N

N

Linear Temporal Logic and Propositional Schemata,
Back and Forth

Vincent Aravantinos, Ricardo Caferra, Nicolas Peltier

» To cite this version:

Vincent Aravantinos, Ricardo Caferra, Nicolas Peltier. Linear Temporal Logic and Propositional
Schemata, Back and Forth. TIME 2011 - International Symposium on Temporal Representation and
Reasoning, Sep 2011, Lubeck, Germany. pp.80-87, 10.1109/TIME.2011.11 . hal-00931690

HAL Id: hal-00931690
https://hal.science/hal-00931690

Submitted on 15 Jan 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00931690
https://hal.archives-ouvertes.fr

Linear Temporal Logic and Propositional Schemata, Back and Forth*

Vincent Aravantinos, Ricardo Caferra, Nicolas Peltier
Laboratory of Informatics of Grenoble (CNRS, Grenoble INP)
Batiment IMAG C - 220 rue de la Chimie 38400 Saint Martin d’Heres
{vincent.aravantinos,ricardo.caferra,nicolas.peltier } @imag.fr

Abstract

This paper relates the well-known Linear Temporal
Logic [22)] with the logic of propositional schemata intro-
duced in [1l]. We prove that LTL is equivalent to a class of
schemata in the sense that polynomial-time reductions ex-
ist from one logic to the other. Some consequences about
complexity are given. We report about first experiments and
the consequences about possible improvements in existing
implementations are analyzed.

1. Introduction

Linear Temporal Logic (LTL) is a very well-known logic
introduced in [22] for verifying computer programs. It is
widely used to reason on finite state transition systems. On
the other hand, propositional schemata have been intro-
duced in [1]. They extend the language of propositional
logic with indexed propositions (such as pp, p1 or pi11) and
iterated connectives of the form \/T_; ¢ or A\ ¢. Note
that n denotes a parameter, interpreted as a natural num-
ber. If arbitrary expressions for indices and iterations are al-
lowed in the schema, then the satisfiability problem is unde-
cidable, but we have identified in [1} 2, 4] some subclasses
for which this problem is decidable. The simplest of these
classes is called regular: it is defined by restricting both the
indices of the propositions, that must be of the form & or
n + k£ where k € Z and n is a variable, and iterations, that
must be non-nested and of the form /\Ir:,i ¢ where n is a
variable and k,[€ Z. Decision procedures are designed in
[L} 2] and an implementation is available [3]].

LTL and propositional schemata share many common
features and trying to compare them precisely is a rather
natural and, hopefully, fruitful idea. In both logics, inter-
pretations can be viewed as arrays of propositional func-
tions and the formulae relate the values of these functions
at different states. The indices of the propositions in the

*This work has been partly funded by the project ASAP of the French
Agence Nationale de la Recherche (ANR-09-BLAN-04-07-01)

schematic case may be viewed as the fime in LTL. Thus
comparing the expressing powers and complexities of those
two logics, and, if possible, defining translations from one
logic to the other is a natural and potentially rewarding is-
sue. Notice that there already exist several results relating
LTL to other formalisms like monadic second order logic
via Biichi automata [29]], monadic first order logic over nat-
ural numbers [[16]] or star-free regular languages [27]. How-
ever, there is a fundamental difference between these lan-
guages and the logic of schemata: they deal with infinite ob-
jects (infinite interpretations in the case of LTL or first order
logic over natural numbers, infinite words in the case of star-
free regular languages), whereas schemata deal with intrin-
sically finite (but unbounded) interpretations. This subtle
but important difference introduces difficulties in the defini-
tion of such translations. This topic bears some similarities
with the approach of [10] where problems on Biicchi au-
tomata are reduced to problems on finite automata by using
the ultimately periodic property of w-regular languages.

Note that finite interpretation is sometimes a desired fea-
ture: restricting LTL to finite traces has been considered in
[14], and has applications in, e.g., planning or runtime ver-
ification [} 16} 18]]. It can be argued that the use of LTL in
such contexts is a bit overkilling. Indeed, often, rather than
considering finite traces per se, the preferred approach is to
turn them into infinite traces by infinitely repeating the last
state. It seems to us that it would be more natural to use
schemata for such applications. In the present work, it is
shown that doing so entails no loss in expressive power.

In the present paper, we show that LTL is equivalent
to a particular subclass of regular schemata, referred to as
sequential. More precisely, we define algorithms translat-
ing formulae from one logic into the other and preserving
satisfiability. We believe that these results are interesting
from a theoretical perspective since they provide useful in-
formation about the expressive power of the respective for-
malisms. Furthermore they allow to import the complex-
ity results of LTL into schemata. From a practical point
of view, the existence of a polynomial reduction from a
class of propositional schemata into LTL allows one to ben-

efit from the many existing efficient decision procedures for
this logic (tableaux methods, e.g. [28l 24], resolution-based
methods, e.g. [15], or reductions to model checking, e.g.
[23L[13]]), implementations [7} 20, 11} 13]] and experimenta-
tion tools [[17]. Conversely, the reverse reduction might give
further ideas for the design of new techniques to decide LTL
satisfiability. In particular, since a DPLL-based procedure
exists for schemata [2], it might help to design such a pro-
cedure for LTL. On another hand, this reduction is very rem-
iniscent of the translation from LTL to propositional logic
encountered in bounded model checking (BMC) [9]. Con-
trarily to BMC however, our reduction is complete, it might
thus give new ideas to achieve completeness in BMC.

The paper is structured as follows. In Section [2] we de-
fine LTL and the logic of propositional schemata. In Sec-
tion [3]we show how to relate the interpretations of both for-
malisms. A polynomial algorithm transforming any sequen-
tial schema into an equivalent LTL formula is presented in
Section 4] and Section [3] tackles the reverse translation, i.e.
from LTL formulae to schemata. Section [§] presents the
results about first experiments with those translations and
sketches the possible improvements inspired by those ex-
periments. Finally, Section[7]briefly concludes our work.

The extended version of the present paper
(http://membres-liglab.imag.fr/aravantinos/
Site/Publications_files/LTLextended/doc.pdf)
contains additional figures, examples and all proofs that
are omitted here due to space restrictions.

2. Definitions and notations

In the following, ¢,¢®1,¢2 denote LTL formulae,
s, 81, s2 denote schemata, o denotes an LTL or proposi-
tional interpretation, J, 91 denote schema interpretations,
e, f, g denote (Presburger) arithmetic expressions, n,i de-
note arithmetic variables (n will be used for a free arithmetic
variable and i for a bound one). Note that n, i are written in
sans serif in order to distinguish them from meta variables
denoting natural numbers, that will be written n, i.

Both LTL and schemata have propositional logic as a
common basis. Furthermore, in both languages, proposi-
tional variables are accompanied with a natural number (an
instant in the case of LTL, an index for schemata). So in-
stead of defining, as in classical propositional logic, an in-
terpretation as a function mapping each propositional vari-
able to a truth value, we rather define interpretations as
functions mapping pairs of propositional variables and nat-
ural numbers to truth values. Formally:a propositional in-
terpretation over a set of propositional variables P is a
function from P x N to {T,F}. An interpretation o is rep-
resented by the set of all pairs (variable, natural number)
that are true in 0. Most of the time we do not need to make
that set explicit. For instance, when interpreting a given for-

mula ¢, it will be implicitly assumed that we consider only
interpretations over sets that contain the variables of ¢.

2.1.LTL

The syntax of LTL formulae over the set of propositional
variables P is given by the following grammar:

¢=T|P|-¢|dN[Xe|dUg

X ¢ means that ¢ holds at the next instant (“X”” for neXt).
¢U1) means that ¢ holds until ¢ holds (“U” for Until). We
will also use the following abbreviations: F¢ < TU¢ and
G¢ = —F-¢, meaning respectively “¢ eventually holds”
and “¢ always holds”. The abbreviations V, = and < are
defined as usual (the naive elimination of < is exponential
but it can be made linear by using renaming of subformulae
as usual, which preserves satisfiability). See [22]] for details.

LTL formulae are usually interpreted over infinite paths
in a transition system, together with a labelling that maps
every state to a set of propositional variables. Such se-
quences are often called computations or behaviours. We
will simply call them LTL interpretations. For uniformity,
we define formally an LTL interpretation as a propositional
interpretation in the sense given above (we do not make ex-
plicit the notions of states, transition systems and labelling).
Then o(t) denotes the set of variables p that are true at
time ¢, i.e. such that (p,t) € o. The satisfaction relation
of an LTL formula ¢ under such an interpretation o is de-
fined w.r.t. an instant ¢, written o, ¢ = ¢. This means that
the formula ¢ holds at time ¢. Formally: let ¢ be an LTL
formula, o be a propositional interpretation and ¢ € N.
The relation o,¢ = ¢ is inductively defined as follows:
o, t = T,o0,t Epiff (p,t) € 0,0,t |E ¢ iff o,t = ¢,
o,t): 1 N @9 iff ot): ¢1 and o,t): P2, O, ':
Xopiffo,t+ 1 pando,t |= ¢p1Ugs iff Ik € Nsit. Vi €
N,i <k = o,t+i | ¢ and 0,t + k |= ¢2. The notation
o = ¢ means that ¢ is true in o at time 0.

A fundamental property of LTL is the “ultimately peri-
odic model property” [26]. Namely, if an LTL formula is
satisfiable, then it is satisfiable on some ultimately periodic
interpretation. An ultimately periodic (“UP”) interpreta-
tion is an LTL interpretation o s.t. there exist k,[€ N s.t.
[> 0and for all m > k, o(m) = o(m + 1). The sequence
c(0)...0(k—1)isthe prefixof c and o(k)...o(k+1—1)
its loop, k is the prefix index and [is the period. The UP
model property allows to focus on finite sets of instants only,
since a UP model is uniquely characterized by the natural
numbers k, [and the truth value of propositional variables
between time 0 and k + [.

http://membres-liglab.imag.fr/aravantinos/Site/Publications_files/LTLextended/doc.pdf
http://membres-liglab.imag.fr/aravantinos/Site/Publications_files/LTLextended/doc.pdf

2.2. Schemata

We now present the syntax and semantics of schemata.
Since the present paper focusses only on a special kind of
schemata, called “sequential”’, we only define this subclass
(we refer to, e.g., [4] for the general definition). Let P be a
set of propositional variables. Let n,i be two distinct sym-
bols called arithmetic variables. We call n the parameter
and i the index variable. For every p € P, k € Nﬂ Dk
DPntk and piy are called indexed propositions. Iteration
bodies are defined by the following grammar:

ib = T |—ib|ib A ib| pirk

We can then define the grammar of sequential propositional
schemata, or SPS, as follows:

sps = T |—sps|sps A sps|pntk | Dk | /\in:_o1 b

An expression of the form /\;:01 ibis called an iteration. We
define \/{— ib as ~_; —ib. We define V, = and < as
usual (both for iteration bodies and for SPS). For instance,
Po AN (B = pis1) A —pa or ALy pi A Vg —pi are
SPS. The essential point of schemata is that iterations are
symbolic expressions: n is a formal parameter, not a meta
variable denoting any number. The specificity of SPS is that
they represent a structure which is sequentially repeated, n
being considered as the length of the sequence.

An SPS is interpreted by first giving a value to n — which
gives raise to a propositional formula ¢, called an “instance”
of the SPS — and then by giving a value to the proposi-
tional variables of ¢. Note that a (non-trivial) SPS has an
infinite set of instances. The substitution of x € {n,i} by
m € N is written [m/z]. The application of a substitution
to indexed propositions is defined by: p,4[m/n] £ Dtk
Ditr[m/i] “ Pma+k and in every other case the substitution
has no effect. Applying a substitution to an iteration body is
trivially done by propagating the substitution to the atoms
(there is no problem of capture since no connective inside
an iteration body can bind a variable). Then, let s be an SPS
and m € N. The instance of s w.r.t. m is the propositional
formula (s),, inductively defined by:

def

<pe>7n = ps’[m/n}
(N 8)m = Tifm =0

<_‘5>m = _‘<5>m

(1A s2)m = (81)m A (82)m

<A?;01 Ym = (s[0/i)m A .o As[m —1/i])p, if m >0
For example, the following are the instances of pg A
/\;1;01 (pi = pi+1) A py for m = 0,1,2, respectively:
Po A =po» Po A (po = p1) A =p1. po A (po = p1) A (p1 =

!'As usual, k may be encoded in unary or in binary, as a sequence of
digits. The choice between the two encodings has a significant influence
on the complexity of the translations.

p2) A —pa. An instance is a usual propositional formula ex-
cept that each variable is indexed with a natural number. So
we just need a propositional interpretation to interpret this
formula: let ¢ be a propositional formula whose variables
are indexed by natural numbers, and o a propositional in-
terpretation. Then o |= ¢ is defined as usual by induction
on the structure of ¢ except that, for any indexed variable
Pk, 0 = pg iff (p,k) € o. We thus define a schema in-
terpretation as a pair consisting of a propositional interpre-
tation and a natural number. Then a schema s is true in a
schema interpretation 3 = (o,n) iff o = (s),,. We also
write J |= s. Contrarily to general schemata, the satisfiabil-
ity problem for SPS is decidable [4]].

3. Translating interpretations

In the next sections we will see translations of LTL for-
mulae into SPS and conversely. Some semantic translations
underlie those syntactic ones. We make them explicit now
in order to give preliminary insights.

3.1. From schemata to LTL

Consider a schema interpretation (o, n). Given a schema
interpretation (o, n), its first component o can already be
considered as an LTL interpretation, but we still need to
represent the second component n. This is done by using
special LTL interpretations (which are also propositional in-
terpretations) called “initial segments”:

Definition 1. Let o be a propositional interpretation over a
set of variables P. o is an initial segment of length k € N
for some p € P iff (p,t) € 0 &t < k.

The key feature of initial segments is that they can be
put in correspondence with natural numbers. Namely, we
can associate a canonical initial segment to every natural
number and a natural number to every initial segment. This
correspondence allows us to define the following transfor-
mation for schema interpretations:

Definition 2. Let P be a set of propositional variables and
let “t < n” ¢ P be a propositional variable. Let J = (o,n)
be a schema interpretation over P. Then [|J|| is the LTL
interpretation over P U {t < n} which is an initial segment
of length n for t < n and which is defined as o over P.
Conversely, |.]]=! is the function that maps every initial
segment o of length n for t < n to the schema interpretation
(,m) where 7 is the restriction of & to P.

For instance, let J be the schema interpretation
({Po. qo. p1,p2,¢3},3). Then [[JT]] = {p.q;t <n} —
{pt<n} — A{pt<n} - {¢¢ - {} -
{} — Conversely, let o be the LTL interpre-
tation {¢,t <n} — {¢,t<n} — {pt<n} —

{p7Qﬂt<n} - {p} - {p} — ..., then ”_Uﬂ_l B

({q0,91,p2,p3,43, P4, 5, ... },4).

The map |.] is a bijection between schema interpreta-
tions over P and initial segments over P U {t < n}. Indeed,
|l.I71 is its inverse. Initial segments thus allow us to simu-
late finite models in LTL. The set of initial segments can be
specified in LTL as follows:

Proposition 3. Let ¢*~" £ (t < n)UG(—t < n). Then an
LTL interpretation is a model of ¢"=" iff it is an initial seg-
ment for t < n.

We can also specify a proposition eq™ true only at time n.
This is axiomatized by: Ax;—, = G(t < nA-X(t < n) &
X(eq")) A (-t < n < eq"). To improve readability, eq”
will be written t = n. Let o be an initial segment for t < n
of length n s.t. 0,0 = Ax¢—,. Then it is easily shown that
o, t Et=nifft =n.

3.2. From LTL to schemata

The inverse translation is harder: embedding LTL into
schemata means that we must represent the infinite inter-
pretations of LTL using only schema interpretations, which
are finite. Of course this is impossible in general. How-
ever, as we are concerned with satisfiability, we can restrict
ourselves to UP interpretations. Since those can be finitely
represented, we will be able to embed them into schema
interpretations. This is achieved via “2-initial segments”:

Definition 4. A schema interpretation J = (o, n) is a 2-
initial segment for a propositional variable p iff there is k <
ns.t, foreveryl € {0,...,n}, wehave (p,l) € 0 & | < k.
We call k the short length of J and n + 1 is its long length.

For instance, the schema interpretation ({pg,p1,p2},5)
is a 2-initial segment w.r.t. p. Its short length is 3, its
long length is 6. We call this a 2-initial segment because
two initial segments are characterized: {0,...,k — 1} and
{0,...,n}. But notice that p is not specified above n. This
is not a problem since we will not need such values in the
translations. The notion of 2-initial segment is useful be-
cause, much in the same way in which initial segments cor-
respond to natural numbers, 2-initial segments correspond
to pairs of different natural numbers. We can now define
the following transformation for UP interpretations:

Definition 5. Let o be a UP interpretation of prefix index
k and of period [over a set P, and let “pfx” & P be a
propositional variable. Then [[o]] is the schema interpreta-
tion (7, k 4+ [— 1) where 7 is defined as an initial segment
of length k for pfx and preserving the value of ¢ on P.

Remark 6. The map [[.]] embeds the prefix index and the
period inside schema interpretations, but it is impossible to

specify the fact that an interpretation is a UP interpretation:
this would require to express that the interpretation loops in-
definitely. Such an “infinite” behaviour cannot be specified
with schemata. This will not be a problem in the following
because, for a given LTL formula, one only needs to specify
this behaviour in the range {0, ...,k +1—1}.

For similar reasons, [[.]] is not a bijection in general, un-
like ||.]]. It is actually a bijection between UP interpreta-
tions and 2-initial segments if we restrict the latter to the
values assigned to variables whose index is between 0 and
k-+1—1. This will indeed be the case in our reduction since,
as just explained, we will not need the values for other in-
dices. Then [[.]~! is defined as follows:

Definition 7. Let (o, n) be a 2-initial segment for pfx. Then
To,n]| ! is defined as the unique UP interpretation such
that: 1. its prefix is the set of instants s.t. pfx holds in J; 2.
its period [is n — k + 1, where k is the prefix index; 3. for
all p # pfxand all t < n, (p,t) € [J,n]|~Liff (p,t) € 7.

Proposition 8. Let s%fx be the SPS —~pfx, AN\, (pfxis1 =
pfx;). A schema interpretation is a model of s%fx iffitis a

2-initial segment for pfx.

This proposition shows that 2-initial segments can be
specified using schemata. The beginning of the loop can
be referred to by using a propositional variable eq, in-
tended to be true only when i is equal to the prefix index
k of the interpretation. This can be axiomatized as follows:
Axi—p, = (-pfx, & equ)/\/\i":_ol(pfxi/\—\priJrl < eqf).
To improve readability, eq” will be written “i = k.

4. Embedding SPS in LTL

Now, given an SPS s, we build an LTL formula [s]|
which is satisfiable iff s is satisfiable. The main desider-
atum of |.] is that for every model 9t of an SPS s, the
interpretation ||90t] is a model of |s]. By Proposition
every interpretation s.t. ¢“~" holds is an initial segment of
length n for a propositional variable “t < n”. Furthermore,
Ax;_, enables to use the variable “t = n”. Our translation
thus includes those formulae.

Definition 9. Let s be an SPS. Then | s] is an LTL formula
defined as [s| = [5] prop A 05" A Axi—, Where | 5] prop is
inductively defined as follows:

def

[TJorop = T

[Pk | prop = X*p

[Prtt)prop = G(t =n = X"p)
]
]

prop = XFp
| 8] prop = = 8] prop

51 A 82Jprop = |51 prop A L52]prop
n—1

L/\ 8] prop = G(t < n = [5]prop)

i=0
where k € N, i # n, and XFgis X...X¢ with k Xs.

For instance, |po A /\in:_o1 (pi = pix1) A —pn] = DA
Gt<n=p=Xp)A-Glt=n=p)AP=" A Axi—,.
Note that, although other encodings are of course possible,
the use of the connective G (or, more generally, U) cannot,
of course, be avoided. We have then:

Theorem 10. Let s be a SPS. Then ||.]| is a bijection be-
tween the models of s and the models of |s|. The inverse
bijection is ||| ~*.

An obvious consequence is that s is satisfiable iff |s] is
satisfiable. However our result is more interesting since it
provides more insights about the translation and makes ex-
plicit the inverse transformation for interpretations, which
is useful for model building. Consequently we can use any
LTL satisfiability solver to solve the satisfiability problem
for SPS: we simply translate the input schema to LTL with
|.| and then launch the LTL solver on the output formula.
Thus the satisfiability problem for SPS can be reduced to
the satisfiability problem for LTL. Notice furthermore that
if the solver finds a model, then we can translate it back to
a schema model using the inverse translation ||.|| =

We can easily study the complexity of this transforma-
tion. Let #s denote the size of a schema s, in number of
symbols, and let #;,¢s denote the size of the biggest num-
ber occurring in s, expressed w.r.t. the size of s. This is
to take into account the fact that numbers can be encoded
either in unary or in binary: if they are encoded in binary
then #ics = O(279), but if they are encoded in unary
then #ints = O(#s). It may also happen that we con-
sider only schemata whose biggest number is bounded by
some constant; in such a case, we have #ints = O(1). This
case is worth considering since we may increase the size
of a schema without increasing the numbers that occur in
it. Then, for every SPS s, we have #|s| = O(#S.#int5).
Consequently, |.] is linear if numbers are bounded by con-
stants, quadratic if numbers are encoded in unary, exponen-
tial if they are encoded in binary. Since the satisfiability of
LTL is in PSPACE [26]:

Theorem 11. The satisfiability of SPS is in PSPACE (resp.
EXPSPACE) if numbers are encoded in unary or bounded
by constants (resp. coded in binary).

5. Embedding LTL in SPS

We now tackle the reverse embedding. We need the UP
model property to obtain a successful translation, written

[.], of LTL formulae into SPS. The aim of [.] is that for
every model o of an LTL formula ¢, the interpretation [[o]]
(Definition [5) is a model of [¢]. This transformation uses a
structure-preserving approach: for each subformula ¢ (dif-
ferent from an indexed proposition) of the original formula,
we introduce a fresh propositional variable written |¢|. For
an indexed proposition p, |p| < p. Each indexed proposi-
tional variable |¢ .» 0 <i < n, is then intended to be true iff
the subformula ¢ is true at time i. Formally, we extend [[.]]
as follows:

Definition 12. Let o be a UP interpretation and ¢ an LTL
formula. Then: for every propositional variable of the
form |¢| for some subformula ¢ of ¢, (|¢],t) € [[o]) iff
o,t = 1; for every other variable, [[o]] is defined as de-
scribed early on.

Furthermore, for each subformula of the form ¢, Ugs,
we add another propositional variable called |¢;U’ds|
(called this way because its behaviour is very close to the
one of U) interpreted as T at ¢t € N iff there is ¢’ € N s.t.
t <t < k+1—1where ¢; holds between ¢t and ' — 1
and ¢5 holds at t/, i.e. the semantics are the same as for U
except that the instant when ¢ occurs must happen before
the end of the loop (as explained thereafter, this variable is
used to ensure that the eventuality indeed happens).

The inverse operation is defined as in Definition [7] ex-
cept that the value of any variable |¢| is “forgotten”. The
translation is done by adding axioms to compute the val-
ues of the newly introduced propositional variables (relat-
ing these values to the ones of the propositional variables
originally occurring in the formula). As we shall see, the
specification of those new variables is straightforward when
the head symbol of the subformula is a boolean connective:
the value of the considered variable can be directly related
to the values of the variables corresponding to the operands,
see definition of Ax- and Axy, r¢, in Definition|[T3|below.

When the head symbol of the subformula is a temporal
connective, we have to distinguish whether the index de-
notes a time lower or equal to n (since the interpretation is
UP, we only have to consider the time interval {0,...,n}).
In both cases, the value of the considered propositional vari-
able || at time i is related to the one of the variables at the
next instant. If i < n then this next instant is easy to com-
pute: it is simply i + 1. But if i = n, since the value of the
variables |¢| are specified only on the interval {0, ...,n} we
cannot refer to the time n + 1 and we have to take advan-
tage of the fact that the interpretation is periodic: since n
necessarily corresponds to the end of the periodic part, the
next instant must be the beginning of the loop. This is eas-
ily handled in the X case: if we have X¢ at time n then we
must have ¢ at time k£ where k is the beginning of the loop.

In the U case, if we have ¢, Ugs at time n then we have
to deal with the fact that ¢, might hold after n, between time

k and n—1 (by taking the loop into account). In this case we
have to check that ¢ holds between k and n— 1, and that ¢
holds in between. This check is triggered by the use of the
new connective U’, whose specification is thus added to the
definition. Intuitively, ¢ U’$2 may be seen as a connective
interpreted as ¢1 Ugo, except that the formula ¢o must hold
at the latest at time n (notice that using U instead of U’
would yield an ill-founded definition: the eventuality could
be always delayed and never fulfilled).

Definition 13. Let ¢ be an LTL formula. Then [¢] is [¢] =
|6lo A % A S2X A Axi—y where ® stands for A{Axy |
1 is a subformula of ¢} and Ax,; is defined by:

Axt SN (T Axeg = ALo(I=9l & — 19l
= Niso(101 A @aly & [A [del)
Axxg = A?;01(|X¢|i < |9liy1)

NIXel, & NiZoli =k = [6]))

and Axg,ug, is the conjunction of the following formulae:

N0 (81U < [l V (1] A [1 Uzl 1))
61Ul & (Id2], V [d1], A AL (i =k = 61U ¢a],))
A?;ol(\¢1U/¢2\i & |pali vV (I¢1]; A1 U d2li 1))

01U b2, = |,

where Al s is a shortcut for A\!_J' s A s[n/i] (we need to

define this as an abbreviation so that the schema be indeed
sequential).

Theorem 14. Let ¢ be an LTL formula. Then [[.] is a bi-
Jjection between UP models of ¢ and models of [¢] (if the
latter are restricted to the values of variables occurring in
the corresponding instance). [[.]| ™! is the inverse bijection.

AX¢1/\¢2

It is trivial that #[¢] is linear w.r.t. #¢. Thus:

Theorem 15. The satisfiability problem for SPS is
PSPACE-complete if numbers are encoded in unary or
bounded by a constant.

For practical efficiency, we can improve over Definition
[[3] We can translate the purely propositional connectives
directly, i.e. without axiomatising them: any occurrence
of an atom |T|, (resp. ||, resp. |p1 A ¢2,) is directly
replaced by T (resp. —|¢|,, resp. [¢1], A |¢2],) repeatedly
until there is no more such occurrence. The same applies
to V, = and <. Those are defined as abbreviations in the
present paper in order to simplify definitions, but it is of
course more efficient in practice to translate them directly
when available as primitive connectives (obviously, this is
also true for Definition[J).

Another optimization can be devised by observing that
all schemata decision procedures [1} 2] reason by induction

on n, i.e. they refute a schema for any value of n by re-
duction to the case n — 1. In our reduction, n corresponds
to the last instant of the UP interpretation. Consequently, a
schema procedure applied to a translated LTL formula starts
by considering the last instant of the interpretation and then
going backward. This is counter natural since we try to re-
fute a formula at time 0. To tackle this problem we just need
to change the translation by “inverting the time”: i.e. the in-
dex 0 will be interpreted as the last instant of the period and
the index n as its first instant. Concretely, in Definition @
we just rewrite every index i — 1 into i, every index i into
i + 1, every index O into n, and every index n into 0. Exper-
iments with this translation indeed confirm that conjectures
are refuted faster using this new translation.

Remark 16. The translation given here might remind the
reader of bounded model checking (BMC) [9]. A very im-
portant difference however is that our reduction is complete,
which is of course not the case of BMC. Indeed, the whole
point of schemata is to reason about an infinite family of
propositional formulae without having to instantiate the pa-
rameter. Our translation could of course be used for BMC,
simply by instantiating the parameter with successive natu-
ral numbers. However the converse does not hold: not every
translation found in BMC could fit instead of Definition[T3]
since the result must respect the syntactical criteria ensur-
ing decidability of the satisfiability problem. For instance,
renaming sub-formulae by propositional variables is just an
optimization in the case of BMC whereas in our case, it is
needed since, otherwise, the resulting schema would not be
sequential (and not even regular). Completeness is an im-
portant problem in BMC which is usually tackled with no-
tions like completeness thresholds and recurrence diameter
[9] or induction [25]. Thorough analysis of how schemata
procedures handle the above translation could give new
ideas in order to get completeness for BMC.

6. Implementation

The implementations of both translations are available
athttp://membres-liglab.imag.fr/aravantinos/
Site/Software.html. Some preliminary experiments
have been achieved on a few benchmarks: standard
schemata examples provided with RegSTAB [3]] have been
translated to LTL (note that the examples have been slightly
modified in order to fit the constraints of SPS) and stan-
dard LTL pattern formulae [23] have been translated to SPS.
The performance of RegSTAB and plt1 (http://users.
cecs.anu.edu.au/~rpg/software.html) have been
compared on both benchmarks. In both cases, p1t1 clearly
outperformed RegSTAB. We see two reasons to this:

e RegSTAB deals with regular schemata, which are more
general than SPS. In particular, the decision procedure

http://membres-liglab.imag.fr/aravantinos/Site/Software.html
http://membres-liglab.imag.fr/aravantinos/Site/Software.html
http://users.cecs.anu.edu.au/~rpg/software.html
http://users.cecs.anu.edu.au/~rpg/software.html

for such schemata requires the detection and elimina-
tion of pure literals (an adaptation of the “Affirmative-
negative rule” of [[12]), which is well-known to be a
huge time-consuming task (and this is even more the
case for schemata since we have to deal with a sym-
bolic notion of pure literal). This auxiliary procedure
is needed for termination, and is mainly a consequence
of the “non-local” aspect of schemata.

e With LTL procedures, given a formula ¢, one knows
in advance all the formulae that will occur in the de-
duction process: all of them belong to the closure of ¢
(merely the set of all subformulae of ¢, closed by nega-
tion and unfolding of temporal formulae); this permits
the use of efficient data structures to represent sets of
formulae, e.g. p1t1 uses bitsets. This is not the case
of SPS (and even more regular schemata), e.g. refuting
a schema containing /\i":O p; potentially leads to the in-
troduction of p,, Pn—_1, Pn—2, €tc. By termination for
regular schemata [[1]], this enumeration is finite but one
does not know in advance how far it has to go. Hence
the data structures used in RegSTAB are much heav-
ier: e.g. we use balanced trees for sets of formulae.
Thus, for big examples, the memory is easily saturated
and RegSTAB spends much of its time in its handling
which was absolutely not the case of p1t1.

The most important reason seems to be the second one. It
can actually be tackled in order to improve RegSTAB perfor-
mance: we can syntactically extract from the input schema
a bound for the above enumeration py,, pn—1, Pn—2, ... by
analysis of the termination proof for regular schemata. Im-
plementing this technique is ongoing work.

Yet, there are examples where RegSTAB did better than
pltl. Consider (p1 = gnt1) A P1 A —gni1 A ¢ wWhere ¢
is any formula involving some iterations. This schema is
immediately refuted by RegSTAB, but the bigger ¢ is, the
longer it takes for p1t1 to refute the corresponding LTL
formula. Of course, this example was devised to emphasize
one of the strengths of RegSTAB: contrarily to LTL proce-
dures in general, and to p1t 1 in particular, reasoning about
schemata is global, i.e. RegSTAB may reason simultane-
ously on propositions containing various symbolic indices.
In contrast, p1t 1 will analyse the formula ¢ and the contra-
diction will appear only at the end of the construction (i.e.
by “discovering” eventually that ¢ = n cannot hold at any
state, since it would allow to derive a contradiction).

7. Conclusion and future work

LTL formulae and SPS have been shown to be reducible
to each other in polynomial time (exponential time when
numbers are encoded in binary). The reduction of SPS to
LTL is unsurprising. The converse reduction makes use of

the well-known fact that the infinite semantics of LTL can
be finitely represented. This entails that the satisfiability of
SPS is PSPACE-complete.

Pros and cons of each logic. Since LTL and SPS are
equivalent w.r.t. satisfiability, one may wonder which to
favour. There are two major differences between LTL
and schemata: first, LTL default interpretations are infinite
whereas those of schemata are finite; second, LTL refers
to states in an anonymous way, whereas schemata name
them. These differences provide us with clear criteria for
choosing one logic or the other in different situations: to
specify an infinite behaviour, one would naturally use LTL,
whereas classes of structurally similar finite behaviours are
more naturally specified with schemata. Unsurprisingly, the
specification of temporal behaviours falls of course in the
first category. But, e.g., the specification of a circuit in-
dependently of the number of bits of its input falls in the
second category. Consider for instance the specification of
aripple-carry adder: \[_,((si & (zi ® yi) D ¢i) A (cip1 &
(i ANyi) V (i Aa) V(i Ac))) A —eg, where xg, ..., Ty
and yo, ..., Yy are the input bit vectors of size n; sq, ...,
sy is the output bit vector and cy, ..., ¢, is the carry vector.
Here the indices indeed correspond to the time in a concrete
sequential circuit. But from a specification point of view,
those indices are just an abstract way to represent a generic
scheme of circuits. Consequently, the schema syntax seems
better suited to this case (and notice that it is very intuitive).

Similarly, the choice between a named or an anonymous
representation of states depends on the situation. The X
connective is well suited to express properties in a local
way, since there is no need to explicitly use an index to
refer to the current or the next state. The U connective
is also far more intuitive than its translation to SPS to re-
fer to some instant satisfying some property in the future.
On the other hand, in order to refer to an identified instant
of the future, one needs to refer to it by giving it a name,
which is easily done with the schema syntax. Consider e.g.
the example py A /\{1;01 (pi = pi+1) A —py translated as
pAGE<n=p= Xp) AG({t=n = —p) (plus the
necessary axioms qbt<<" A Axi—,) in LTL. One can even
specify behaviours after that time (but this goes beyond se-
quential schemata [4]]), e.g. one can write pg A /\in:o(pi =
Pir1) A /\i2:nn(_\pi+1 = —pi) A —pan. It seems improbable
that such a property would be useful in a temporal context,
but this could be used to specify planning problems with
some predefined strategy e.g. if one wants to allow some
set of actions in a first phase of a planning problem and
then another set in some other phase of this problem.

Future work. Using the above translations to help export
procedures from one logic to another is an obvious follow-
up of this work (in particular, DPLL inspired procedures for
schemata could help defining such a procedure for LTL).
Similarly, as explained in Remark [I6] investigating how

model checking is done by translation to schemata could
give ideas to define new completeness criteria for bounded
model checking. The extension of the presented results to
other classes of schemata could also be considered, e.g.
schemata with nested iterations (proved decidable in [2} 4]).
Translation algorithms from nested schemata into sequen-
tial ones exist [4], however they are of double exponential
complexity. Thus we conjecture that no polynomial-time
transformation from nested schemata to LTL exists. The
extension of this study to other — more expressive — tem-
poral logics could also be of interest. Notably, LTL with
past operators [21] seems to be easily handled with (non se-
quential) schemata simply by allowing negative numbers in
indices. Since implementations for this logic do not have
the same support as standard LTL and are generally not as
efficient, such a reduction could help in improving those
points. One could go even further by making connections
between schemata and monadic second order logic (MSO).
This would be interesting both in theory and practice, since
few implementations are available for MSO (only MONA
[19] seems to be actively maintained).

References

[1] V. Aravantinos, R. Caferra, and N. Peltier. A Schemata Cal-
culus for Propositional Logic. In TABLEAUX, volume 5607,
pages 32—46. Springer, 2009.

[2] V. Aravantinos, R. Caferra, and N. Peltier. A Decidable
Class of Nested Iterated Schemata. In Giesl and Héhnle [18],
pages 293-308.

[3] V. Aravantinos, R. Caferra, and N. Peltier. RegSTAB: A
SAT-Solver for Propositional Iterated Schemata. In Giesl
and Héhnle [18]], pages 309-315.

[4] V. Aravantinos, R. Caferra, and N. Peltier. Decidability and
Undecidability Results for Propositional Schemata. Journal
of Artificial Intelligence Research, 40:599-656, 2011.

[5] F. Bacchus and F. Kabanza. Using Temporal Logic to Con-
trol Search in a Forward Chaining Planner. In 3rd European
Workshop on Planning, pages 141-153. Press, 1995.

[6] J. A. Baier and S. A. Mcilraith. Planning with first-order
temporally extended goals using heuristic search. In Na-
tional Conference on Artificial Intelligence, pages 788-795.
AAALI Press, 2006.

[7] P. Balsiger, A. Heuerding, and S. Schwendimann. Logics
Workbench 1.0. In H. C. M. de Swart, editor, TABLEAUX,
volume 1397, pages 35-37. Springer, 1998.

[8] A.Bauer and P. Haslum. LTL Goal Specifications Revisited.
In ECAI pages 881-886, Amsterdam, Aug 2010. IOS Press.

[9] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and
Y. Zhu. Bounded model checking. Advances in Comput-
ers, 58:118-149, 2003.

[10] H. Calbrix, M. Nivat, and A. Podelski. Ultimately Peri-
odic Words of Rational w-Languages. In MFPS 1994, pages
554-566, London, UK, 1994. Springer-Verlag.

[11] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia,
M. Pistore, M. Roveri, R. Sebastiani, and A. Tacchella.

[12]

[13]

(14]

[15]

(16]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]
(28]

(29]

NuSMV 2: An OpenSource Tool for Symbolic Model
Checking. In E. Brinksma and K. G. Larsen, editors, CAV,
volume 2404, pages 359-364. Springer, 2002.

M. Davis and H. Putnam. A Computing Procedure for Quan-
tification Theory. J. ACM, 7:201-215, July 1960.

M. De Wulf, L. Doyen, N. Maquet, and J. F. Raskin. An-
tichains: alternative algorithms for LTL satisfiability and
model-checking. In TACAS'08/ETAPS’0S, pages 63-77,
Berlin, Heidelberg, 2008. Springer-Verlag.

C. Eisner, D. Fisman, J. Havlicek, Y. Lustig, A. Mclsaac,
and D. V. Campenhout. Reasoning with Temporal Logic on
Truncated Paths. In W. A. H. Jr. and F. Somenzi, editors,
CAV, volume 2725, pages 27-39. Springer, 2003.

M. Fisher, C. Dixon, and M. Peim. Clausal temporal resolu-
tion. ACM Trans. Comput. Logic, 2:12-56, January 2001.
D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the tem-
poral analysis of fairness. In POPL, pages 163—173, New
York, NY, USA, 1980. ACM.

O. Gasquet, A. Herzig, D. Longin, and M. Sahade.
LoTREC: Logical Tableaux Research Engineering Com-
panion. In B. Beckert, editor, TABLEAUX, volume 3702,
pages 318-322. Springer Berlin / Heidelberg, 2005.

J. Giesl and R. Hihnle, editors. IJCAR, volume 6173.
Springer, 2010.

J. Henriksen, J. Jensen, M. Jgrgensen, N. Klarlund, B. Paige,
T. Rauhe, and A. Sandholm. Mona: Monadic Second-order
logic in practice. In TACAS "95, LNCS 1019, 1995.

U. Hustadt and B. Konev. TRP++2.0: A Temporal Resolu-
tion Prover. In F. Baader, editor, CADE, volume 2741, pages
274-278. Springer, 2003.

O. Lichtenstein, A. Pnueli, and L. D. Zuck. The Glory of the
Past. In CLP, pages 196-218, London, UK, 1985. Springer-
Verlag.

A. Pnueli. The temporal logic of programs. In Proceedings
of FOCS 1977, pages 4657, Washington, DC, USA, 1977.
IEEE Computer Society.

K. Y. Rozier and M. Y. Vardi. LTL satisfiability checking.
In Proceedings of the 14th international SPIN conference
on Model checking software, pages 149-167, Berlin, Hei-
delberg, 2007. Springer-Verlag.

S. Schwendimann. A New One-Pass Tableau Calculus for
PLTL. In H. de Swart, editor, TABLEAUX, volume 1397,
pages 277-291. Springer Berlin / Heidelberg, 1998.

M. Sheeran, S. Singh, and G. Stalmarck. Checking safety
properties using induction and a sat-solver. FMCAD ’00,
pages 108—-125, London, UK, 2000. Springer-Verlag.

A. P. Sistla and E. M. Clarke. The complexity of propo-
sitional linear temporal logics. Journal of the ACM,
32(3):733-749, 1985.

W. Thomas. Star-free regular sets of w-sequences. Informa-
tion and Control, 42(2):148 — 156, 1979.

P. Wolper. The tableau method for temporal logic: an
overview. Logique et Analyse, 28:119-136, 1985.

P. Wolper, M. Y. Vardi, and A. P. Sistla. Reasoning about in-
finite computation paths. Foundations of Computer Science,
Annual IEEE Symposium on, 0:185-194, 1983.

	. Introduction
	. Definitions and notations
	. LTL
	. Schemata

	. Translating interpretations
	. From schemata to LTL
	. From LTL to schemata

	. Embedding SPS in LTL
	. Embedding LTL in SPS
	. Implementation
	. Conclusion and future work

