among important contributions, Pollefeys et al. [31]

presented a complete Structure-from-Motion approach
for off-line modelling of a scene acquired from a single

uncalibrated mobile camera. This method tracks fea-

tures in the image sequence to globally determine cam-

era intrinsic and extrinsic parameters along with the

geometry of tracked keypoints. In a second time, the

3D scene is densified by propagating pairwise-computed
disparities to expected neighbours in other images. A
recent evolution [23] of this kind of approach combined

a probabilistic framework for real-time Structure-from-

Motion and a densification using local Bundle Adjust-

ment [42] to lower dynamic. The main drawback of
these methods is the need of highly textured scenes.

Recently, Wu et al. [44] proposed to combine struc-
ture from shading and multi-view stereo. However, ap-

plying these methods to industrial applications is not

straightforward as a lot of constraints must be consid-

ered. Objects in industrial applications are most of the

time untextured as they are made of a single material.

When silhouettes are available, they are sometimes em-
bedded in the process [17] in order to add constraints
on the reconstructed model.

Recent work on Simultaneous Localization and Map-

ping (SLAM) has been oriented towards the use of vi-

sual data. Localization using photometric techniques

has been explored to introduce optical odometry [27,

28] but suffers from drifts and rapidely causing large un-

certainty. Davison [10] proposed an approach to sparse

localization and mapping using a single mobile camera
based on Kalman filtering. It benefits from information
federation and loop closure to refine the last camera
pose and the sparse model. This work has been ex-

tended to propose real-time implementations using ac-

tive search in images [11]. Montiel et al. [21] solved the
features delayed-initialization problem of the method

using inverse-depth parameterization of features. Paz
et al. [30] proposed the use of stereo camera systems to

fully observe features but limiting the observation field

of the features. Sola and al [38] considers the stereo

system as a multi-cameras system, adding in the map

points fully observed in the stereo view field, and par-

tially observed outside.

Again, these approaches require that the scene does
not change – no mobile object or lighting condition

changes are allowed – and are not adapted to a moving

projector causing a change in the scene appearance.

Geometrical approaches have been proposed to solve

the pose estimation of range laser sensors [26], in robo-

tics applications for instance. Nüchter et al. [25] pro-

posed a framework to solve the simultaneous localiza-

tion and modelling problem for robot navigation tasks

in difficult areas exploration missions. Poses uncertain-

ties can be taken into account by representing spatial

transformations as random variables. Lu and Milios
[19] introduced a stochastic approach for robot nav-
igation applications. Other authors improved it with

stochastic filtering [24], using Extended Kalman Filter

for instance. These methods have been designed for sen-

sor pose refinement but do not refine the scene model.

Moreover they impose a sequential acquisition at rela-

tively high dynamics to be consistent. Other geometri-

cal approaches propose initial mesh refinments to match

an input data set. Curless and Levoy [9] use a pondera-

tion on a signed distance function from input meshes to

fill a global voxel grid approximating the actual 3D sur-

face. Zharescu et. al. applied their topological approach

[45] to 3D reconstruction. However, these methods can

not jointly estimate camera poses and surface recon-

structions.

Vision systems modelling highly specular surfaces

can be considered as appearance-change problems since

the specular reflections is a function of the camera pose

and do not project the same way in all images. Some ap-

proaches [29] remove saturated image regions. The holes

created are filled using a multiple view imaging system.

Reflectance methods [35] propose to model the specular
reflections when measuring the surface geometry. Zheng
et al. [47] use a combination of several weighted func-

tions to represent light reflections to retrieve reflectance

properties of an object and retrieve its normal map.

Pons et al. [32] proposed an original formulation of a
scene flow problem to model non-Lambertian surfaces

or illumination changes. However, the method requires
a sequential acquisition and assumes that the scene is
not completely modified by illumination perturbations.

Vu et. al. [43] extended the method to the refinment of a

coarse initial mesh using a similar formulation and con-

sidering the visibility of points. However, this method

is appearance-based and considers the extrinsic camera

parameters fixed.

Our approach is a Bundle Adjustment based global

optimization with a novel observation scheme. It re-
fines a coarse model previously reconstructed follow-
ing a standard pairwise stereo approach. The initial

approach adjusts the local homography around a corre-

lated point minimizing the intensity differences in stereo

images [3]. The optimization criterion is based on reduc-

ing the correlation error of points projected in pairs of

stereo images. Correlation scores are observed through
a luminance difference in images acquired at the same
time and globally linked to every view observing the

same points with a generalized formulation of homo-

graphies induced from tangent planes to the surface.

This approach proposes a method for multi-view op-

timization of sensor poses and surface reconstruction
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using a least-squares formulation. It is similar to the

approach of Chang et. al. [6] but with a specific for-
mulation for MVS problem. We show that our method

brings a multi-view approach to the particular case of a

texture changing over time. We also demonstrate that

it is a consistent multiview correlation-based approach

for generic purpose problems allowing an accurate 3D

modelling of objects even with sharp edges or details.
It is also robust to the correlation window size changes,
even with very small sizes.

We first introduce our conventions and model in sec-

tion 2. The experimental device used in our applica-
tion and for the evaluations is also briefly introduced.
Our method is presented in section 3. General consid-

erations and our formulations are introduced with the

simple stereo case (3.1). Then our method is generalized

to the multiple stereo-images case (3.2) and some algo-

rithm optimization is introduced (3.3). The method is
evaluated in section 4 after presenting our experimental
protocol. Section 5 gives some conclusions and perspec-

tives for improvements.

2 System Model and Principle

The method we propose is designed to address the par-

ticular case of multi-view 3D modelling of a texture-

changing scene. For the purpose of the method we used

an experimental camera-projector setup. In the follow-

ing chapter, we present this system and its operation

along with some conventions.

2.1 System Model

The imaging process of a camera allows the mapping

of a real world 3D point mW = (X,Y, Z, 1)
T

to a 2D

image pixel mI = (sx, sy, s)
T
. It is a relation of the

form

mI = K [RCW |tCW ]mW (1)

In equation (1), K is the intrinsic parameters ma-
trix. It allows the mapping of a point expressed in the

camera frame to an image pixel. The rigid transforma-

tion [RCW |tCW ] ∈ SE (3) allows the change between

world and camera frames. In general, rigid transfor-

mations between points pA expressed in frame A and

points pB expressed in frame B are noted [RAB|tAB]

such that

pA = [RAB|tAB]pB (2)

In our system, we use two cameras rigidly attached.

First camera frame is noted C0 and second camera frame
is noted C1. Each camera has an independent intrinsic

parameters matrix, respectively K0 and K1. The trans-

formation between cameras is noted [RC1C0
|tC1C0

].

The camera parameters are calibrated using a chess-

board calibration target and following the method de-

scribed by Zhang [46]. The chessboard has been mod-

ified to allow automatic initialization. Images are cor-

rected to remove the effect of distorsions prior to any

processing, allowing the use of the linear models de-

scribed previously.

2.2 Coarse solution

The system is handheld. It is composed of two CCD

1024 × 768 cameras with 8mm lenses, a projector and

an intertial sensor. The stereoscopic baseline is 140mm

long and the cameras are oriented with a 15◦ angle.

The whole setup has been described and evaluated by

Coudrin et al. [8]. The cameras and the projector are

synchronised. We use a pattern projection to infer the

dense 3D information from the pair of cameras. When

the system is triggered, the pattern is projected on the

scene. Then the two cameras acquire images simulta-

neously. The pair of images is used in a reconstruction

algorithm, providing a 3D point cloud by a stereo-vision

surface growing method. Points are expressed with re-

spect to the frame C0.

To model an object completely, one has to move the
vision system around the object. An acquisition at time

t provides a set of 3D points expressed in the current
first camera frame, Ct

0. Point sets have to be registered

in a common frame to retrieve the actual geometry of

the scene. Registration can be solved using inertial sens-

ing or surface descriptors matching for initial alignment

and ICP algorithm or variants for refinement [33,20].

Combining these algorithms makes the system more ro-

bust to symmetric ambiguity.

2.3 Towards Multi-View operation

This approach can lead to good results but still suf-

fers from some problems. Mostly the accuracy of the

results can be too low for actual industrial applica-
tions. The 3D surface reconstruction is based on the
observation of the image neighbourhood of every pixel

and then produces an over-smoothing effect related to

the neighbourhood size, or noise near model discontinu-

ities. In the case of reverse engineering, for instance, the

smoothing effect can be problematic since it alters the

sharpness of edges or suppresses details on the surface.
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Moreover, the registration process is independent. A

multiview approach tries to estimate jointly the camera
poses and the structure scene. In this way, both infor-
mations can benefit from a global optimization process.

In the approach introduced previously, the registration,

being independent and using the surface discretization

from the reconstruction, directly suffers from recon-

struction errors or inaccuracies. We propose to improve
the previous reconstruction by refining 3D points through
multi-view optimization.

3 Multi-View Optimization

Vision-based systems can capitalize a lot from using all

images at a time to refine the 3D model. Since, in our

problem, the pattern projector is moving along with

the cameras, causing a change of the appearance of the

scene at every acquisition, classical Bundle Adjustment

methods cannot be used. Our method uses the estima-

tion of the homography induced by the tangent plane to

a surface point [16] in a pair of images taken at the same

time. The expression of the homography is then gener-

alized to every image pair observing the same point to

produce a non-linear least-squares criterion to optimize.

3.1 Pairwise Correlation

Let us assume that the system is at the origin of the

world frame W. That is to say, in our notation, that the

transformation between the world frame and the first

camera is the identity transformation [RC0W |tC0W ] =

[I3×3|03×1]. With this assumption, the relation between

a 3D point expressed in world frame and an image pixel

in image taken from camera C0 can be written from

equation (1) as

mW = K−1
0 mI0

Z (3)

with Z being the third coordinate of the 3D point.

From equations (1) and (3), we can write a relation

between the projections in stereo images from cameras
C0 and C1

mI1
= K1 [RC1C0

|tC1C0
]

[

K−1
0 mI0

Z

1

]

(4)

The structure of the observed scene is obtained by

finding Z in equation (4). This is achieved by deter-

mining the point mI1
matching the point mI0

. This

is done by observing and matching luminance informa-

tions in both images. To avoid ambiguities, the match-

ing point is found by comparison of local appearance

around the pixel mI0
. Surface can be approximated

locally by tangent planes to observed points. Let W
be a region around point mI0

= (x, y, 1)
T
. Match-

ing point to every pi
I0

=
(

x+ δix, y + δiy, 1
)T

, ∀i ∈
[0..card (W )− 1] in image I1 can be found using the

homography pi
I1

= H
(

pi
I0

)

induced by the tangent

plane to the observed 3D point (figure 2).

πW

C0 C1

H

Fig. 2 An homography is a projective transformation relat-
ing the projections of a plane in two images

The tangent plane is defined using three points from
region W . Let us define W as a square region in image

I0 and choose, for convenience, its center p0
I0

= mI0
,

and two corners p1
I0

and p2
I0

to define the plane. The

3D point associated to the pixel p0
I0

is defined by the

parameter Z0, as seen in equation (3). Let us define

parameters Z1 and Z2 associated, respectively, to points

p1
I0

and p2
I0

so that

pi
W = K−1

0 pi
I0
Zi, pi

W ∈ R
3 (5)

The normal vector n to the tangent plane is defined

using our three points :

n =
(

p1
W − p0

W

)

×
(

p2
W − p0

W

)

(6)

The tangent plane πW is defined, using point p0
W

and the normal vector n, as all points x ∈ R
3 satisfying

n ·
(

x− p0
W

)

= 0 (7)

The coordinates of the tangent plane are then for-

malized as πW =
(

nT ,−n · p0
W

)T
. The intersection be-

tween this plane and any ray coming from the camera

center of camera C0 through a pixel of image I0 pi
I0
,

∀i ∈ [0..card (W )− 1] is written as



6 J. Harvent, B. Coudrin, L. Brèthes, J.J. Orteu and M. Devy

[

pi
W

k

]

=









−d 0 0

0 −d 0

0 0 −d

nx ny nz









K−1
0

[

pi
C0

1

]

, k ∈ R (8)

In equation (8), the normal vector is written as n =
(nx, ny, nz)

T
and d is the fourth coordinate of the plane

πW . Then, extending equation (4), matching point in

image I1 to every pixel in the region W from image I0
can be expressed from

[

pI1

k

]

= H (pI0
) (9)

= K1 [RC1C0
|tC1C0

]









−d 0 0

0 −d 0
0 0 −d

nx ny nz









K−1
0

[

pI0

1

]

(10)

This notation is equivalent to the one introduced by

Hartley and Zisserman [16]. We introduce it because it

allows a simpler adaptation of the homography expres-

sion to any configuration of cameras by simply com-

posing rigid transformations, as it is shown in section

3.2.

In the following, coordinates of the plane are sup-
posed to be normalized by the fourth coordinate πW =
(

nT /d, 1
)T

and we introduce the notation

S =









−1 0 0
0 −1 0

0 0 −1
nx

d

ny

d
nz

d









(11)

The generic expression of an homography in the two
stereo cameras system is then expressed as

H = K1 [RC1C0
|tC1C0

]SK−1
0 (12)

The structure of the scene, from two images ac-

quired at the same time, is obtained by minimizing

dissimilarities between the luminance function I0 (p)

in region W of image I0 and the luminance function

I1 (p) in the transformed region H (W ) of image I1. If

we note x = (nx/d, ny/d, nz/d)
T
, we try to find

argmin
x

∑

i∈W

(

I0
[

pi
I0

]

− I1
[

Hi

(

pi
I0
,x

)])2
(13)

Equation (13) introduces the minimization criterion

used to find the parameters of a tangent plane from the

correlation of two pixel regions in two stereo images.

This problem can be solved using standard non-linear

least-squares methods.

One should note that the assumption that the sur-

face can be approximated by planes is valid only if the

regionW is small enough. If the region is large, the sur-

face will be overly smoothed from this approximation,

but if the region is too small ambiguities are introduced

in appearance correlation, causing noise. The choice of

the region size is then a trade off between details and

noise levels. Extending this criterion to multiple im-

age pairs, as introduced in section 3.2, not only allows

multi-view stereo global optimization when appearance

is changing between acquisitions but also allows to ro-
bustly estimate the scene geometry with a reduced re-
gion size.

3.2 Multi-Pairwise Correlation

We introduced in equation (12) the expression of the
homography relating two projections of a 3D point in
two images acquired at the same time from a calibrated

stereo system. Let us suppose we take two acquisitions

with our moving stereo system at time k0 and k1. The

system is at the identity pose at time k0, then moves

to be at unknown pose [Rk1k0
|tk1k0

] at time k1.

time

Ik0
0 Ik0

1

Ik1
0 Ik1

1

1

2

3

[Rk1k0
|tk1k0 ]

[RC1C0 |tC1C0 ]

Fig. 3 Two acquisitions of a two cameras system

Figure 3 illustrates this setup and unfolds some re-

lations that we need to introduce. Since frame Ck0

0 is the
same as world frame, relation (1) has been introduced

in (12). Relation (2) is similar to relation (1) but the
rigid transformation between the two cameras is the un-
known transformation [Rk1k0

|tk1k0
]. Moreover the cam-

era is the same, but at different acquisition times, so

the intrinsic parameters matrix remains the same. The

homography for a point i in this case is
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Hi

I
k1

0
I
k0

0

= K0 [Rk1k0
|tk1k0

]SiK
−1
0 (14)

Relation (3) is, also, similar to relation (1) but this

time both cameras have moved. The relation between
them is still the known calibrated rigid transformation
[RC1C0

|tC1C0
]. In this case, the homography for a point

i is written from equations (12) and (14) as

Hi

I
k1

1
I
k1

0

= K1 [RC1C0
|tC1C0

] [Rk1k0
|tk1k0

]SiK
−1
0 (15)

Note that, using our formulation of the homogra-

phy, relations are easily expressed by simply composing

suitable rigid transformations. Therefore, from equa-

tion (15) we can introduce our general expression for

the homography in a pair of stereo images. Let us sup-
pose that a point i has been observed from a squared

region in image I0, our two camera stereo system at

this acquisition time is referenced by frame L. After a

motion, the system is referenced by frame M. The ho-

mographies for the observation of the region in images

IM
0 and IM

1 taken from the system in frame M are

expressed as

Hi
IM
0

= K0PMLSiK
−1
0 (16)

Hi
IM
1

= K1 [RC1C0
|tC1C0

]PMLSiK
−1
0 (17)

PML = [RMW |tMW ] [RWL|tWL] (18)

with PML being the rigid transformation between

frames M and L, composed by the poses of the system
at acquisition times relatives to the world frame.

From equations (16) and (17) we can formulate a
global optimization criterion to refine points and cam-

era poses from the model. Supposing the model has
been initially reconstructed and registered (2.2), refin-
ing the model consists in building a relation with every

point and every system pose. This involves to know how

the pair of images taken from each system pose observes

points. We have, then, to define a visibility function on a
2-tuple composed from a point and a system pose. Let

us define the set of system poses V , NV = card (V ),

and the set of points P , NP = card (P ). The visibility

function φ (i, n) is defined for a point i ∈ [1..NP ] and a

pose n ∈ [1..NV ] as

φ (i, n) =

{

0 if i is not observable in n
1 if i is observable in n

(19)

A point is defined as observable from a pose (figure

4) if it is projected inside images I0 and I1, if the angles

between the normal vector to the point and the cameras

a
b c

d

e

f

g

hi

j

k

Fig. 4 For a given camera position, points to be used in
global optimization are chosen regarding to the initial mesh
and local normals of the object. In a two cameras setup, a
point has to be observable by both cameras to be valid. Red:
when the angle between normals and camera view direction
is too large, point is not observable. Blue: the ray from the
optical center to the point e intersects the model mesh, it is
not observable

views directions is small enough, and if the point is not

occluded. To determine the occlusion, the initial point

cloud model is meshed and rays from camera centers

to the considered point are tested against this mesh to

check for intersections. If some intersections are found,

the point is considered occluded. To avoid occlusions

caused from a bad registration (multiple skins effect
on coarsly registered objects) a tolerance threshold on
intersection distances can be used.

For the optimization process, we build a parameter

vector x. It is composed from system poses parame-

ters (θ, φ, ψ, x, y, z)
T
∈ R

6, respectively the three Euler

angles and the three translation parameters, and from
the reduced normal parameters of the points expressed

by (nx/d, ny/d, nz/d)
T
∈ R

3. This parameter vector is

estimated through a sparse Levenberg-Marquardt non-
linear least-squares optimization method [18], minimiz-

ing the criterion

argmin
x

NV
∑

n=1

NP
∑

i=1

φ (i, n)
∑

j∈W

(J − L)
2

(20)

with

J = In0

[

Hi
In
0

(pi,j)
]

j ∈W (21)

L = In1

[

Hi
In
1

(pi,j)
]

j ∈W (22)
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Since the scene changes between each acquisition,

the dissimilarites measurement using luminance func-
tions can only be done between images acquired at the
same time. Equation (20) extends our two images cor-

relation criterion. Points and poses are related between

acquisitions by the inherent geometry of the observed

scene. We optimize directly the normal parameters and

observe their influence on the correlation results in re-
gions transformed in a consistent way between every
image. By doing this a robust estimation of our param-

eters can be achieved. This formulation still depends on

the size of the region W but since the system becomes

heavily constrained, it is more robust to small sizes. In-

deed, ambiguities are reduced in small size regions by

the geometrical constraints imposed by the formulation

of our system. We demonstrate in section 4 that it al-

lows a more accurate measurement of a scene by reduc-

ing the smoothing effect of correlation approaches and

the ability to observe smaller details or sharper edges.

3.3 Densification

With a large number of points, the algorithm complex-
ity leads to long computation times and memory size

problems. Even with sparse implementations, refining
every point from every acquisition is not easily manage-
able. However, not every points are needed to estimate
finely the parameters of the problem.

We propose a sparse-to-dense approach to model an

entire object with our method. Keypoints are selected

in a sampling process that tends to pick a given number

of points maximizing their visibility in the set of acquisi-

tions. Moreover, the points having the worst correlation

score after the initial step and the points located near
the edges are discarded. Camera poses and keypoints
parameters are estimated strongly using the method
described in section 3.2. The refined model obtained is

sparse and contains only refined 3D keypoints.

To densify the model, every remaining point from

the initial model has to be refined. With a sufficient

number of keypoints in the previous step, camera poses

can be considered optimal1.

Since points, in equation (20), have parameters in-

dependent from other points – points are only depen-

dent on the camera poses – every point can be re-

fined separatly. This reduces the complexity of the opti-

mization process, and reduces memory issues and cache

misses, improving execution time. Camera poses are

fixed and each point is represented by a parameter vec-

1 The poses are considered optimal from our method point
of view, that is to say that they are fully observed and that no
better convergence can be achieved from adding keypoints.

tor y = (nx/d, ny/d, nz/d)
T

∈ R
3, and are estimated

by minimizing

argmin
y

NV
∑

n=1

φ (i, n)
∑

j∈W

(J − L)
2

∀i ∈ [1..NP ] (23)

This approach is dependent on the initial process,

since points have to be observed in the first place to

be processed by our method. From the initial model,

this approach allows to easily refine points in a time

effective way, providing multi-view advantages to dense
3D modelling.

3.4 Initialization

Our multi-view optimization scheme uses the 3D model

which is computed as described in Section 2.2. It re-

quires that the different clouds be aligned so that the

distance between the reprojection of the coarse 3D points

and the reprojection of the final 3D points does not ex-

ceed the window size. If it does, the optimization does

not converge. In order to initiate the multi-pairwise cor-

relation step, it is possible to choose a larger window

size when keypoints along the edges are discarded as de-

scribed in Section 3.3. This does not violate the plane

approximation. We observed that in this way the result

of ICP is always far better than the maximum distance

tolerated by our algorithm.

4 Experiments and Discussions

The presented method has been primarily designed for
reverse engineering or control of mechanical parts appli-
cations. The evaluation is mainly focused on this type

of objects. The experimental protocol is briefly intro-

duced. A quantitative evaluation is proposed, observing

the ability of our method and the improvement it brings

compared to the standard stereovision approach. Some

qualitative results are given at the end of the section.

4.1 Implementation Details

The first step consists in reconstructing a coarse model.

This step is multithreaded and implemented in C++.

The computation is fast enough for it to complete to-

gether with the scanning process. Models produced at

this stage usually have around three to ten million points.

Visibility map is computed using 3D fast intersection

from CGAL [1]. Then, the model is sampled so that

multi-pairwise correlation does not last more than a few

minutes, which corresponds to a dozen thousand points.
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Fig. 5 The threaded nut used in our experiments. The
thread is thin and can be diffult to observe

In this configuration, memory is not an issue. The mini-

mization step uses the implementation of Lourakis [18].
The densification step takes a few more minutes. These
two last steps run on a single core and could be im-
proved.

4.2 Data and experimental protocol

The device used for our experiments is made up of two
cameras and a projector. The projector is built from a
light projection and a glass tile printed with a speckle

pattern. All the components are rigidly attached. The

transformation between cameras is known and accu-

rately calibrated. The intrinsic parameters of the cam-

eras are also calibrated. The projector is not calibrated,

it is simply set to provide an optimal focalization at the

work distance of the stereo camera setup.

Each acquisition provides a pair of images illumi-

nated with the speckle pattern from the projector. They

are processed by a dense digital image correlation al-

gorithm to match pixels between the two images, at

subpixel resolution. Matched pixels are triangulated to

provide a cloud of 3D points. Every reconstructed 3D

point cloud is coarsely registered with previously ac-

quired ones using a fast ICP -based approach [33].

Threaded nut This is a mechanical part used for bolting
in agricultural automotive applications. Even if the nut

is large, the thread is fine and is not easy to observe

using vision-based technologies (figure 5).

This object is used to compare the ability of our

method to observe the thread depending on the number

of views provided to the algorithm. It is also used to

illustrate the contribution of the method compared to
the standard pairwise stereovision method.

The part is made of steel. We covered it with a thin

layer of matte white revealing powder to avoid specular
reflections.

(a) Gauge block

(b) CAD model

Fig. 6 The gauge block composed from simple geometrical
primitives. It contains several sharp edges. CADmodel is used
as ground truth.

Gauge block This part has been designed for measure-

ment device calibration. It has been accurately manu-

factured and has an accurately known geometry. It is

composed of several simple geometrical primitives (fig-

ure 6).

This object is used to observe the effect of our multi-

view method on sharp edges. The CAD model of this

object is used as ground truth in the evaluation of the

results.

Turbine blade This part is a blade from a turbine (fig-

ure 7). It is made of metal and has also been covered

with matte white revealing powder to avoid specular

reflections.

Ball This ball has several seams (figure 8). It is used to

evaluate the ability of our method to model fine details.

Maraca The maraca object is finely carved (figure 9).

It is also used to evaluate the ability of our method to

model fine details. The carving are shallow, approxi-

mately the size of the tip of a fingernail.
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Fig. 7 Turbine blade

Fig. 8 Ball with details

Fig. 9 A carved maraca made of wood

4.3 Experiments

4.3.1 Influence of the number of image pairs

The first experiment uses the threaded nut object. Our

method is evaluated in the reconstruction of the thread

given various numbers of input pairs of images. The

method has been tested providing three (3), five (5),

seven (7) and nine (9) overlapping pairs of images. It

as also been compared with the dense reconstruction

provided by a single stereo pair. Figure 10 illustrates

the results.

Following the columns shows the influence of a grow-

ing number of overlapping pairs, while following the

rows shows the influence of increasing the size of the

image correlation window W . The pairwise approach
does not perform well with a small window size. In-

deed, reducing the window size increases ambiguities in

correlation and causes drifts in the stereo matching pro-

cess, causing noise and holes. On the contrary, with an

eleven (11) pixels window, the noise is reduced and no

holes appear. On the other side, the window becomes

too large compared to the size of the thread in the im-

ages causing a smoothing effect.

Adding two (2) overlapping pairs of images to the

process contributes to greatly improve the result, even

with very small size windows. The noise is largely re-

duced to a slightly granular effect on the surface while

holes have almost completely disapeared. Increasing the

window size also reduces the noise, but causing a slight

smoothing effect. Comparing the result from one (1)
image pair with an eleven (11) pixels window, and the
result from three (3) image pairs with the same window

size, one can note that the thread is more detailed with

the larger number of views.

Figure 10 proves that increasing the number of im-

age pairs tends to completely remove noise and holes

while the details become fully observed. Indeed, the

constraints added to the optimization system reduces
drifts effect on the parameter vector. With five (5) pairs
the result is already stable, and is not greatly improved

with seven (7) pairs. Beyond five pairs the influence is

not noticeable. Adding more pairs does not bring fur-

ther improvements because the object is fully observed.

This means that the system is able to reach its optimal-

ity with a given finite number of pairs, depending on

the object and the quality of the points of view.

One can also note that, with an important number

of pairs, the result is stable with any window size. As

we said previously, an increasing number of pairs con-

strains the system and reduces ambiguities with small
window sizes. On the other hand, the large number of
views allows to observe completely the parameters of

the system, and the least-squares solution can be effi-

ciently found despite the approximation of the surface

in tangent planes. It can be noted that using a smaller

window size can be beneficial since it reduces the di-

mension of the problem and speeds-up the process.
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Size 3 Size 5 Size 11

Pairwise

3 pairs

5 pairs

7 pairs

9 pairs

Fig. 10 Reconstruction of the threaded nut changing the number of input overlapping image pairs and correlation window
size (in pixels). Increasing the number of pairs reduces noise and allows the algorithm to converge towards its optimal solution

4.3.2 Accuracy comparison

To give an absolute reference of the results provided by

our method, we used a gauge block with a known ge-

ometry. The ground truth CAD model is available and

used to evaluate reconstruction error. We compare our

method to the standard pairwise stereo approach. As we

have seen previously, this approach tends to smooth de-
tails and edges. The gauge block is made of a large plane
and geometrical primitives intersecting the plane, creat-
ing sharp edges. Since the pairwise stereovision method

performs poorly in this case, we improved the result us-

ing an edge sharpening method. We used a similar ap-

proach to that of Attene et al. [2] with a stereo image

consistency check. This method allows to extend sur-

face of geometrical primitives by surface subdivision.

Subdivided polygons are checked in stereo images, to

allow chamfers, rounds and fillets detections.

Models resulting from the three methods (pairwise

stereovision, edge sharpening in pairwise stereovision

and our multiview stereovision method) are registered
on the CAD model of the gauge block. Points are pro-
jected orthogonally on the surfaces of the theoretical

model and projection distance is measured for each

point. This distance is considered as the reconstruction

error of the point. Figure 11 represents these errors us-

ing a color map. Green areas are measured inside the

tolerance range [−25µm,+25µm]. Points with a larger
positive error are represented on a scale from yellow to

red. Points with a larger negative error are represented

on a scale from light to deep blue.

As expected, the error map of the pairwise stereovi-
sion method shows a large error near edges of the model.
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(a) Pairwise stereo (b) Edge optimization (c) Our MVS method

Fig. 11 Comparison of reconstruction error using pairwise stereovision, pairwise stereovision with edge detection and correc-
tion, and our multiview stereovision method using five pairs. Window size is set to 9 pixels.

Pairwise Edge Our

stereo optimization method

Max error (mm) 0.553 0.478 0.452

Min error (mm) −0.606 −0.286 −0.446

Pos. mean (mm) 0.036 0.037 0.023

Neg. mean (mm) −0.032 −0.031 −0.020

Std. dev. (mm) 0.066 0.049 0.033

Table 1 Reconstruction error to the ground truth of the
gauge block. Max/Min error : maximal positive and negative
errors. Pos./Neg. mean : means of, respectively, positive and
negatives errors. Std. dev : standard deviation on the error
set

Due to the smoothing effect of the surface approxima-
tion in the reconstruction process, edges are rounded.
The error on the dominant plane is essentially contained

in the tolerance range. The edge-optimized method per-

forms a lot better along the edges. Maximal errors are

now mainly located near complex edges – intersection

of more than two surfaces – and along the chamfer of

the central drilling. However a small error on the edges

remains. With our method, error is still mainly located

near edges, but the model is more homogeneously inside

the tolerance. The chamfers in the central drilling are

now more finely reconstructed. It is to be noted that

the dominant plane is also more finely reconstructed.

A significatively larger part of the object is considered

inside the tolerance comparing to the other methods.

Table 1 summarizes the results for this experiment.
The results are presented showing maximal and mini-

mal errors. The mean error should be 0 mm since the
models are registered minimizing the distance between

point clouds and the surface of the CAD model. It is

then more meaningful to present average errors in posi-

tive and negative parts. The standard deviation on the

error set is also presented.

As it was pointed in figure 11, the edge-optimized

algorithm and our MVS method present better results

and a higher accuracy in terms of deviation to the theo-

(a) Our method with 18 images (9 pairs)

(b) PMVS with 18 images

Fig. 12 Comparison between the reconstruction of the
threaded nut with our method and with PMVS2

retical surface. Our method offers the best results, with

the lowest deviation.

4.3.3 Comparison with PMVS2

Our approach is not easily comparable with most state

of the art methods since it is designed to address the

problem of a moving projected texture. To provide a

comparison we have used an external projector instead

of the embedded one. The projection system is now

fixed and projects a non moving pattern. We can then

compare with appearance-based MVS methods. We de-

cided to use PMVS2 software [15] because it is easily

available as an open source software package and be-

cause it is one of the best performing algorithms in the

evaluation of Seitz et al. [36]. PMVS2 is able to re-

construct a 3D structure of an object or a scene from a
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set of images and camera parameters. We acquired nine

(9) pairs of images of the threaded nut, used as eighteen

(18) individual images by PMVS2 and as pairs by our

method. We used the internal parameters of our system

for both experiments. Figure 12 shows the results of the

methods.

The result from PMVS2 is similar to the result of

our method. This could be expected as both of these

methods are patch based. The only difference is that

we do not have a photometric relation between pairs
whereas PMVS2 does have. This suggests that many
multi-view stero algorithm could be tuned to work on

a moving pattern.

Moreover, this experiment shows that our method

can work perfectly on highly textured scenes or with

external fixed projection and can compare to state-of-

the-art methods.

Other examples of reconstructed objects with our
MVS method are presented in figure 13.

5 Conclusion

In this paper we presented a novel method for corre-

lation-based Multi-View Stereovision. This method is

not dependant on the scene texture, that can change

during the acquisition process. The method is based on

the observation of correlation criterions linked through

a generalized formulation of homographies. By writing a

global criterion, this method can refine the poses of the

visual sensors and the structure of the observed scene.

After an initialization step, the model is refined. Due

to an highly constrained formulation of the optimiza-

tion problem with a non-linear least-squares scheme, we

achieved an accurate modelling of objects, even with

fine details or sharp edges.

We evaluated our method on several sample objects

and demonstrated a clear improvement compared to a

pairwise stereovision approach. Comparing to a ground

truth model, the effective reconstruction error has been

evaluated and it has been shown that our method has
the ability to provide results in a tolerance range con-
sistent with most industrial applications.

This method is designed to work on the particu-

lar case of a projector moving along with the cameras,

changing the scene at every acquisition time. The prob-

lem is not well addressed. While it is most of the time

solved by pairwise or sequential approaches, our ap-

proach allows the use of multi-view stereovision.

Our future works will focus on implementation im-

provements as general speed-up for solving large scale

modelling problems.
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novative hand-held vision-based digitizing system for 3D
modelling. Optics and Lasers in Engineering, 49:1168–
1176, 2011.

9. Curless, B. and Levoy, M. A volumetric method for build-
ing complex models from range images. In SIGGRAPH,
1996.

10. Davison, A.J. Real-time simultaneous localisation and
mapping with a single camera. In International Confer-
ence on Computer Vision, pages 1403–1410, 2003.

11. Davison, A.J., Reid, I.D., Molton, N.D., and Stasse, O.
Monoslam: Real-time single camera slam. IEEE Trans.
Pattern Analysis and Machine Intelligence, 29:2007,
2007.

12. Ferreira, J.F., Lobo, J., and Dias, J. A 3D scanner –
Three-dimensional reconstruction from multiple images.
In First International Symposium on 3D Data Processing
Visualization and Transmission (3DPVT’02), 2002.

13. Furukawa, Y., Curless, B., Seitz, S.M., and Szeliski,
R. Clustering views for multi-view stereo, 2011.
http://grail.cs.washington.edu/software/cmvs.

14. Furukawa, Y. and Ponce, J. Accurate camera calibration
from multi-view stereo and bundle adjustment. Int. J.
Comput. Vision, 84:257–268, 2009.

15. Furukawa, Y. and Ponce, J. Patch-
based multi-view stereo software, 2010.
http://grail.cs.washington.edu/software/pmvs.

16. Hartley, R.I. and Zisserman, A. Multiple View Geometry
in Computer Vision. Cambridge University Press, second
edition, 2004.

17. Hernández, C. and Schmitt, F. Silhouette and stereo
fusion for 3d object modeling. Comput. Vis. Image Un-
derst., 96:367–392, 2004.

18. Lourakis, M. Sparse non-linear least squares optimiza-
tion for geometric vision. In European Conference on
Computer Vision, volume 2, pages 43–56, 2010.

19. Lu, F. and Milios, E. Globally consistent range
scan alignment for environment mapping. Autonomous
Robots, 4:333–349, 1997.

20. Matabosch Geronès, C. 3D hand-held sensor for large
surface registration. PhD thesis, Universitat de Girona,
Girona, Juin 2007.



14 J. Harvent, B. Coudrin, L. Brèthes, J.J. Orteu and M. Devy
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