
HAL Id: hal-00932033
https://hal.science/hal-00932033v1

Submitted on 7 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

The lazy Visual Word Form Area: computational
insights into location-sensitivity

Thomas Hannagan, Jonathan Grainger

To cite this version:
Thomas Hannagan, Jonathan Grainger. The lazy Visual Word Form Area: computational insights
into location-sensitivity. PLoS Computational Biology, 2013, 9 (10), pp.e1003250. �10.1371/jour-
nal.pcbi.1003250�. �hal-00932033�

https://hal.science/hal-00932033v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


The Lazy Visual Word Form Area: Computational Insights
into Location-Sensitivity
Thomas Hannagan*, Jonathan Grainger
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Abstract

In a recent study, Rauschecker et al. convincingly demonstrate that visual words evoke neural activation signals in the Visual
Word Form Area that can be classified based on where they were presented in the visual fields. This result goes against the
prevailing consensus, and begs an explanation. We show that one of the simplest possible models for word recognition, a
multilayer feedforward network, will exhibit precisely the same behavior when trained to recognize words at different
locations. The model suggests that the VWFA initially starts with information about location, which is not being suppressed
during reading acquisition more than is needed to meet the requirements of location-invariant word recognition. Some new
interpretations of Rauschecker et al.’s results are proposed, and three specific predictions are derived to be tested in further
studies.
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Introduction

Until recently the undisputed agreement amongst essentially all

researchers in the field of visual word recognition, the current

authors included, was that the Visual Word Form Area (VWFA

hereafter, [1]) is a location-invariant area: that it is the seat of a

computing device for ‘‘word form’’ representations whose

mechanism —while still unknown— abstracts away from irrele-

vant properties such as location (see for instance [2–4]). This view

was more than just a default prior consistent with the locus of the

VWFA in the left fusiform gyrus, far down in the ventral visual

processing stream. It was also suggested by analogy with the most

successful hierarchical network models of invariant object recog-

nition [5], which systematically claim location-invariance in their

top layers [6,7]. It thus came as some surprise when Rauschecker

et al. demonstrated that a ‘‘blind’’ classifier was indeed able to

categorize, with high accuracy, BOLD activation patterns evoked

in the VWFA into the locations at which they had been seen by

the subject [8]. Although the notion of a location-sensitive VWFA

had been previously evoked by one early fMRI study [9], which

explicitly manipulated word location and found support for a

posterior-to-anterior gradient of sensitivity in the VWFA, the study

of Rauschecker et al. is inconsistent with this account because at

least in some subjects, both the posterior and the anterior portions

of the VWFA were found to be sensitive to (opposite) locations in

the visual field [8].

Why then should the VWFA be sensitive to the location of a

word? Computational models ought to help shed light on this

question, by showing how certain representations develop through

learning. Embarrassingly enough however, there is currently no

computational model that makes even so much as an attempt to

capture how the VWFA is inserted within the network of brain

areas described by Rauschecker et al., let alone attempting to

describe the internal organization of the VWFA. But in trying to

answer this question, we can do the next best thing and gain some

insights from a class of computational models of location invariant

word recognition [10–12]. These models all consist in a simple

feedforward network that learns to recognize words independently

of where they have been presented on the input space (in this

article, a two-dimensional input space). Thanks to their simplicity,

these models have been analyzed [13] and studied in a number of

variants with an english or a french vocabulary, words of different

lengths, and different visibility assumptions.

The network presented in Figure 1 is the latest instantiation of

this class of models. It is not designed to investigate such questions

as the role of feedback or of hemispheric integration in reading,

and focuses exclusively on how location invariant word recognition

might be achieved. The input layer is a location specific bank of

letter detectors that codes for the presence of letters at specific

horizontal and vertical locations, which would be consistent with

any retinotopically organized region or group of regions between

V2 and VO in the network described by Rauschecker et al. The

hidden layer is where the code for any visual word stimulus —or

any visual nonword stimulus— is computed, and thus it is

functionally equivalent to the VWFA. The output of the network

consists in a bank of location invariant word units, one for each

word in the vocabulary, that may be usefully construed as word

meaning representations in the pars triangularis of Broca’s area

(i.e. a location invariant area that receives connections from the

VWFA). Every unit in the hidden layer/VWFA is assumed to

receive connections from every input unit and to send

connections to every output unit, initially with randomly

weighted connections. Under the influence of the backpropaga-

tion learning algorithm [14], the network learns to change these
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connections in order to associate location specific letter inputs

(e.g. l2,1i2,2f2,3e2,4,l3,4i3,5f3,6e3,7) to a location invariant output

(e.g. LIFE).

Our simulation procedure is described in the ‘‘Models’’ section,

and followed in its principal lines the study of Rauschecker et al.,

whose material consisted of 4 letter English words and who used a

linear classifier to sort activation patterns from V1/V2 and the

VWFA, evoked by word stimuli presented at 6 possible locations

along the horizontal and vertical axes, into 2 or 6 target locations.

After training the network to recognize a vocabulary of 100 english

4-letter words presented at 767 possible locations, we likewise

presented word inputs at 6 possible locations along the horizontal

and vertical axes and collected either the input patterns or the

hidden patterns (which in the rest of the article are respectively

being compared to the human data for V1/V2 and for the

VWFA). These patterns were then fed to a linear classifier who

learned to classify them either in 2 location categories or in 6, and

was tested on its ability to generalize to new patterns.

Results

Simulating location sensitivity in expert readers
Table 1 reports the average classification performance on input

patterns and hidden patterns from all trained networks, when

words were presented horizontally or vertically and when patterns

were classified either into 2 or 6 classes. Let us first consider the

performance of the classifier for 2 location classes.

For two target classes, input representations were classified with

perfect accuracy and in a way that mimics performance on human

V1/V2 BOLD patterns with horizontally presented words (model

100%, human V1/V2 93%, chance 50%) and vertically presented

words (model 100%, human V1/V2 92%, chance 50%).

Performance for hidden representations, while overall inferior,

followed the same pattern. Classification accuracy remained well

above chance and at almost identical levels for horizontal and for

vertical representations, which again compares well to the human

data (horizontal model 79.8%, horizontal VWFA 76%; vertical

model 77.1%, vertical VWFA 74%), and establishes that just like

Figure 1. Architecture of the model. English 4-letter words were presented stochastically on a 2-dimensional input layer, and the network
learned to associate the same word seen at different locations to the same abstract word unit in the output layer.
doi:10.1371/journal.pcbi.1003250.g001

Author Summary

There is a mild form of modern ‘‘mind-reading’’ that
involves, with heavy fMRI apparatus and software assis-
tance, to guess from brain signals alone the locations of
words that have been seen by a (consenting) subject. The
recent surprise brought to us by Rauschecker et al. is not
that we can currently do that, but that we can do it in a
brain region that had until now been largely taken to
discard information pertaining to location — the so-called
Visual Word Form Area (VWFA). The contribution of our
article is to explain this phenomenon in a principled
manner, using computational modeling. The gist of our
account is that the VWFA starts out with location
information, which is indeed progressively discarded as
the region maturates but only in as much as actually
required to recognize words presented at different retinal
locations (a necessary feat when one learns how to read).
This ‘‘lazy VWFA’’ account captures many of the findings
reported by Rauschecker et al. in a simple model with very
few parameters, and it makes specific predictions that
would falsify the model immediately were they to be
found incorrect.

The Lazy Visual Word Form Area
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expert human readers, the trained model is location sensitive both

at the input and hidden layer along the horizontal and vertical

directions.

Classification performance for six location classes is potentially

the most interesting, as it allows for a more fine-grained assessment

of the location information present in word representations. For

word representations in the input layer, performance was almost at

ceiling along the horizontal and vertical axes (horizontal input

layer 93.3%, vertical input layer 100%, chance 16.7%). This

should be compared to classification performance on V1/V2

fMRI signals in humans, which while above chance was clearly

less important than in the model (horizontal V1/V2 66.7%,

vertical V1/V2 76.0%). However the observed pattern of results

was very similar between humans and model in three respects: first

in that they both showed a superior location sensitivity along the

vertical axis, second because more classifications were made on

locations adjacent to the target than to non-adjacent locations, and

third because this adjacency effect was stronger along the

horizontal axis than the vertical one (horizontal model 100%,

horizontal human 56.3%; vertical model 57.1%, vertical human

40.6%).

Classification scores were weaker for hidden representations

but still largely above chance, and location sensitivity was

superior along the vertical axis than along the horizontal one

(horizontal hidden layer 34.0%, vertical hidden layer 57.3%,

chance 16.7%). This again mirrored qualitatively what is

observed in humans (horizontal VWFA 26.2%, vertical VWFA

31.2%), including the fact that classifiers made more misclas-

sifications on adjacent locations (horizontal model 49.5%,

horizontal human 52.9%; vertical model 44.5%, vertical human

49.1%). We note that the superior strength of classification

signals along the vertical axis in the model could explain why

detecting adjacency effects in the VWFA for horizontally

presented words is hard to achieve: the horizontal signal would

be lost much faster as a function of white noise in the hidden

patterns than the vertically presented signal.

Figures 2 and 3 provide a visual comparison between our

simulations and the human data obtained by Rauschecker et al.,

for horizontally and vertically presented words, respectively. The

agreement between model and human data is generally good, with

a few visible discrepancies. Both Figures 2 and 3 (upper pannels)

show that input classification is too good in the model as compared

to V1/V2. Although some white noise was introduced in classified

patterns in order to acknowledge the imprecision of fMRI

measurements, this parameter was not fitted to the data, and

increasing noise could bring input classification to the same level of

performance. The model also brings support to the idea that

increased classification accuracy on more central locations could

be a byproduct of cortical magnification [8]. Indeed Figures 2 and

3 (lower pannels) show that this secondary phenomenon could not

be reproduced in a simple model without cortical magnification,

and if anything the opposite is observed as the more peripheral

locations are the best classified. Finally, fMRI patterns are slightly

more ‘‘hemifield specific’’ when elicited horizontally than verti-

cally, with visibly less misclassifications being made across visual

fields in Figure 2 than in Figure 3. This aspect of the data is

beyond the scope of our single-hemispheric model.

Although the proportion of adjacent misclassifications helps to

convey how similar word patterns are as a function of stimulus

location, we also attempted to quantify this similarity more

precisely by introducing an index that returns 0 for chance

classification (no adjacency effect, a uniform confusion matrix) and

increases as the distance between the actual and guessed locations

decreases, to reach 1 for perfect classification at all locations (i.e.

perfect classification and an identity confusion matrix, see Model

section). Roughly speaking the adjacency index (AI) behaves like

the geometric mean of the general classification accuracy and the

adjacency of the misclassifications. Confusion matrices for the

input patterns had a AI of 0.98 along the horizontal axis and 1

along the vertical axis, against 0.66 and 0.47 respectively for

humans in V1/V2. Confusion matrices for hidden patterns had

smaller AIs, reaching 0.19 for horizontal patterns and 0.36 for

vertical patterns, to be respectively compared with AIs of 0.36 and

0.27 for humans in the VWFA.

According to the inference that high adjacency effects constitute

evidence for an underlying retinotopy in the classified patterns,

these results should imply a retinotopic organization of both the

input and the hidden layer in the model along the vertical and

horizontal axes. This might come as some surprise to the reader

because although the input layer in the model is, by construction,

retinotopically organized, units in the hidden layer have no

contiguity: unlike the input layer, the hidden layer is a simple bag

of units, and because each unit has the same total receptive field

over the input layer, there can be no induced topology. Therefore

this layer cannot be retinotopic in the accepted sense that

contiguous units should code for contiguous inputs, and we must

conclude that retinotopic organization is not the only way to

account for the adjacency effects reported by Rauschecker et al.

We will return to the significance and interpretation of these

results in the discussion section.

Location sensitivity across training epochs
Figure 4 shows the average evolution of recognition accuracy

and location sensitivity in 10 networks, as assessed at 20 epochs of

training (to be called steps hereafter, referring to steps rather than

directly to epochs is necessary given that networks needed different

numbers of epochs to reach criterion: if network X took longer to

train than network Y, one training step for X contains more

epochs than one training step for Y). At each step location

sensitivity was measured just as before, by the generalization

Table 1. Location information in mature word representations.

Input Layer Hidden Layer

2-Class. 6-Class. Adj. Adj. Index 2-Class. 6-Class. Adj. Adj. Index

Horizontal 100.0% (0.0) 93.3% (3.7) 100.0% 0.98 79.8% (1.6) 34.0% (1.4) 49.5% 0.19

Vertical 100.0% (0.0) 100% (0.0) 57.1% 1.00 77.1% (1.5) 57.3% (2.9) 44.5% 0.36

Mean generalization accuracy of the linear classifier on input and hidden layer word representations, after training of the model (Standard error of the mean in
parenthesis). Patterns corresponded to horizontally and vertically presented words, and were classified into 2 or 6 locations. For the 6 target locations classifier, percent
classification to adjacent locations (Adjac.) are provided along with an index of adjacency effect (Adj. Index).
doi:10.1371/journal.pcbi.1003250.t001

The Lazy Visual Word Form Area
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Figure 2. Confusion matrices for the horizontal classification of human fMRI patterns evoked in V1/V2 (Upper left) and in the VWFA
(Lower left). The matrices show the average locations estimated by the classifier as a function of the actual word location (adapted from [8]).
Confusion matrices for the model’s input (Upper right) and hidden representations (Lower right) are averaged over 10 networks and 40 classification
trials.
doi:10.1371/journal.pcbi.1003250.g002
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Figure 3. Confusion matrices for the vertical classification of human fMRI patterns evoked in V1/V2 (Upper left) and in the VWFA
(Lower left). The matrices show the average locations estimated by the classifier as a function of the actual word location (adapted from [8]).
Confusion matrices for the model’s input (Upper right) and hidden representations (Lower right) are averaged over 10 networks and 40 classification
trials.
doi:10.1371/journal.pcbi.1003250.g003
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Figure 4. Word recognition accuracy and classification accuracy on 2 and 6 locations, for horizontal and vertical patterns, at 20
milestone epochs regularly spaced throughout training.
doi:10.1371/journal.pcbi.1003250.g004

The Lazy Visual Word Form Area
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performance of a linear classifier on sorting 40 randomly chosen

hidden network patterns into 2 or 6 location classes.

Two aspects of the data are immediately obvious. First,

before training (step 0) networks have as expected no

recognition ability, but nonetheless they already exhibit

location sensitive hidden representations, a sensitivity which

peaks after the first weight modifications. From the first step

onwards, the situation then reverts as networks slowly give

away location sensitivity in exchange for word recognition

performance. However by the time networks have met the

task’s requirement on word recognition, not all location

sensitivity has been lost and classification accuracy is still well

above chance in all conditions. Second, it can be seen that the

same interaction previously found at the end of training,

between the mode of presentation (horizontal or vertical) and

the mode of classification (into 2 or 6 classes), extends

throughout training. Specifically, performance is equally good

for horizontal and for vertical patterns only when classifying

into 2 classes, but much better for vertical patterns when

classifying into 6 classes.

Location sensitivity and vocabulary size
The fact that location sensitivity in the model varies inversely

with recognition accuracy strongly suggests that it could be

linked to the extent of the acquired vocabulary. In other words,

hidden representations would end up being less and less location

specific for training sets of increasing sizes. To verify this claim,

we generated 50 new networks that were identical in everything

but for their random initial connectivity and the training

regimes they received. 10 networks were assigned to each of 5

different training regimes that used increasingly large training

sets (50, 100, 150, 200 and 250 words in our simulation). As in

our previous simulations, the hidden patterns for 40 randomly

selected words were then collected for each of the 50 networks

along the horizontal and vertical axis, and subjected to 2

dedicated classifiers that categorized them either into 2 or 6

classes.

The results are presented in Figure 5. The same general pattern

of location sensitivity is found as in previous simulations: location

sensitivity being everywhere above chance and showing an

interaction between mode of presentation and classification type.

Critically however, the results confirm that location sensitivity in

the model decreases with vocabulary size as assessed by

classification accuracy for 6 location classes. Although classifica-

tion accuracy for 2 classes did not significantly vary across

vocabulary size, the more sensitive classification accuracy for 6

classes exhibits a clear linear decrease in generalization perfor-

mance from a vocabulary of 50 words (mean horizontal

accuracy = 45.7%, mean vertical accuracy = 62.8%) to a vocabu-

lary of 250 words (mean horizontal accuracy = 28.2%, mean

vertical accuracy = 45.43%). This establishes that networks give up

more location specificity as the vocabulary load increases, which

translates into the prediction that readers with a larger estimated

vocabulary should have statistically less location-specific represen-

tations in the VWFA.

The predictions we have established so far on the time-course of

learning and the mature vocabulary size were derived from

general learning properties of the network, by averaging classifier

performance across random samples of words. But because due to

their different confusability, not all the words in a training set are

equally easy to learn, one would expect location specificity to be an

item-level property. In a last simulation we therefore resort to an

other way of testing the model at the item level, by varying the

proportion of highly confusable words in the training set.

Location sensitivity for normal words and for anagrams
In a task of location invariant word recognition, anagrams are

expected to be the most difficult items to classify: whereas non-

anagrams can be recognized just by the set of letters they are made

of and without recourse to positional information, anagrams

cannot. More generally, distinguishing between two anagrams at

several locations would in average require to overcome more

interference from shared letters at the same location than when

distinguishing between two non-anagrams (even if they share some

letters). One would then expect the network to assign more

location specific representations to anagrams. This idea is put to

the test in a third simulation, where 10 new networks were trained

on a lexicon specially designed with 50 normal words and 50

anagrams. As previously, networks had random initial weights and

were trained until convergence to criterion. Classification was then

performed on horizontally or vertically presented patterns, into 2

or 6 location classes. Unlike the previous simulations however, two

different linear classifiers were used to operate respectively on

anagram and non-anagram patterns.

Figure 6 illustrates the results. Classification accuracy on normal

words revealed exactly the same location sensitivity pattern as

previously found: accuracy was well above chance, and there was

an interaction between mode of presentation and mode of

classification, location sensitivity being marginally higher for

horizontal patterns when sorted into 2 location classes (mean

horizontal accuracy = 70.0%, mean vertical accuracy = 66.7%),

but much higher for vertical patterns when classified into 6 classes

(mean horizontal accuracy = 39.4, AI = 0.19; mean vertical

accuracy = 57.7, AI = 0.40). Location sensitivity for anagrams,

while following generally the same pattern, was higher than for

normal words for 2 classes (mean horizontal accuracy = 76.7,

mean vertical accuracy = 80.0) as for 6 classes (mean horizontal

accuracy = 47.2, AI = 0.63; mean vertical accuracy = 62.2,

AI = 0.58). Note that the adjacency index penalizes nonadjacent

classification errors and therefore does not always follow the

direction of mean accuracies: adjacency is marginally higher along

the horizontal axis than the vertical one, despite a strong difference

in mean accuracies that goes in the opposite direction. This

simulation brings support to the idea that location sensitivity is an

item-level property in the model, and makes the prediction that at

least in adults, classifying VWFA activation patterns for anagrams

should be easier than for normal words.

Discussion

The model’s agreement with experimental data would be less

impressive if it had been obtained at the expense of fitting a long

list of parameters, or making implausible hypotheses. It would also

not be informative of the phenomenon of location-sensitivity in the

VWFA if it couldn’t explain the reason for it, or if it couldn’t make

new predictions. In what follows we examine how the model fares

in all these respects.

Making the right simplifications
The starting point of this class of models is that the VWFA is

engaged in recognizing words in the face of stochastically located

inputs, and that using a minimal feedforward network, one can ask

how the system solves this task at the exclusion of all others and

still get meaningful insights. The approach has proved successful in

the past and here we have described an instance of the model that

succeeds quantitatively in reproducing several surprising results of

Rauschecker et al. To do this we assume only that a supervised

learning algorithm is mapping location specific letter patterns

produced by normally distributed word stimuli into abstract word

The Lazy Visual Word Form Area

PLOS Computational Biology | www.ploscompbiol.org 7 October 2013 | Volume 9 | Issue 10 | e1003250



representations. Let us look at these practical hypotheses one by

one.

There is good evidence for location specific letter representa-

tions coming from behavioural and fMRI studies [9,15], although

fMRI data points to the posterior VWFA itself for the locus of

these detectors. We would simply note that the complexity of the

input code does not appear to play any role in the evolution of

location sensitivity in the model, and one would expect the same

results with less integrated inputs such as location specific letter

features, or with more complex inputs such as location specific

letter combinations. Indeed according to the model the critical

characteristic of the input is its location specificity: it is this

property which, together with random initial connection weights,

ensures that the VWFA will start in a location sensitive condition.

That location specific inputs should be present from the very early

stages of reading is not necessarily in tension with the previously

acquired location invariant object recognition skills, or with the

mastering of the alphabet by children before they start to read.

The general question of how children operate the transition from

recognizing single letters to recognizing words is, to this day, an

open-problem, but it is conceivable that children achieve this feat

by harnessing intermediate stages in the letter recognition system

where representations are still location specific (for instance the

above mentioned location specific letter features).

The hypothesis of stochastically distributed training inputs is

demanded by the well-documented stochastic component of

ocular saccades during reading (see [16] for a review) as by

the existence of a preferred viewing position [17] —if not simply

by fixational eye movements such as microsaccades, which are

correlated with bursts of neural activity in the early visual

system [18]. Although the lopsided 2D-normal distribution we

have used for inputs is numerically arbitrary, it is qualitatively

conservative given the horizontal direction of reading in

English, from which one would expect much less vertical than

horizontal variance in eye fixations. As for the modeling choice

that only the central location should be trained to 100%

accuracy, it is supported by the fact that the probability of

refixation to a given word increases with the distance of the

actual landing site to the preferred viewing position [19],

showing that expert readers are not trained to achieve perfect

recognition for all positions. Although no data has been

gathered on variability in fixations along the vertical axis, it is

unrealistic to assume that there would be less refixations along

the vertical axis than there are along the horizontal one. For

these reasons the training protocol that uses normally distrib-

uted training patterns with a distribution lopsided on the x-axis

and where only recognition at the central location was required

to reach perfect scores, appears to us to be the most

conservative.

Another modeling choice that should be discussed here is the

absence of hemifields and hemispheres in the model. The main

rationale behind this choice is that, as intriguing and significant as

Figure 5. Classification accuracy as a function of network load (Lexicon size), averaged over 10 networks with random initial
weights, for hidden patterns corresponding to vertically or horizontally presented words and when classified into 2 or 6 location
classes.
doi:10.1371/journal.pcbi.1003250.g005
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are the findings of Rauschecker et al. pertaining to the right

homologue of the VWFA, these were not obviously relevant to the

phenomenon of location sensitivity, which is the main focus of the

present work. Our modeling choice therefore should be seen as a

simplifying assumption rather than as reflecting a strong theoret-

ical statement. As we have indicated, our interpretation is that the

model is operating exclusively in the left hemisphere, with early

integration of information coming from the right hemisphere

resulting in the activation of all adequate location specific letter

detectors, even if the corresponding letters were initially perceived

in the left hemifield.

Finally the use of the backpropagation algorithm in a single

hidden layer network might be seen as an efficient shortcut for

more plausible learning algorithms operating over deeper,

hierarchically organized networks. Critically, the property exhib-

ited by our model to learn identical weights for the same letters at

different locations appears not to be limited to backpropagation or

to visual words, as it has recently been mirrored on a non-linguistic

training base and with the Trace rule, a hebbian learning rule with

a temporal window [20].

Explanatory power
Having defended the model’s assumptions, let us consider the

account it gives of the phenomena described by Rauschecker et

al. According to the model, the VWFA starts with representa-

tions that are location-specific and display adjacency effects, but

are not at all selective for visual words. In our simulations this

initial blindness to identity but sensitivity to location is reflected

by word recognition being initially absent, while the classifier is

still able to sort hidden word patterns by location (see Figure 4),

and classified patterns have a large adjacency index along both

axes.

In the model this is a consequence of the initially random

connection weights afferent to the VWFA, which will conserve the

location-specificity of its inputs. Adjacency effects in the hidden

layer are the product of the retinotopy of the hidden layer, as well

as of the differential training exposure. The fact that adjacency

effects can be observed in a hidden layer that doesn’t have any

topology demonstrates that adjacency effects cannot be taken as a

marker of retinotopy: although a retinotopic organization must

imply adjacency effects, the converse does not necessarily hold.

Hidden patterns in the model therefore already start out

location sensitive, being a product of location specific inputs

propagated by random connection weights. But our simulations

also show that the weight modifications at the very first epoch of

training produce a burst of location sensitivity. This instantly

brings classification performance on hidden patterns to peak

values, from which they will then decrease slowly over the course

of learning. It is well-known that in backpropagation networks the

early weight modifications tend to be the strongest, since they are

proportional to the error, thereby explaining the observed burst

[21]. But it is perhaps not straightforward why this should go in

the direction of more location sensitivity rather than less, or why

location sensitivity should slowly decrease from the first epoch to

the last. Analyses of previous instances of the model show that

during training, backpropagation solves the task of location

invariant word recognition by trying to assign the same weights

to the same letter inputs seen at different locations [13]: in other

words the model slowly turns into a symmetry network [22], and

as it does so it naturally looses location sensitivity. However this

Figure 6. Classification accuracy for normal words and anagrams, on horizontally and vertically presented stimuli, when classified
into 2 or 6 location classes.
doi:10.1371/journal.pcbi.1003250.g006
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does not explicitly require to destroy all information about where a

word was presented, and therefore the mature representations still

exhibit location sensitivity. This is a fortiori true for items that

cannot be sorted out simply by considering letter identities, such as

anagrams, for which letter representations will need to remain

more location specific. In this view, the results of Rauschecker et

al. obtain because, at least when it comes to location invariance,

the VWFA chooses the path of least effort.

Drawing predictions
Apart from providing a principled explanation of location

sensitivity and adjacency effects, we see that this ‘‘lazy VWFA’’

account makes three testable predictions. A first prediction is that

fMRI activation patterns in the VWFA should be less location

specific for adults than for first-grade children, who are in the

process of learning to read (see Figure 4, decreasing location

sensitivity over training steps). A second prediction is that word

Figure 7. Cumulated word exposure and final recognition accuracy of the network across all input locations.
doi:10.1371/journal.pcbi.1003250.g007
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patterns should be harder to classify in subjects with a higher

estimated vocabulary (see Figure 5). Finally, a third prediction is

that word patterns should be better classified when they are

evoked by anagrams (see Figure 6). These predictions appear to be

unavoidable in the sense that they fall out directly of the account

itself, and that we expect that none of the few parameters of the

model —learning rate, number of hidden units, variance of the

input distribution— could be manipulated to change them. More

predictions may be derived, especially concerning the impact of

lexical frequency and neighborhood on location sensitivity.

Although new simulations with training sets varying along these

two factors would be required to draw firm predictions, from the

observed impact of exposure and of letter overlap we expect that

word frequency and neighborhood should be respectively nega-

tively and positively correlated with location sensitivity.

Conclusions and prospects
We have presented a simple learning account of location

sensitivity in the VWFA, whereby maturation in this brain area is

seen as a process of finding the minimal departure from an initially

location sensitive connectivity, that could eventually achieve

invariant word recognition. The model reproduces experimental

data under parsimonious assumptions, helps to clarify some of the

original data interpretations, and allows us to make testable

predictions. It is also notable that none of the hypotheses we have

made in this model –namely the existence of stochastically

distributed retinotopic inputs, random initial connectivity, and

an incremental error-correction learning algorithm– are a priori

specific to visual words, and therefore a similar learning account

may apply to other types of visual expertise.

Several new analyses should be carried out to elucidate the

experimental data reported by Rauschecker et al. For one thing

and if the VWFA is to serve any purpose whatsoever, the

activation patterns of its word exemplars ought to be better

classified by identity than by location. Figure 7 suggests that this is

indeed the case in the model, since by the end of training the

model achieves very good recognition accuracy on all sufficiently

exposed locations, which is exactly equivalent to a linear classifier

like a perceptron network producing high scores on classifying

hidden word representations by identities. Although the percent-

age of correct classification by identity is not to be found in

Rauschecker et al.’s article, it would serve as a simple but critical

validation of the approach. The sparseness of BOLD signals

evoked by visual words, as defined for instance in [6], could also be

usefully contrasted with the representations that are used in

widespread and neurally inspired computational models that deal

with location invariant object recognition [6,7]. Finally if the

model we have presented turns out to be warranted by subsequent

studies, an instructive future step would be to address the laterality

questions raised by Rauschecker et al., by running the same

computational analyses on a model that explicitly distinguishes

between left and right hemispheres — as for instance in [10] (see

also [23]). Using two distinct hidden layers that would stand for

the VWFA and its right homologue, one could hope to gain

insights as to whether and how the ‘‘complementary’’ character of

location information that Rauschecker et al. reported in these

regions could indeed develop, and how it would interact with

cross-hemispheric connectivity.

Model

The model is a standard three-layer feedforward network

trained under the backpropagation algorithm [14]. It has 70

location banks (10 horizontal times 7 vertical locations) of 26 letter

units as an input layer, each sending connections to 50 hidden

units, which in turn are fully connected to N word units in the

output layer (N varied throughout the simulations, from 50 to

200 words). Initial connection weights were randomly drawn

from a uniform distribution with support [20.5,0.5]. Using

random initial weights is standard practice in connectionist

modeling, Input and output layers use a localist coding scheme,

whereby one and only one unit stood for a given word (or a

given letter/location). While input units were clamped to binary

values during stimulus presentation, all other units i computed

their activation Ai as a function of the net input Neti they

received, using a standard sigmoid function Ai~
1

1zexp{Neti
. The

model was trained using a vocabulary of N words on the task of

associating sequences of letters seen at different locations (e.g.

l2,1i2,2f2,3e2,4,f3,4i3,5l3,6e3,7,l3,4i3,5f3,6e3,7) to invariant word units

(e.g. life,file,life).

One epoch of training consisted in presenting every word in the

training base exactly once. Although all input words were

therefore seen with equal frequency, their locations were not

uniformly distributed, but were randomly chosen anew every 5

epochs following a gaussian distribution centered on location

x = 4,y = 4 (the central location), with a larger spread along the

horizontal axis (sx = 2.5) than the vertical one (sy = 1.5), as shown

in Figure 7 (top). Networks were trained for as many epochs as

necessary to achieve perfect recognition within a radius of the

central location. Unlike in previous instances of the model, for

plausibility and also for convenience and speed of simulations the

radius was chosen to be one in all simulations (perfect recognition

was only demanded at the central location). Even with this relaxed

criterion however, by the end of training a large measure of

location invariance has been obtained for every word in the

training set and in a way that was proportional to exposure (see

Figure 7 (bottom)). For every simulation, data analysis was carried

out on 10 networks instantiated with different initial weight

conditions.

Once a network had been trained successfully, we randomly

selected 40 words from its vocabulary and fed either their

corresponding input patterns or their hidden activation patterns,

obtained at the locations of interest, to a linear classifier. The

locations were 6 vertical locations centered horizontally, and 6

horizontal locations centered vertically, emulating the 12 presen-

tation conditions of Rauschecker et al. A constant amount of white

noise (mean = 0.0, variance = 0.025) was also added to the patterns

before classification, in order to acknowledge noise in fmri

recordings (if only qualitatively). The classifier was a simple linear

perceptron network, a single input layer fully connected to a single

output layer with L units, and initial connection weights randomly

and uniformly chosen between 20.1 and 0.1. It was trained using

the delta rule (learning rate r = 0.0001) for 500 epochs on all but

6*L of the selected items, either to classify patterns in one of two

location categories for C = 2 (which depending on the condition

would correspond to ‘‘left’’ or ‘‘right’’, or to ‘‘up’’ and ‘‘down’’) or

when L = 6 to classify patterns precisely into the 6 locations. In a

generalization phase, we used the remaining 6*L items to test the

classifier’s ability to categorize new patterns. The random word

selection, training and testing of the classifier were repeated for 10

runs.

To quantify the adjacency effect revealed by a classification with

L location classes, we built an adjacency index that returns one for

perfect classification (an identity confusion matrix), and zero in the

case of random classification (a uniformly distributed confusion

matrix). This is achieved by extracting the mean m and standard

deviation s of the error distribution between guessed locations and

target locations, and letting the index vary like the product of the
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opposite of these moments. To reflect the fact that classification

errors confined to adjacent target locations reveal more adjacency

than when they are randomly distributed, the index should also

incorporate a contrast to the maximum standard deviation suni

obtained in the case of a uniform distribution. An index that meets

all of these criteria is:

R~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1{

m

L
)D1{

s

suni

D
r

Which can be interpreted as the geometric mean of the

classification accuracy and the error distribution’s departure from

uniformity.
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