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GLOBAL SOLUTIONS OF THE RANDOM VORTEX FILAMENT EQUATION

Z. BRZEŹNIAK†, M. GUBINELLI‡ AND M. NEKLYUDOV†

ABSTRACT. We prove the existence of a global solution for the filament equation with inital

condition given by a geometric rough path in the sense of Lyons [17]. Our work gives a positive

answer to a question left open in recent publications: Berselli and Gubinelli [5] showed the

existence of a global solution for a smooth initial condition while Bessaih, Gubinelli, Russo [6]

proved the existence of a local solution for a general initial condition given by a rough path.

1. THE FILAMENT EQUATION

In this note we prove the existence of a global solution for the following rough filament

equation
{

dγ(t)(ξ)
dt = uγ(t)(γ(t)(ξ)), t ∈ [0,∞), ξ ∈ [0, 1],

γ(0) = γ0,
(1.1)

where the initial condition γ0 : [0, 1] → R
3 is a geometric ν-rough path (for some ν ∈ (13 , 1)),

see Assumption 2.6. Here γ : [0,∞) → Dγ0 ⊂ C is some trajectory in the subset Dγ0 of the

space C ⊆ C([0, 1];R3) of continuous closed curves in R
3 parametrized by the interval [0, 1].

Finally uγ , γ ∈ Dγ0 is a vector field given by

uγ(x) =

∫ 1

0
∇φ(x− γ(ξ)) × dγ(ξ), (1.2)

where φ : R3 → R is a smooth function which satisfies certain assumptions (see Hypothesis

3.2). The exact meaning of the line integral above and the definition of the set Dγ0 will be

given below. Equation (1.1) has its origin in the theory of the three dimensional Euler equa-

tions. It is well known that for the two dimensional Euler equations the vorticity ω = curlu
is transported along the fluid flow. The situation changes drastically in three dimensional case.

Additional “stretching” term in the equation defining the vorticity leads to a possibility of its

blow up in finite time. Furthermore, a result of Beale, Kato, and Majda [2] suggests that a pos-

sible singularity of the Euler equations appears when the vorticity field of the fluid blows up.

Consequently, understanding the behaviour of the vorticity of an ideal incompressible fluid is an

important problem in fluid dynamics.

The properties of the motion of the vorticity has been studied for the last 150 years starting

from the works of Helmholtz [15] and Kelvin [16]. It has been suggested by Kelvin to use the

so called Biot-Savart law

u(x) =

∫

R3

x− y

|x− y|3
× ω(y)dy, x ∈ R

3
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where × denotes the vector product in R
3, combined with an assumption that the vorticity is

supported by a smooth closed curve evolving in time γ : R+ × [0, 1] → R
3 via a formula

ω(x, t) = Γ

∫ 1

0
δ(x− γ(t, ξ))

∂γ(t, ξ)

∂ξ
dξ, x ∈ R

3, t ≥ 0

and definition of the flow
{

dXt(x)
dt = u(Xt(x), t), t ≥ 0,

X0(x) = x.
(1.3)

to formally deduce the filament equation

∂γ

∂t
(t, ξ) = −

Γ

4π

∫ 1

0

γ(t, ξ)− γ(t, η)

|γ(t, ξ)− γ(t, η)|3
×
∂γ(t, η)

∂η
dη. (1.4)

The assumption that the vorticity is supported by some curve is coherent with numerical simula-

tions of 3D turbulent fluids which show that regions of large vorticity have a form of a “filament”,

see for instance [3] and [21].

Equation (1.4) has singularity when ξ and η are close to each other and the initial curve γ is

smooth. As a consequence, the energy of the solution of this equation given by the formula

E(t) =
Γ2

8π

∫ 1

0

∫ 1

0

1

|γ(t, ξ) − γ(t, η)|

∂γ(t, η)

∂η
·
∂γ(t, ξ)

∂ξ
dξdη, t ≥ 0

is infinite for any smooth curve γ(t, ·). In order to avoid the singularity Rosenhead [20] intro-

duced the regularized model

∂γ

∂t
(t, ξ) = −

Γ

4π

∫ 1

0

γ(t, ξ)− γ(t, η)

(|γ(t, ξ) − γ(t, η)|2 + µ2)3/2
×
∂γ(t, η)

∂η
dη (1.5)

which is widely used in aereonautics to study the dynamics of trailing vortices at the tips of

airplane wings.

The problem (1.1) has been studied by Berselli and Bessaih [4] and then by Berselli and

Gubinelli [5]. It contains the equation (1.5) as a particular case when, for for some µ > 0,

φ(x) =
Γ

(|x|2 + µ2)
1
2

, x ∈ R
3.

Equation (1.1) is in fact a nonlinear PDE for a function γ : [0,∞) × [0, 1] → R
3. A natural

setting for the well-posedness of the corresponding Cauchy problem is obtained by requiring the

vector field u to be well defined and Lipshitz with respect to the space variable. To this effect

the approach followed in [4] is to set up the equation as an evolution problem in the Sobolev

space H1 of closed absolutely continuous curves in R
3 with square integrable first derivative

(with respect to the parameter). This approach implies that the vector field (once lifted to H1)

does not allow strong enough estimates to deduce the global existence. This issue is ultimately

due to the fact that in the 3-dimensional incompressible flows, the vortices stretch and undergo

a complex dynamics and that a priori this could lead to a explosion of the H1 norm. Such

a difficulty should be compared to the more stable behavior of 2d vortex points which, under

incompressible flows, are simply transported along the flow lines. Exploiting the conservation

of the kinetic energy of the flow and a control of the velocity field generated by the vortex line

via the associated kinetic energy Berselli and Gubinelli [5] showed the existence of a global

solution to equation (1.1) with initial conditions in H1.
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Bessaih, Gubinelli and Russo [6], partially motivated by the random filament models sug-

gested by Gallavotti [11] and Chorin [8], considered the above evolution problem when the

initial data is a random closed curve. For definiteness they considered the initial data sampled

from the law of a 3-dimensional Brownian loop (a Brownian motion starting at 0 ∈ R
3 and con-

ditioned to return to 0 ∈ R
3 at time 1). In this case it is no more possible to set up the problem in

the Sobolev space H1 since Brownian trajectories almost surely do not belong to this space. A

more serious problem is the meaning to give to the generalized Biot-Savart relation (1.2) since

the line integral along a Brownian trajectory does not allow a straighforward definition. More-

over stochastic integration (à la Itô or Stratonovich) does not provide a good framework to study

this problem since it does not posses a natural filtration on the parameter space stable under the

time evolution. For these reasons [6] identified the spaces of controlled rough paths as a natural

framework to have a well posed problem.

Rough path theory has been introduced by T. J. Lyons in the seminal paper [17] (see also [10,

18, 19]) as a way to overcome certain difficulties of stochastic integration theories and have

a robust analytical framework to solve stochastic differential equations and similar problems

involving integration of non-regular vector-fields. It turns out that rough paths theory and in

particular the notion of controlled paths introduced in [12] allows to give a natural interpretation

to the Biot-Savart relation (1.2) and obtain a well-posed problem. Using this approach Bessaih,

Gubinelli, Russo [6] obtained existence of a local solution to eq. (1.1) when the initial data is a

closed curve of Hölder class with exponent ν ∈ (1/3, 1] (suitably lifted to rough path space).

The aim of the present paper is to extend the energy method of Berselli and Gubinelli to the

rough path setting and obtain a global existence result for the equation (1.1) when the initial data

is a geometric rough path, thus completing the analysis of [6].

Recently there have been some deep progresses in the study of evolution equations in the

space of controlled rough paths. In particular Hairer [13] showed how to use controlled path

theory to have well-posedness of a multidimensional Burgers type equation driven by additive

space-time white noise and later [14] used similar ideas to tackle the longstanding open problem

of the Kardar–Parisi–Zhang equation for which he described a notion of solution for which

existence and uniqueness can be proven.. The key technical tool to obtain these results has

been the observation that the more singular non-linear term involved in the fixed-point argument

has the same structure of the Biot-Savart relation (1.2) and thus can be similarly handled via

controlled paths techniques.

A major open problem which remains largely unexplored is the rigorous study of the un-

regularized filament equation (1.4), whose singularity seems to defy any reasonable analytic

approach. On this respect the very suggestive heuristic computations of Gallavotti [11] seems

to hint to the fact that rapid oscillations of the curve γ could provide a natural regularization.

Another very interesting problem is the study of the rough filament equation as an Hamiltonian

system on the space of parametrization invariant paths on the lines of [1] and [7].

Acknowledgments. The authors would like to thank the anonymous referees for their careful

reading and the detailed comments which helped us to improve the presentation.
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2. DEFINITION AND PROPERTIES OF ROUGH PATH INTEGRALS

In this section we will present the controlled path framework and we will define the rough

path integral and state some of its properties. We will mainly follow the papers [12] and [6].

In what follows by V,W we will usually denote Banach spaces, by L(V,W ) the Banach

space of bounded linear maps from V to W and by C(X,Y ) the space of continuous function

from X to Y . Moreover we let T = [0, 1] and

Cn(V ) = {f ∈ C(Tn, V ) : f(t1, t2, · · · , tn) = 0 if ti = ti+1 for some i = 1, .., n − 1}.

We will understand that C(V ) = C1(V ) and we will consider the Hölder norm

|f |µ = sup
a∈T

|f(a)|+ sup
0≤a<b≤1

|f(a)− f(b)|V
|a− b|µ

, f ∈ C1(V );

on C1(V ) and the following semi-norms on the spaces C2(V ) and C3(V )

|f |µ = sup
0≤a<b≤1

|f(a, b)|V
|a− b|µ

; f ∈ C2(V ), |g|µ = sup
0≤a<b<c≤1

|g(a, b, c)|V
|a− c|µ

, g ∈ C3(V ).

The associated normed spaces are defined by

Cµ(V ) = Cµ
1 (V ) = {f ∈ C1(V ) : |f |µ <∞},

Cµ
2 (V ) = {f ∈ C2(V ) : |f |µ <∞}, Cµ

3 (V ) = {g ∈ C3(V ) : |g|µ <∞}.

For n = 1, 2 define the operators δ − δn : Cn(V ) → Cn+1(V ) as

δ1f(a, b) = f(b)− f(a), δ2g(a, b, c) = g(a, c) − g(a, b) − g(b, c)

for all a, b, c ∈ T. They satisfy the following fundamental property δδf = 0, for all f ∈ C1(V ).
Let ZCµ

2 (V ) = Cµ
3 (V ) ∩ ker δ and BCµ

2 (V ) = Cµ
3 (V ) ∩ im δ. If g ∈ ZCµ

2 (V ) then g ∈
BCµ

2 (V ), i.e. is there exists f ∈ C1(V ) such that δf = g. Then following result has been

proved in [12]:

Proposition 2.1 (Sewing lemma). For any µ > 1 there exists an unique linear map (Sewing

map) Λ : ZCµ
3 (V ) → Cµ

2 (V ) such that

δΛ = idZCµ
3 (V ) .

This map is continuous and we have

‖Λh‖µ ≤
1

2µ − 2
‖h‖µ, h ∈ ZCµ

3 (V ).

Now, we define a class of paths for which rough path integral will be defined.

Definition 2.2. Assume that ν ∈ (0, 1) and fix X ∈ Cν(V ). We say that a path Y ∈ C(V ) is

weakly controlled by X if there exist a function Y ′ ∈ Cν(L(V, V )) such that the function

R(ξ, η) = Y (ξ)− Y (η)− Y ′(η)(X(ξ) −X(η)), ξ, η ∈ T, (2.1)

belongs to C2ν
2 (V ). We denote DX the set of all the pairs (Y, Y ′) satisfying (2.1). This is a

vector space which can be endowed with the semi-norm ‖ · ‖DX
given by the following formula

‖(Y, Y ′)‖DX
= |Y ′|Cν + ‖R‖C2ν

2
, (2.2)
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Furthermore, let us define a norm ‖ · ‖∗DX
in DX by

‖(Y, Y ′)‖∗DX
= ‖Y ‖DX

+ sup
ξ∈T

|Y (ξ)|. (2.3)

With these definitions (DX , ‖ · ‖
∗
DX

) is a Banach space. While not necessary for the integration

theory it will convenient for our intended application to assume that all our controlled paths

take values in V = R
3 and are closed, that is Y (0) = Y (1).

In the present paper an element (Y, Y ′) ∈ DX can always be canonically identified from

its first component Y by the mean of standard procedures discussed below. In this context we

denote by RY the corresponding remainder: RY = δY − Y ′δX. Moreover we will often omit

to specify Y ′ when it is clear from the context and write ‖Y ‖DX
instead of ‖(Y, Y ′)‖DX

.

We will repeatedly use the basic estimate

‖Y ‖Cν ≤ ‖Y ‖∗DX
(1 + ‖X‖Cν ). (2.4)

Controlled paths are stable by mapping via sufficiently regular functions.

Lemma 2.3. Let φ ∈ C2(R3,R3) and (Y, Y ′) ∈ DX . Then

(W,W ′) := (φ(Y ), φ′(Y )Y ′) ∈ DX (2.5)

and the corresponding remainder has the following representation

RW (ξ, η) = φ′(Y (ξ))RY (ξ, η) + (Y (η) − Y (ξ))×

×

1
∫

0

[∇φ(Y (ξ) + r(Y (η) − Y (ξ))) −∇φ(Y (ξ))]dr, ξ, η ∈ T. (2.6)

Furthermore, there exists a constant K ≥ 1 such that

‖φ(Y )‖DX
≤ K‖∇φ‖C1‖Y ‖DX

(1 + ‖Y ‖DX
)(1 + ‖X‖ν)

2. (2.7)

Moreover, if (Ỹ , Ỹ ′) ∈ DX̃ and (W̃ , W̃ ′) := (φ(Ỹ ), φ′(Ỹ )Ỹ ′) then

‖W ′ − W̃ ′‖ν + ‖RW −RW̃‖2ν + ‖W − W̃‖ν ≤

C(‖X − X̃‖ν + ‖Y ′ − Ỹ ′‖ν + ‖RY −RỸ ‖2ν + ‖Y − Ỹ ‖ν)
(2.8)

with

C = K‖φ‖C3(1 + ‖X‖Cν + ‖X̃‖Cν )3|(1 + ‖Y ‖DX
+ ‖Ỹ ‖DX̃

)2. (2.9)

When X = X̃ we have

‖φ(Y )− φ(Ỹ )‖DX
≤K‖∇φ‖C2‖Y ‖DX

(1+‖Y ‖DX
+ ‖Ỹ ‖DX

)2(1 + ‖X‖Cν )4‖Y − Ỹ ‖DX
.

(2.10)

Proof. See [12], Proposition 4 for all statements of the Lemma, except (2.6) (which is actually

also proven, though not stated explicitly). Let us show (2.6). Denote y(r) = Y (ξ) + r(Y (η) −
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Y (ξ)), r ∈ [0, 1]. Then

φ(y(1)) − φ(y(0)) =

1
∫

0

φ′(y(r))y′(r)dr (2.11)

=
∑

k

(Y k(η)− Y k(ξ))

1
∫

0

∂φ

∂xk
(y(r))dr =

∑

k

∂φ

∂xk
(Y (ξ))(Y k(η) − Y k(ξ))

+
∑

k

(Y k(η)− Y k(ξ))

1
∫

0

[
∂φ

∂xk
(y(r))−

∂φ

∂xk
(Y (ξ))]dr

=
∑

k,l

∂φ

∂xk
(Y (ξ))(Y ′)kl(X l(η)−X l(ξ)) +

∑

k

∂φ

∂xk
(Y (ξ))(RY )k(ξ, η)

+
∑

k

(Y k(η)− Y k(ξ))

1
∫

0

[
∂φ

∂xk
(y(r))−

∂φ

∂xk
(Y (ξ))]dr,

and the result follows. �

In order to define the integral for paths controlled by X we need a further ingredient: the

existence of basic integrals of X with respect to X itself. These objects are encoded into what

is refereed to as a rough path as follows.

Definition 2.4. Assume that ν > 1/3. We say that couple X = (X,X2) where X ∈ Cν(T,R3)
and X

2 ∈ C2ν
2 (L(R3,R3)) is a ν-rough path if the following condition is satisfied:

X
2(ξ, ρ) −X

2(ξ, η)− X
2(η, ρ) = (X(ξ) −X(η)) ⊗ (X(η) −X(ρ)), ξ, η, ρ ∈ T. (2.12)

Remark 2.5. If ν > 1/2 the solution X
2 to (2.12) is unique. Indeed, assume that there exists

another X2
1 which satisfies definition 2.4. Put G(ξ) = X

2(ξ, 0) − X
2
1(ξ, 0). Then by condition

(2.12)

X
2(ξ, ρ)− X

2
1(ξ, ρ) = G(ξ)−G(ρ),

and, since X
2 ∈ C2ν

2 , G is a Hölder function of order bigger than 1. Hence, G = 0 and thus

X
2
1 = X

2.

If ν > 1 and X is a ν-rough path, then X is given by the pair of constants (X(0), 0). Indeed, in

this case X is Hölder function with exponent more than 1 i.e. X is equal to a constant function

X(0) and the only possible choice for the second component is X2 = 0.

If ν ∈ (1/2, 1] then X
2 is uniquely determined by X. Indeed, if we let

X
2,ij(ξ, η) =

η
∫

ξ

(Xi
ρ −Xi

η)dX
j
ρ , ξ, η ∈ T i, j = 1, 2, 3, (2.13)

where the integral is understood in the sense of Young (see [22]) it is possible to show that

X
2 ∈ C2ν

2 and that this definition satisfies conditions of Definition 2.4. Since ν > 1/2 it is the

only possible choice.



GLOBAL SOLUTIONS OF THE RANDOM VORTEX FILAMENT EQUATION 7

Definition 2.6. We say that our ν-rough path (X,X2) is a geometric ν-rough path if there exist

a sequence (Xn,X
2
n) such that Xn ∈ C(T,R3) is piecewise smooth, and

lim
n→∞

[

‖Xn −X‖ν + ‖X2
n − X

2‖2ν
]

= 0, (2.14)

where

X
2,ij
n (ξ, η) =

η
∫

ξ

(Xi
n(ρ)−Xi

n(η))dX
j
n(ρ), ξ, η ∈ T, i, j = 1, 2, 3.

Example 2.7. Let {Bt}t∈[0,1] be the standard 3-dimensional Brownian bridge such that B0 =

B1 = x0 and let B2,ij , i, j = 1, 2, 3, be the area processes defined by

B
2,ij(ξ, η) =

η
∫

ξ

(Bi
ρ −Bi

η)dB
j
ρ,

where the integral can be understood either in the Stratonovich or in the Itô sense. Then, the

couple (B,B2) is a ν-rough path for all ν ∈ (1/3, 1/2) (see [6, p.1849]). Moreover, if the

integral is understood in the Stratonovich sense, then (B,B2) is also a geometric ν-rough path.

Indeed, it follows from Theorem 3.1 in [9] that one can approximate X with piecewise linear

dyadic (Xn)n≥1 in the sense of Definition 2.6 where the limit is understood in the almost sure

sense.

From now on we suppose that the geometric ν-rough path X = (X,X2) with ν > 1/3 and

the corresponding Banach space DX are fixed. For a finite partition π = {ξ0 = ξ < ξ1 < · · · <
ξn = η} be of the interval [ξ, η], let d(π) = sup

i
|ξi+1 − ξi| denote the mesh size of the partition

π.

Lemma 2.8. If Y,Z ∈ DX then the limit

lim
d(π)→0

n−1
∑

i=0

[Y (ξi)(Z(ξi+1)− Z(ξi)) + Y ′(ξi)Z
′(ξi)X

2(ξi+1, ξi)] =:

∫ η

ξ
Y dZ (2.15)

exists and defined the integral on the r.h.s.

Proof. This statement is a direct consequence of the existence and properties of the sewing map

and of the definition of the controlled path space, see [12], Theorem 1. For the sake of the

presentation we sketch a proof. Let us denote

A(ξ′, η′) = Y (ξ′)(Z(η′)− Z(ξ′)) + Y ′(ξ′)Z ′(ξ′)X2(η′, ξ′), η′, ξ′ ∈ T.

Let us note that, with the assumptions of the Lemma, δA ∈ C3ν
3 . Hence, provided that 3ν > 1,

we can apply the sewing map and we have the decomposition A = δI + ΛδA where I ∈ C1.

But this implies that

lim
d(π)→0

n−1
∑

i=0

A(ξi, ξi+1) = lim
d(π)→0

n−1
∑

i=0

(I(ξi+1)− I(ξi)) + lim
d(π)→0

n−1
∑

i=0

(ΛδA(ξi, ξi+1)).
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The first term on the r.h.s. telescopes and since |ΛδA(ξi, ξi+1)| . |ξi+1 − ξi|
3ν the second term

on the r.h.s converges to zero proving the existence of the limit and moreover

lim
d(π)→0

n−1
∑

i=0

A(ξi, ξi+1) = I(η)− I(ξ).

�

The explicit representation in terms of the sewing map can be used to prove the various

estimates for the rough integral below.

Remark 2.9. In the case of ν > 1/2 the line integral defined in Lemma 2.8 is reduced to the

Young definition of the line integral
∫

Y dZ . Indeed, it is enough to notice that second term in

formula (2.15) is of the order O(|ξi+1 − ξi|
2ν), 2ν > 1. In this case the line integral does not

depend upon Y ′, Z ′.

Integrals of controlled paths have very nice continuity property with respect to variations of

the controlled path and also with respect variations of the rough path on which the controlled

path space is modelled.

In the following X = (X,X2) and X̃ = (X̃, X̃2) are two ν-rough paths and Y ∈ DX and

Ỹ ∈ DX̃ two path respectively controlled by X and X̃ . In this case we introduce the following

distance

D(Y, Ỹ ) = ‖X−X̃‖Cν+‖X2−X̃
2‖C2ν

2
+‖Y ′−Ỹ ′‖Cν+‖RY −RỸ ‖C2ν

2
+‖Y −Ỹ ‖Cν . (2.16)

Lemma 2.10. Assume Y,W ∈ DX , Ỹ , W̃ ∈ DX̃ . Define maps Q, Q̃ : T2 → R by the following

identities

Q(η, ξ) :=

∫ η

ξ
Y dW − Y (ξ)(W (η)−W (ξ))− Y ′(ξ)W ′(ξ)X2(η, ξ), η, ξ ∈ T, (2.17)

and a similar expression for Q̃ with Y, Y ′,W,W ′,X2 replaced by Ỹ , Ỹ ′, W̃ , W̃ ′, X̃2. Then

Q, Q̃ ∈ C3ν
2 and there exists a constant C = C(ν) > 0 such that for all Y,W ∈ DX

‖Q‖C3ν
2

≤ C(1 + ‖X‖Cν + ‖X2‖C2ν
2
)‖Y ‖DX

‖W‖DX
. (2.18)

Furthermore,

‖Q− Q̃‖C3ν
2

≤ C(1 + ‖X‖Cν + ‖X2‖C2ν
2
)

((‖Y ‖DX
+ ‖Ỹ ‖DX̃

)εW + (‖W‖DX
+ ‖W̃‖DX̃

)εY + εX). (2.19)

where

εY = ‖Y ′ − Ỹ ′‖Cν + ‖RY −RỸ ‖C2ν
2

+ ‖Y − Ỹ ‖Cν ,

εW = ‖W ′ − W̃ ′‖Cν + ‖RW −RW̃ ‖C2ν
2

+ ‖W − W̃‖Cν ,

εX = (‖Y ‖DX
+ ‖Ỹ ‖DX̃

)(‖W‖DX
+ ‖W̃‖DX̃

)(‖X − X̃‖Cν + ‖X2 − X̃
2‖C2ν

2
).

Proof. See [12], Theorem 1. For formula (2.19) see [12], p.104, formula (27). �
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By Lemmata 2.8 and 2.3 for any A ∈ C2(R3, L(R3,R3)), Y ∈ DX we can a define a map

V Y : R3 → R by the means of the rough path integral as follows

V Y (x) :=

∫ 1

0
A(x− Y (ξ))dY (ξ), x ∈ R

3. (2.20)

For maps F : R3 →W and n ≥ 0 we denote by ‖F‖Cn the usual norms

‖F‖Cn = sup
0≤|α|≤n

sup
x∈R3

|∇αF (x)|.

We have following bounds on the regularity of V Y .

Lemma 2.11. There exists C1 = C1(ν), C2 = C2(X) such that for any integer n ≥ 0 and all

Y ∈ DX , Ỹ ∈ DX̃ ,

‖∇nV Y ‖L∞ ≤ 4C1C
3
2‖∇

n+1A‖C1‖Y ‖2DX
(1 + ‖Y ‖DX

) (2.21)

and

‖∇nV Y − ∇nV Ỹ ‖L∞ ≤ C(ν)‖A‖Cn+3C4
X(1 + ‖Y ‖DX

+ ‖Ỹ ‖DX̃
)3D(Y, Ỹ ) (2.22)

where

CX = 1 + ‖X‖Cν + ‖X̃‖Cν + ‖X2‖C2ν
2

+ ‖X̃2‖C2ν
2
.

In the case of X = X̃, inequality (2.22) can be rewritten as

‖∇nV Y −∇nV Ỹ ‖L∞ ≤ 16C1C
3
2‖∇

n+1A‖C2‖Y ‖DX
(1 + ‖Y ‖DX

)2‖Y − Ỹ ‖∗DX
. (2.23)

Proof. By the results [6, Lemma 7] it is known that V Y ∈ Cn if A ∈ Cn+2 and alsto that

eqns. (2.21) and (2.23) hold. Now we will show (2.22). It is enough to consider the case of

n = 0. By eq. (2.18) we have

V Y (x)− V Ỹ (x) = A(x− Y (0))(Y (1) − Y (0))−A(x− Ỹ (0))(Ỹ (1)− Ỹ (0))

+(A(x− Y ))′(0)Y ′(0)X2(0, 1) − (A(x− Ỹ ))′(0)Ỹ ′(0)X̃2(0, 1)

+Qx(0, 1) − Q̃x(0, 1),

where Qx and Q̃x (given by the eq. (2.18)) satisfy inequality (2.19). Recall that Y (1) = Y (0)

and Ỹ (1) = Ỹ (0), hence we have

|V Y − V Ỹ |L∞ ≤ sup
x

|(A(x− Y ))′(0)Y ′(0)X2(0, 1) − (A(x− Ỹ ))′(0)Ỹ ′(0)X̃2(0, 1)|

+ sup
x

|Qx(0, 1) − Q̃x(0, 1)|.

(2.24)
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For the first term on the r.h.s. we have

|(A(x− Y ))′(0)Y ′(0)X2(0, 1) − (A(x− Ỹ ))′(0)Ỹ ′(0)X̃2(0, 1)|

≤ |(∇A(x− Y (0))Y ′(0)Y ′(0)−∇A(x− Ỹ (0))Ỹ ′(0)Ỹ ′(0))X2(0, 1)|

+ |∇A(x− Ỹ (0))Ỹ ′(0)Ỹ ′(0)(X2(0, 1) − X̃
2(0, 1))|

≤ ‖X2‖C2ν
2
|∇A(x− Y (0))Y ′(0)Y ′(0)−∇A(x− Ỹ (0))Ỹ ′(0)Ỹ ′(0)|

+ ‖A‖C2‖Y ′‖2L∞‖X2 − X̃
2‖C2ν

2

≤ ‖X2‖C2ν
2
‖Y ′‖2L∞‖A‖C2‖Y ′ − Ỹ ′‖L∞ + ‖X2‖C2ν

2
‖A‖C1(‖Y ′‖L∞ + ‖Ỹ ′‖L∞)‖Y ′ − Ỹ ′‖L∞

+ ‖A‖C2‖Y ′‖2L∞‖X2 − X̃
2‖C2ν

2
.

(2.25)

By (2.19) we can estimate second term as follows

|Qx − Q̃x|C3ν
2

≤ C
[

(‖A(x − Y )‖DX
+ ‖A(x− Ỹ )‖DX̃

)εY

+ (‖Y ‖DX
+ ‖Ỹ ‖DX̃

)εA + εX

]

,

where

εY = ‖Y − Ỹ ‖Cν + ‖Y ′ − Ỹ ′‖Cν + ‖RY −RỸ ‖C2ν
2
,

εA = ‖A(x− Y )−A(x− Ỹ )‖Cν + ‖A(x− Y )′ −A(x− Ỹ )′‖Cν

+ ‖RA(x−Y ) −RA(x−Ỹ )‖C2ν
2
,

εX = (‖A(x − Y )‖DX
+ ‖A(x− Ỹ )‖DX̃

)

× (‖Y ‖DX
+ ‖Ỹ ‖DX̃

)(|X − X̃ |Cν + |X2 − X̃
2|C2ν

2
).

By formula (2.8) we can estimate εA as follows

εA ≤ K‖A‖C3(1 + ‖X‖Cν + ‖X̃‖Cν )3(1 + ‖Y ‖DX
+ ‖Ỹ ‖DX̃

)2

× (‖X − X̃‖Cν + ‖Y − Ỹ ‖Cν + ‖Y ′ − Ỹ ′‖Cν + ‖RY −RỸ ‖C2ν
2
). (2.26)

By inequality (2.7) we infer that

‖A(x− Y )‖DX
≤ K‖A‖C2‖Y ‖DX

(1 + ‖Y ‖DX
)(1 + ‖X‖Cν )2, (2.27)

and similarly,

‖A(x− Ỹ )‖DX̃
≤ K‖A‖C2‖Ỹ ‖DX̃

(1 + ‖Ỹ ‖DX̃
)(1 + ‖X̃‖Cν )2. (2.28)

Therefore, combining inequalities (2.26) with (2.26), (2.27) and (2.28) we get

‖Qx − Q̃x‖C3ν
2

≤ C(ν)‖A‖Cn+3(1 + ‖X‖Cν + ‖X̃‖Cν )4(1 + ‖Y ‖DX
+ ‖Ỹ ‖DX̃

)3

(‖X − X̃‖Cν + ‖X2 − X̃
2‖C2ν

2
+ ‖Y ′ − Ỹ ′‖Cν + ‖RY −RỸ ‖C2ν

2
+ ‖Y − Ỹ ‖Cν ). (2.29)

Hence, the result follows from (2.25) and (2.29). �
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3. THE EVOLUTION PROBLEM FOR A ROUGH FILAMENT

Let DX,T = C([0, T ],DX ), where the space DX has been defined in Definition 2.2, be a

vector space with the usual supremum norm

‖F‖DX,T
= sup

t∈[0,T ]
‖F (t)‖∗DX

. (3.1)

Obviously DX,T is a Banach space. For an element γ ∈ DX,T , the time-dependent vector field

(t, x) 7→ uγ(t)(x) =

∫ 1

0
∇φ(x− γ(t, ξ))× dγ(t, ξ)

is well defined by the rough integral and it is meaningful to consider the Cauchy problem (1.1)

in DX,T . The following local existence and uniqueness result been proved in [6], see Theorem

3, p.1842.

Theorem 3.1. Assume φ ∈ C6(R3,R), ν ∈ (1/3, 1), X = (X,X2) is a ν-rough path, γ0 ∈ DX .

Then there exists a time T0 = T0(ν, ‖φ‖C5 ,X) > 0 such that the problem (1.1) has unique

solution in the space Dγ0,T0 ⊂ DX,T0 . Moveover if X, X̃ are two ν-rough paths, γ0 ∈ DX ,

γ̃0 ∈ DX̃ and γ, γ̃ two solutions of (1.1) respectively in DX,T0 and D
X̃,T̃0

then there exists a

constant C = C(X, X̃, φ, ν, ‖γ0‖
∗
DX
, ‖γ̃0‖

∗
DX̃

) such that

sup
0≤t≤min(T0,T̃0)

D(γ(t), γ̃(t)) ≤ CD(γ(0), γ̃(0)).

This result can be easily proven by applying the Banach Fixed Point Theorem in the space

DX,T with a sufficiently small T . The requirements on φ can be easily understood as follows.

In order for uγ to be well defined the function ∇φ has to be twice differentiable. Moreover in

order to apply the fixed point theorem the function (t, ξ) 7→ uγ(t)(γ(t, ξ)) has to belong to DX,T

and this can enforced by requiring that the map x 7→ uγ(t)(x) has to be C2 in space, uniformly

in time. This requires ∇φ to be at least 4 times differentiable. Furthermore we need a strict

contraction of the fixed-point map which holds at the price of an additional derivative of ∇φ
ending up with the requirement that φ has to be six times differentiable. It is not obvious how to

improve on this requirement for a general rough initial data and ν ∈ (1/3, 1/2).
The arguments used in Theorem 3.1 does not allow to have a global solution. The aim of the

present paper is to enforce further structure condition on the kernel φ in order to be able to use

the energy method introduced in [5].

To prove the global existence result for the problem (1.1) we need the following additional

hypothesis

Hypothesis 3.2. Assume that the function φ appearing in eq. (1.2) has a Fourier transform

φ̂ : R3 → R which is real, even and non-negative and satisfying the integrability condition
∫

R3

(1 + |k|2)2φ̂(k)dk <∞.

Example 3.3. The function φµ, µ > 0 defined by

φµ(·) =
1

(| · |2 + µ2)
1
2
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is smooth and satisfies Hypothesis 3.2, see p.6 of [5]. This function is also of C∞-class so it

satisfy also the assumptions of Theorem 3.1 and as a result is an explicit example which satisfy

all the assumptions needed for the following global existence result.

Theorem 3.4. Assume that γ0 is a geometric ν-rough path, φ ∈ C6(R3,R) satisfies Hypothesis

3.2 and ν ∈ (1/3, 1). Then for every T > 0, the problem (1.1) has unique solution in Dγ0,T .

We will need the following definition.

Definition 3.5. Let φ ∈ C4(R3,R), γ ∈ DX . Let

ψγ(x) =

∫ 1

0
φ(x− γ(η))dγ(η).

and

Hφ
X(γ) =

1

2

∫ 1

0
ψγ(γ(ξ)) · dγ(ξ) =

1

2

∫ 1

0

∫ 1

0
φ(γ(ξ) − γ(η))(dγ(ξ) · dγ(η)). (3.2)

The quantity Hφ
X(γ) is called the energy of path γ. We will omit φ below.

Remark 3.6. Definition (3.2) is well posed. Indeed, by Lemma 2.11 ψγ ∈ C2(R3,R3) and,

therefore, it follows by Lemma 2.3 that ψγ ◦γ ∈ DX . Moreover, if ν > 1/2 and γ ∈ C1(T,R3),
then by Remark 2.9 the line integrals in the definition of the energy are understood in the sense

of Young.

Lemma 3.7. Assume that φ ∈ C4(R3,R). Then there exists a constant C = C(ν,X) such that

for all γ ∈ DX

|HX(γ)| ≤ C‖φ‖C4‖γ‖4DX
(1 + ‖γ‖DX

)2. (3.3)

Furthermore, for any R > 0 there exists C = C(R) such that for any γ ∈ DX , γ̃ ∈ DX̃
satisfying

‖γ‖DX
≤ R, ‖γ̃‖DX̃

≤ R,

CX,X̃ = ‖X‖Cν + ‖X̃‖Cν + ‖X2‖C2ν
2

+ ‖X̃2‖C2ν
2
< R

we have

|HX(γ)−HX̃(γ̃)| ≤ C(R)D(γ, γ̃). (3.4)

In particular the map HX : DX → R is Lipshitz on balls, i.e. for any R > 0 there exists

C = C(R) such that for any γ, γ̃ ∈ DX: ‖γ‖DX
≤ R, ‖γ̃‖DX

≤ R we have

|HX(γ)−HX(γ̃)| ≤ C(R)‖γ − γ̃‖∗DX
. (3.5)

Proof. First we will show inequality (3.3). By representation (2.17) we have

HX(γ) =
1

2
(ψγ(γ(0))(γ(1) − γ(0))) +

[

∇ψγ(γ(0))γ′(0)
]

γ′(0)X2(1, 0) +Q(0, 1)

= I + II + III. (3.6)

Since γ(1) = γ(0) we infer that I = 0. Concerning the second term by Lemma 2.11 we have

the following estimate

|II| ≤ ‖X2‖C2ν
2
‖∇ψγ‖L∞‖γ′‖2L∞ ≤ C(ν,X)‖φ‖C3‖γ‖4DX

(1 + ‖γ‖DX
). (3.7)

For third term, from inequality (2.18) we infer that

|III| ≤ ‖Q‖C3ν
2

≤ C(ν,X)‖ψγ(γ)‖DX
‖γ‖DX

. (3.8)



GLOBAL SOLUTIONS OF THE RANDOM VORTEX FILAMENT EQUATION 13

Then by Lemmata 2.3 and 2.11 we have

‖ψγ(γ)‖DX
≤ C(ν,X)‖ψγ‖C2‖γ‖DX

(1 + ‖γ‖DX
)

≤ C(ν,X)‖φ‖C4‖γ‖3DX
(1 + ‖γ‖DX

)2. (3.9)

Combining inequalities (3.7), (3.8) and (3.9) we get inequality (3.3). To prove inequality (3.4)

we start by formula (2.18) to get

HX(γ)−HX̃(γ̃) =
1

2

[

(∇ψγ(γ(0))γ′(0)γ′(0)−∇ψγ̃(γ̃(0))γ̃′(0)γ̃′(0))X2(1, 0)

+∇ψγ̃(γ̃(0))γ̃′(0)γ̃′(0)(X2(1, 0) − X̃
2(1, 0)) +Q(0, 1) − Q̃(0, 1)

]

=:I+II+III (3.10)

The first term in (3.10) can be represented as follows

I = (∇ψγ(γ(0))γ′(0)γ′(0) −∇ψγ̃(γ̃(0))γ̃′(0)γ̃′(0))X2(1, 0)

=
[

(∇ψγ(γ(0)) −∇ψγ̃(γ̃(0)))γ′(0)γ′(0)

+ ∇ψγ̃(γ̃(0))(γ′(0)− γ̃(0))γ′(0)

+ ∇ψγ̃(γ̃(0))γ̃(0)(γ′(0)− γ̃(0))
]

X
2(1, 0) = A+B + C, (3.11)

and the first term in (3.11) can be estimated as follows

|A| = |(∇ψγ(γ(0)) −∇ψγ̃(γ̃(0)))γ′(0)γ′(0)X2(1, 0)| (3.12)

≤ ‖X2‖C2ν
2
‖γ‖2DX

(|∇ψγ(γ(0))

− ∇ψγ(γ̃(0))| + |∇ψγ(γ̃(0))−∇ψγ̃(γ̃(0))|)

≤ ‖X2‖C2ν
2
‖γ‖2DX

(‖ψγ‖C2 |γ(0) − γ̃(0)|

+ C4
X‖φ‖C4(1 + ‖γ‖DX

+ ‖γ̃‖DX̃
)3D(γ, γ̃)

≤ KC4
X‖φ‖C4(1 + ‖γ‖DX

+ ‖γ̃‖DX̃
)3D(γ, γ̃).

Here the second inequality follows from inequality (2.22) and the third one from inequality

(2.21). For second term in (3.11) we have by inequality (2.21)

|B| ≤ C‖X2‖C2ν
2
‖γ‖DX

‖φ‖C3‖γ̃‖2DX
(1 + ‖γ̃‖DX

)D(γ, γ̃)

≤ CCX(1 + ‖γ‖DX
+ ‖γ̃‖DX̃

)3D(γ, γ̃). (3.13)

Similarly, we have for third term

|C| ≤ C(ν,X, ‖γ‖DX
, ‖γ̃‖DX

)D(γ, γ̃). (3.14)

Going back to the term II in (3.10) we observe that it can be estimated as follows

|II| ≤ ‖∇ψγ̃‖L∞‖γ̃‖2DX
D(γ, γ̃) ≤ C3

X‖φ‖C3(1 + ‖γ‖DX
+ ‖γ̃‖DX̃

)3D(γ, γ̃).
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Thus it remains to estimate third term of equality (3.10). By inequality (2.19) we have

|Q(0, 1) − Q̃(0, 1)| ≤ ‖Q− Q̃‖C3ν
2

≤ CX

[

(‖ψγ̃(γ̃)‖DX̃
+ ‖ψγ(γ)‖DX

)D(γ, γ̃)

+ (‖γ̃‖DX̃
+ ‖γ̃‖DX̃

)D(ψγ̃(γ̃), ψγ(γ))

+ (‖ψγ̃(γ̃)‖DX̃
+ ‖ψγ(γ)‖DX

)(‖γ̃‖DX̃
+ ‖γ̃‖DX̃

)

× (‖X − X̃‖Cν + ‖X2 − X̃
2‖C2ν

2
)
]

By inequality (2.21), the term ‖ψγ̃(γ̃)‖DX
is bounded by the constant C = C(ν,X, ‖γ̃‖DX

).
Therefore, to prove estimate (3.5) it is enough to show that there exists a constant C =
C(ν,X, R) such that for γ, γ̃ ∈ DX with ‖γ‖DX

, ‖γ̃‖DX
≤ R

D(ψγ̃(γ̃), ψγ(γ)) ≤ CD(γ, γ̃). (3.15)

By the triangle inequality we have

D(ψγ̃(γ̃), ψγ(γ)) ≤ D(ψγ̃(γ̃), ψγ̃(γ)) +D(ψγ̃(γ), ψγ(γ))

= I + II. (3.16)

The first term can be estimated by using inequality (2.8) as follows

|I| ≤ KC3
X‖ψγ̃‖C3(1 + ‖γ̃‖DX̃

+ ‖γ‖DX
)2D(γ, γ̃). (3.17)

By inequality (2.21) we have

‖ψγ̃‖C3 ≤ C‖φ‖C5‖γ̃‖2DX
(1 + ‖γ̃‖DX

) (3.18)

Combining inequalities (3.17) and (3.18) we obtain the necessary estimate for I . It remains to

find an estimate for the term II . By inequalities (2.7) and (2.23) we have

II = D(ψγ̃(γ), ψγ(γ)) ≤ (1 + ‖X‖ν)‖ψ
γ̃(γ)− ψγ(γ)‖DX

≤ K‖∇ψγ̃ −∇ψγ‖C1‖γ‖DX
(1 + ‖γ‖DX

)(1 + ‖X‖ν)
3

≤ K‖φ‖C5C7
X(1 + ‖γ‖DX

+ ‖γ̃‖DX̃
)5D(γ, γ̃). (3.19)

Hence the inequality (3.4) follows. Finally the bound (3.5) is a consequence of eq. (3.4). �

Let us recall the definition (1.2) of the vector field uγ generated by a controlled path γ:

uγ(x) =

∫ 1

0
∇φ(x− γ(ξ)) × dγ(ξ), γ ∈ DX . (3.20)

Now we will show that if the energy functional of γ is bounded then the associated velocity field

is a smooth function. We have

Lemma 3.8. Assume that φ ∈ C4(R3,R) and Hypothesis 2.6 holds. Then the energy function

HX : DX → R is continuous. Furthermore if γ is a geometric rough path then

HX(γ) =
1

(2π)3

∫

R3

φ̂(k)
∣

∣

∣

∫ 1

0
ei(k,γ(ξ))dγ(ξ)

∣

∣

∣

2
dk ≥ 0. (3.21)
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Moreover, if in addition the integral
∫

R3 |k|
2(1+n)φ̂(k)dk is finite and φ ∈ Cn+4(R3,R3), then

for any n ∈ N0, we have following bound

‖∇nuγ‖2L∞ ≤
1

(2π)3

[
∫

R3

|k|2(1+n)φ̂(k)dk

]

HX(γ), γ ∈ DX . (3.22)

provided that

Proof. For a smooth curve γ Lemma 3.8 has been proved in [5, Lemma 3]. In the general case,

when γ ∈ DX , it is enough to notice that both sides of eq. (3.21) and of inequality (3.22) are

locally Lipshitz and therefore, continuous w.r.t. distance D(Y, Ỹ ), Y ∈ DX , Ỹ ∈ DX̃ defiend in

(2.16). Indeed the continuity of HX and continuity of ‖∇nuγ‖L∞ readily follows from Lemma

2.11. �

Now we are going to show that energy is a local integral of motion for problem (1.1).

Lemma 3.9. Let γ0 a geometric ν-rough path and γ ∈ Dγ0,T0 be a local solution of prob-

lem (1.1) (such a solution exists by Theorem 3.1). Then

dHγ0(γ(s))

ds
= 0, s ∈ [0, T0).

Proof. Since γ(0) = γ0 ∈ Dγ0 is a geometric rough path (we will denote its area component

by Γ0) there exist sequence {γn0 }
∞
n=1 of piecewise smooth closed curves in R

3 such that if we

denote by (γn0 ,Γ
n
0 ) their canonical lift to the space of ν-rough paths we have

‖γn0 − γ0‖Cν + ‖Γn
0 − Γ0‖C2ν

2
→ 0, n→ ∞.

Now observe that γn0 ∈ Dγn
0

, γ0 ∈ Dγ0 since we can take (γn0 )
′ = (γ0)

′ = 1 and Rγn
0 = Rγ0 =

0. Hence we deduce that

D(γn0 , γ0) → 0, n→ ∞.

Denote by γn ∈ C([0,∞),H1(T,R3)) the global solution of problem (1.1) with initial condi-

tion γn0 . Existence of such solution has been proved in Theorem 2 of [5]. Moreover note that

for smooth functions γn controlled by the rough path (γn0 ,Γ
n
0 ) the integral defined via rough

paths coincide with the standard Lebesgue integral and the solution of the Cauchy problem in

C([0,∞),H1(T,R3)) with the rough solution whose local existence is stated in Theorem 3.1.

The locally Lipshitz dependence of the rough solution on the initial data stated in Theorem 3.1

implies that

lim
n→∞

sup
t∈[0,T0]

D(γn(t), γ(t)) . lim
n→∞

D(γn(0), γ(0)) = 0

for a stricly positive T0 which depends only on the rough path norm of γ0. Therefore, by the

continuity of the energy functional Hγ0 we have

Hγ0(γ(s)) = lim
n→∞

Hγn
0
(γn(s)), s ∈ [0, T0]. (3.23)

Furthermore, by Lemma 2 of [5], we have

Hγn
0
(γn(s)) = Hγn

0
(γn0 ), s ∈ [0, T0]. (3.24)

As a result, combining inequalities (3.23) and (3.24) we get the statement of the Lemma. �

Now we are ready to prove Theorem 3.4.
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Proof of Theorem 3.4. According to Theorem 3.1 there exists a unique local solution of prob-

lem (1.1). Then, we can find T ∗ > 0 and a unique maximal local solution γ : [0, T ∗) → Dγ0

which then satisfies

lim
tրT ∗

‖γ(t)‖Dγ0
= ∞. (3.25)

We need to show that T ∗ = ∞. Therefore, it is enough to prove

sup
t∈[0,T ∗)

‖γ(t)‖Dγ0
<∞.

Indeed, by contradiction with (3.25), the result will follow. In the rest of the proof we show such

estimate. Notice that we will have

Hγ0(γ(s)) = Hγ0(γ0), s ∈ [0, T ∗), (3.26)

and recall that

γ(t) = γ0 +

∫ t

0
uγ(s)(γ(s))ds. (3.27)

Firstly we have

‖γ(t)‖L∞ ≤ ‖γ0‖L∞ +

∫ t

0
‖uγ(s)‖L∞ds ≤ ‖γ0‖L∞ + C

∫ t

0
H1/2

γ0 (γ(s))ds

≤ ‖γ0‖L∞ + CH1/2
γ0 (γ0)t, t ∈ [0, T ∗). (3.28)

It follows from (3.27) that

γ′(t) = γ′0 +

∫ t

0
∇uγ(s)(γ(s))γ′(s)ds, t ∈ [0, T ∗). (3.29)

Therefore, by Lemmata 3.9 and 3.8 we have

‖γ′(t)‖L∞ ≤ ‖γ′0‖L∞ +

∫ t

0
‖∇uγ(s)‖L∞‖γ′(s)‖L∞ds ≤ ‖γ′0‖L∞ +

∫ t

0
CH1/2

γ0 (γ(s))‖γ′(s)‖L∞ds

= ‖γ′0‖L∞ +

∫ t

0
CH1/2

γ0 (γ0)‖γ
′(s)‖L∞ds, t ∈ [0, T ∗). (3.30)

Then by the Gronwall Lemma we infer our second estimate

‖γ′(t)‖L∞ ≤ ‖γ′0‖L∞eCH
1/2
γ0

(γ0)t, t ∈ [0, T ∗). (3.31)

We will need one more auxiliary estimate. We have

‖γ(t)‖Cν ≤ ‖γ0‖Cν +

∫ t

0
‖uγ(s)(γ(s))‖Cν‖ds ≤ ‖γ0‖Cν +

∫ t

0
‖∇uγ(s)‖L∞‖γ(s)‖Cνds

≤ ‖γ0‖Cν +

∫ t

0
CH1/2

γ0 (γ(s))‖γ(s)‖Cν ds

= ‖γ0‖Cν +

∫ t

0
CH1/2

γ0 (γ0)‖γ(s)‖Cνds, t ∈ [0, T ∗). (3.32)

Thus, by the Gronwall Lemma we get

‖γ(t)‖Cν ≤ ‖γ0‖CνeCH
1/2
γ0

(γ0)t, t ∈ [0, T ∗). (3.33)
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Now we can estimate Cν norm of γ′. We have

‖γ′(t)‖Cν ≤ ‖γ′0‖Cν +

∫ t

0
‖∇uγ(s)(γ(s))γ′(s)‖Cνds

≤ ‖γ′0‖Cν +

∫ t

0
(‖∇uγ(s)‖L∞‖γ′(s)‖Cν + ‖γ′(s)‖L∞‖∇uγ(s)(γ(s))‖Cν )ds

≤ ‖γ′0‖Cν +

∫ t

0
(‖∇uγ(s)‖L∞‖γ′(s)‖Cν + ‖γ′(s)‖L∞‖∇2uγ(s)‖L∞‖γ(s)‖Cν )ds

≤ ‖γ′0‖Cν

+

∫ t

0
(CH1/2

γ0 (γ0)(‖γ
′(s)‖Cν + ‖γ′0‖L∞‖γ0‖Cν eCH

1/2
γ0

(γ0)s))ds, t ∈ [0, T ∗),

(3.34)

where last inequality follows from Lemmata 3.9 and 3.8. Then by the Gronwall Lemma we get

the third estimate

‖γ′(t)‖Cν ≤ (‖γ′0‖Cν + ‖γ′0‖L∞‖γ0‖Cν )eCH
1/2
γ0

(γ0)t, t ∈ [0, T ∗). (3.35)

It remains to find an estimate for ‖Rγ(t)‖2ν . We have

Rγ(t) = Rγ0 +

∫ t

0
Ruγ(s)(γ(s))ds, t ∈ [0, T ∗). (3.36)

By identity (2.6) we have for s ∈ [0, T ∗)

Ruγ(s)(γ(s))(ξ, η) = ∇uγ(s)(γ(s, ξ))Rγ(s)(ξ, η) +
∑

k

(γk(s, η)− γk(s, ξ))×

∫ 1

0

[

∂uγ(s)

∂xk
(γ(s, ξ) + r(γ(s, η)− γ(s, ξ))) −

∂uγ(s)

∂xk
(γ(s, ξ))

]

dr. (3.37)

Therefore,

‖Ruγ(s)(γ(s))‖C2ν
2

≤ ‖∇uγ(s)‖L∞‖Rγ(s)‖C2ν
2

+
1

2
‖γ(s)‖2Cν‖∇2uγ(s)‖L∞ , s ∈ [0, T ∗).

(3.38)

Thus, by inequalities (3.38) and (3.33) we have for t ∈ [0, T ∗)

‖Rγ(t)‖C2ν
2

≤ ‖Rγ0‖C2ν
2

+

∫ t

0
(‖∇uγ(s)‖L∞‖Rγ(s)‖C2ν

2
+

1

2
‖γ(s)‖2Cν‖∇2uγ(s)‖L∞)ds

≤ ‖Rγ0‖C2ν
2

+

∫ t

0
(‖∇uγ(s)‖L∞‖Rγ(s)‖C2ν

2
+ ‖γ0‖CνeCH

1
2
γ0

(γ0)t‖∇2uγ(s)‖L∞)ds

≤ ‖Rγ0‖C2ν
2

+ C(‖γ0‖Cν ,H1/2
γ0 (γ0))e

CH
1/2
γ0

(γ0)t

+

∫ t

0
CH1/2

γ0 (γ0)‖R
γ(s)‖C2ν

2
ds, (3.39)
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where in the last inequality we used Lemmata 3.9 and 3.8. Hence, by the Gronwall Lemma we

get

‖Rγ(t)‖C2ν
2

≤ (‖Rγ0‖C2ν
2

+ C(‖γ0‖Cν ,H1/2
γ0 (γ0))e

CH
1/2
γ0

(γ0)t))eCH
1/2
γ0

(γ0)t, t ∈ [0, T ∗),

(3.40)

and combining estimates (3.28), (3.31), (3.35), and (3.40) we prove following a-priori estimate

‖γ(t)‖Dγ0
≤ K(1 +H1/2

γ0 (γ0))(1 + ‖γ0‖Dγ0
)‖γ0‖Dγ0

eCH
1/2
γ0

(γ0)t, t ∈ [0, T ∗), (3.41)

and the result follows. �
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UMR 7534, UNIVERSITÉ PARIS-DAUPHINE, FRANCE


	1. The filament equation
	2. Definition and Properties of Rough Path integrals
	3. The Evolution Problem for a Rough Filament
	References

