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Abstract—The amplitude–frequency effect is a well-known 

phenomenon in quartz crystal resonators. It can distort the 

results of short-term stability measurements. In our case, re-

sults are computed from phase noise measurements in passive 

bridge systems. This article presents a method to correct com-

putation of short-term stability from passive measurements.

Since 1975, researchers have tried to discriminate the 
resonator’s noise in crystal oscillators by means of passive 
systems [1]–[4]. The technique of carrier suppression to 
characterize the inherent phase stability about the ultra-
stable resonators was demonstrated at the beginning of 
the 21st century [5], [6]. Recently, a more advanced ver-
sion of this instrument has been implemented [7]–[9]. The 
principle of this passive method, presented in Fig. 1, is to 
reduce the noise of the source as much as possible.

An oscillator is always noisier than the resonator alone 
because the random noises of the resonator and of the 
sustaining electronics are added in the output signal. 
Obviously, the noise of the best oscillator used as the 
source is always higher than the noise of the best resona-
tor alone. Thus, the direct feeding of the driving source 
signal through only one resonator does not permit the 
extraction of information about the resonator noise from 
the total output noise. To perform the resonator noise 
measurement, the source signal can be subtracted when 
passing through two identical arms with two resonators 
considered to be quasi-identical. Then, the contribution of 
the source is reduced while the characteristic noise of both 
resonators is preserved. This is due to the noncorrelation 
of the intrinsic noise of each resonator. When the carrier 
suppression is achieved, the resulting signal is free of the 
source noise. Hence, the sum of both resonators noises 
is measured. First, this signal is then strongly amplified. 
Next, the signal is mixed with the source signal to be 
transposed to the low-frequency domain. Finally, it is pro-
cessed by a fast Fourier spectrum analyzer (FFT). With 
this method, the measured noise for the two resonators is 

above the noise level of the driving source. Calibration of 
the measurement system is obtained by injecting a known 
sideband on one of the arms of the bridge. The result of 
the measurement bench is corrected using the calibration 
factor determined from this sideband.

Usually, the flicker floor of the short-term stability of a 
resonator is given by the Allan standard deviation σy(τ) 
[5], [6], [10], which corresponds to an oscillator contain-
ing a tested resonator in which the only source of flicker 
frequency noise is the resonator inside the oscillator. In 
the case of flicker frequency noise (which is the resona-
tor’s noise), the relationship between the floor of the Al-
lan standard deviation, σy_floor, and the power spectral 
density (PSD) of relative frequency fluctuations Sy( f ), is 
given by [10]

σy yS_floor 1 Hz= ⋅ ⋅2 2(ln ) ( ), (1)

where ln is the natural logarithm function. Sy( f ) is given 
by the measurement of the PSD of the phase fluctuations, 
Sϕ(1 Hz), and the half bandwidth, also called the cut-off 
frequency FL [5]:
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where fres is the resonant frequency of the resonator and 
QL is the loaded quality factor of the resonator.

The standard measure for characterizing frequency and 
phase instabilities in the frequency domain is L( ).f  It is 
defined as one half of Sϕ( f ) [10]. The measured L( )f  of 
both 5-MHz resonators is shown in Fig. 2. Different drive 
level powers dissipated by the resonators are shown. The 
measured resonators are SC-cut quartz crystals. Drive 
power level PXtal of the resonators varies from 20 to 
200 µW. The resonator is considered as a low-pass filter. 
The cut-off frequency can be determined by the L( )f  curve 
at the intersection of the f −1 and f −3 asymptotes. A vari-
ation of FL is shown in Fig. 2 for both these extreme cases.

The L( )f  measurements are linked to Table I, in which 
the σy_floor was obtained with the method previously de-
scribed. The total noise measured is related to the two 
resonators. If the two resonators are considered to be iden-
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Fig. 1. Principle of the passive measurement bench.
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tical, then half of this noise is attributed to one resonator. 
In that case, it is equivalent to get Sϕ(1 Hz) equal to the 
L( )1 Hz  measured.

The short-term stability of the resonator seems to be 
better at 200 µW than at 20 µW. Unfortunately, a simple 
calculation from the loaded Q shows that the result of σy_

floor is not realistic. Typically, a 5-MHz ultra-stable reso-
nator exhibits an unloaded quality factor, QX, of about 2.5 
· 106. By means of (2), the loaded quality factor goes from
1.8 · 106 to 3.1 · 106; however, it is not possible to obtain 
a loaded quality factor higher than the unloaded quality 
factor. Moreover, identical results are obtained when FL 
is measured by injecting a white noise instead of the cali-
bration source. In this case, we can directly observe the 
transfer function of the resonator inside the bench [5].

To analyze the phenomenon, the transfer function of 
the resonator must be observed near the carrier frequency 
with a network analyzer. Resonators have been measured 
in their impedance matching (PI) network by means of a 
4195A network analyzer (Agilent Technologies Inc., Santa 
Clara, CA). Fig. 3 shows the phase of the transfer function 
of the resonator inserted in the PI network for different 
values of power dissipations. It is given for three resona-
tor’s power dissipations. The amplitude–frequency effect 
of the quartz crystal is clearly shown. The low-pass filter 
behavior of the resonator can be characterized by the cut-
off frequency defined by the ±45° bandwidth:

∆F F F F= − =− + 2 L. (3)

F− and F+ are the frequencies which correspond to a 
phase equal to ±45°.

In this kind of test setup, the measured noise or the 
transfer function of the resonator are obtained at the 
Fourier sideband frequencies. Thus, the noise spectrum 
is folded up around the carrier frequency. The spectrum 
folding implies that the asymmetry of the positive half 
bandwidth F+ induced a reduction of FL measured in the 
curves of resonator’s noise in a high-power situation. In 
this case, FL does not represent the actual value of the 
loaded quality factor. Thus, the great improvement of the 
short-term stability is not apparent. The classical calcu-
lus of the short-term stability must be done taking into 
account the resonator’s drive level power and its ampli-
tude–frequency effect. The previous method of computing 
the short-term stability using the filter behavior remains 
available for low-power drive levels. Therefore, Fig. 3 
shows that the phase of the transfer function is not really 
affected by the drive power near the null phase. These 
curves are used in the conversion of the resonator’s flicker 
frequency noise into the measured phase noise. FL can be 
defined by inverting the slope of the relationship between 
Sy( f ) and Sϕ( f ) according to
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where fres is the resonant frequency of the resonator and 
dϕ/df is the derivative of the phase according to the fre-
quency near zero phase.

We chose to compute the slope between ±1° (Fig. 3). 
The measurement of this slope should be done in the same 
framework as in the noise measurement. With this new 
method, the incorrect computation of the short-term sta-

Fig. 2. The L( )f  of 5-MHz SC-cut resonators according to the dissipated 
power in the crystal. For Pxtal = 20 µW, the cut-off frequency FL is 
1.4 Hz. For Pxtal = 200 µW, FL is 0.8 Hz.

TABLE I. σ  A   R’ D P, PX. 

PXtal (µW) L( )1 Hz  (dBc/Hz) FL (Hz) σy floor QL (106)

20 −121.5 1.4 3.4 · 10−13 1.8
200 −130 0.8 9.5 · 10−14 3.1

The resonators are 5-MHz SC-cut quartz crystals and are considered to be identical.

Fig. 3. Phase of 5-MHz SC-cut resonator, transfer functions obtained 
near its resonant frequency and according to PXtal.
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bility and the loaded Q-factor is not possible. Table II 
shows a comparison of both methods. The noise source 
results are compared with the bandwidth methods of the 
first-order filter and with the slope method. Better results 
are obtained with the slope method. Moreover, the meth-
od can be easily applied inside the measurement bench 
when an OCXO is used as a source. FL can be obtained 
by small variations of the source frequency near the null 
phase instead of long measurements with a network ana-
lyzer.

Table III presents the resonator noise according to the 
dissipated power. In this kind of measurement, the error 
in the determination of L( )f  is usually ±2 dB because of 
the FFT analyzer precision. Error in the determination of 
FL can be reduced to 0.1 Hz with the proposed method. 
Even with the correcting computation, the noise of the 
resonator seems to be power dependent. Indeed, about 
half the difference in the calculated σy(τ) values is from 
the difference in L( ).f  In our case, the decrease of L( )f  is 
not due to a permanent change, as can be observed in [11] 
after a burn-in process. Variation of the acoustic resonator 
noise according to the dissipated power has been already 
observed in BAW resonators (see [5], [12]) and more re-
cently in film bulk acoustic resonators (FBARs) [13].

A passive measurement system of a resonator’s phase 
noise has been presented. Measurements have been cor-
related to the amplitude–frequency effect, a well-known 
phenomenon in quartz crystal resonators. These investi-
gations have led to consideration of an alternative way 
of determining the loaded Q-factor for the resonator to 
obtain more reliable short-term stability of quartz crystal 

resonators. After correction of the measurements, we find 
that the short-term stability of the observed resonators 
evolves according to the dissipated power. A dependence 
of the noise on the dissipated power is now clearly shown.
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TABLE II. C   S-T S C 
  W C W PX = 200 µW. 

L( )1 Hz  (dBc/Hz) 
−130

Slope 
(±1°)

Bandwidth 
(±45°) Noise curve

FL (Hz) 1.55 1.5 0.8
σy floor 1.37 · 10−13 1.34 · 10−13 9.5 · 10−14

QL (106) 1.61 1.67 3.12
QL/QX 63% 66% 125%

Resonators are considered to be identical.

TABLE III. S-T S A   P 
D   R. 

PXtal 
(µW) L( )1 Hz  (dBc/Hz) σy floor

20 −121.5 ± 2 3.65 · 10−13 ± 1.2 · 10−13

60 −126.7 ± 2 2.01 · 10−13 ± 0.6 · 10−13

100 −128.5 ± 2 1.63 · 10−13 ± 0.5 · 10−13

200 −130 ± 2 1.37 · 10−13 ± 0.4 · 10−13

Resonators are considered to be identical. With slope method, FL = 
1.55 ± 0.1 Hz. Errors in the measured L( )1 Hz  are ±2 dB.
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