Emmanuel Witrant 
email: emmanuel.witrant@ujf-grenoble.fr
  
Patricia Martinerie 
email: patricia@lgge.obs.ujf-grenoble.fr
  
  
  
Input Estimation from Sparse Measurements in LPV Systems and Isotopic Ratios in Polar Firns ⋆

Keywords: LPV systems, input estimation, parameter optimization, environmental sciences, air pollution

We adress the problem of inverse input reconstruction for linear parameter-varying (LPV) systems when only a limited amount of data (i.e. sparse measurements at final time) is available. We include the LPV property by deriving a time-varying Green's function that models the input/output behavior. The estimation is achieved by solving a least-squares optimization problem parameterized in terms of the input rugosity (regularization term) to take into account the under-constrained nature of the problem. Several automatic tuning methods for the rugosity are described, based on stochastic analysis of the data. A new LPV model is derived for the isotopic ratio of chemical species and our results are applied to the atmospheric history reconstruction of trace gases from polar firn measurements, a problem of prime interest in the environmental sciences community.

INTRODUCTION

Linear parameter-varying (LPV) models represent a wide class of systems. They are extensively used to capture the complexity of coupled dynamics, partially modeled transient phenomena and/or changes of operating points. Estimating an unknown input from a limited set of measurements is a challenging topic in inverse problems studies and the inclusion of LPV dynamics can be of prime interest for a large class of applications. While numerous identification methods have been proposed for estimating the varying parameters, the state or the LPV model architecture, few results (such as [START_REF] Kulcsár | Unknown input reconstruction for LPV systems[END_REF] aim at reconstructing the input variations. We further complicate the problem by considering that only the measurements at final time are available to compute the estimate. This approach is motivated by the analysis of processes for which the measurements are particularly difficult to obtain while an LPV model can be provided by a detailed physical analysis.

Isotopic ratios are widely used in environmental studies, especially as process tracers of geochemical cycles (e.g. [START_REF] Hoefs | Stable isotope geochemistry[END_REF]. They are measured with high precision by mass spectroscopy and usually expressed as a deviation with respect to a reference material ("delta unit") in per mil ( ):

⋆ This work was partially supported by the CNRS/INSU LEFE program.

δ min X = 1000 × [ min X]/[ maj X] R std -1 (1)
where [ min X] and [ maj X] represent the concentrations of the minor and major isotopes, respectively, and R std is the [ min X]/[ maj X] ratio of a standard. Isotopic ratios are usually measured with a much better precision than concentrations of the individual isotopes ([ maj X] and [ min X]).

The specific application of isotopic geochemistry developed in this study is atmospheric time trends reconstruction from isotopic ratios in polar firns. Atmospheric trace gases are transported down slowly (in 15 to 100 years) in the interstitial air channels of polar firn (compacted snow). This process is ended at about 50 to 120 meters depth, where closed bubbles are formed and the air is no longer in contact with the atmosphere (e.g. [START_REF] Witrant | A variational approach for optimal diffusivity identification in firns[END_REF][START_REF] Buizert | Multiple-tracer firn air transport characterisation and model intercomparison for neem, northern greenland[END_REF]. Numerous air pumping operations at different depths (about 10 to 30 levels) in polar firns have been performed (e.g. [START_REF] Witrant | A new multi-gas constrained model of trace gas nonhomogeneous transport in firn: evaluation and behavior at eleven polar sites[END_REF], providing sparse final time measurements from which historical changes in atmospheric concentrations are estimated (e.g. [START_REF] Laube | Accelerating growth of HFC-227ea (1,1,1,2,3,3,3heptafluoropropane) in the atmosphere[END_REF][START_REF] Laube | Distributions, long term trends and emissions of four perfluorocarbons in remote parts of the atmosphere and firn air[END_REF]Sturges et al., 2012, and references therein). In the case of isotopic ratios, the use of a linear inverse technique [START_REF] Rommelaere | Reconstructing recent atmospheric trace gas concentrations from polar firn and bubbly ice data by inverse methods[END_REF] have been thought impossible due to nonlinearities associated with modeling two isotopes simultaneously [START_REF] Sowers | Records of the δ 13 C of atmospheric CH 4 over the last 2 centuries as recorded in antarctic snow and ice[END_REF]. Approximate methods based on separating the effects of the two isotopes [START_REF] Trudinger | Modeling air movement and bubble trapping in firn[END_REF][START_REF] Sapart | Reconstruction of the carbon isotopic composition of methane over the last 50 yr based on firn air measurements at 11 polar sites[END_REF][START_REF] Wang | The isotopic record of northern hemisphere atmospheric carbon monoxide since 1950, implications for the CO budget[END_REF] or Monte-Carlo like testing of numerous atmospheric scenarios [START_REF] Bräunlich | Changes in the global atmospheric methane budget over the last decades inferred from 13 C and D isotopic analysis of antarctic firn air[END_REF][START_REF] Sowers | Records of the δ 13 C of atmospheric CH 4 over the last 2 centuries as recorded in antarctic snow and ice[END_REF] have been developed.

The paper is organized as follows. The inverse input estimation problem for LPV systems is formulated in Section 2. A specific input/output modeling approach based on Green's function is proposed in Section 3, where we include the time-varying property of the system. The sparsity of the measurements and their inclusion in an optimal input design scheme is considered in Section 4, where the solution of the inverse problem is parameterized in terms of the input rugosity as a tuning parameter. Several solutions to automatically tune this parameter are described in Section 5. Finally, our results are applied to finding the history of δ 13 CH 4 from polar firn measurements at DE08 (an ice core obtained at Law Dome, East Antarctica, at 66 • 43'S, 113 • 12'E) in Section 6.

PROBLEM FORMULATION

Consider the class of single-input multiple-outputs LPV systems that writes (in the discrete form) as, for k = 1, . . . , N t :

x k = A D,k x k-1 + B D,k u k + w k , x k=0 = x 0 (2)
where x ∈ R N is the state, u ∈ R is the unknown input, w ∈ R N is an exogenous input, x 0 is the initial condition, and A D,k and B D,k are time-varying discrete state-space matrices of appropriate dimension. The sparsity of the measurements is considered in our case with the system output as:

y Nt = Cx Nt ∈ R M (3)
where C is the state to output matrix and M is the number of measurements. We thus consider that only the measurement of specific states at the final time is available.

Supposing that the time-evolution of A D,k , B D,k and w k is provided by an appropriate physical model and that the initial condition x 0 is known, our goal is to estimate the input history (u k for k = 1, . . . , N t ) from the sparse set of measurements y m . This estimation problem can be formulated finding the optimal input history that minimizes the modeling error:

ǫ . = y m -y Nt (u) (4)
in the L 2 sense. As such problem is clearly underconstrained, a specific care has to be taken for the choice of an appropriate regularization term and on the use of stochastic information on the measurements.

We also consider the case where the same input can affect different processes for which the measurements are taken at different final times (as it is the case in the firn problem where the same atmospheric history can be reconstructed from different polar sites). In this case, the dynamics and measurements are modeled as:

x i,k = A Di,k x i,k-1 + B Di,k u k + w i,k , x i,k=0 = x i,0 (5) 
y i,Nti = C i x i,Nti ∈ R Mi (6) 
where i = 1 . . . N proc denotes the process i, and N ti and M i are the associated numbers of sampling times and measurements, respectively. Note that the same initial date has been chosen for the different dynamics, to simplify the notations as there is no technical difficulty to extend the proposed results to varying initial conditions.

Finally, as the initial condition is typically unknown for the processes for which only the final time measurement is available, we consider the steady-state approximation:

x i,0 ≈ (I -A Di,0 ) -1 (B Di,0 u 0 + w i,0 ) (7 
) For the polar firn example, this hypothesis provides a reasonable initial distribution for trace gases that exerienced transients later than the oldest age content in firn air and a reasonable order of magnitude otherwise.

SYSTEM MODELING USING GREEN'S FUNCTION

Green's function can be used to solve inhomogeneous differential equations with specific boundary conditions. For linear time-invariant (LTI) systems, Green's functions are equivalent to the impulse response [START_REF] Bayin | Mathematical Methods in Science and Engineering[END_REF] and can thus be determined experimentally by measuring the system response to an impulse. Such principle can also be used to obtain a numerical input-output mapping for complex models, supposing a dominant LTI behavior. If such mapping can be inverted, then the system inputs can be inferred from the measured outputs and the Green's function of the system.

Input estimation for time-invariant systems

The previous method for trace gas reconstruction [START_REF] Rommelaere | Reconstructing recent atmospheric trace gas concentrations from polar firn and bubbly ice data by inverse methods[END_REF] relied on generating a Green's function from the impulse response of the numerical model. An analytical equivalent method can be described as follows (trace gas transport being described by LTI systems, contrarily to the isotopic ratios), using the solution of the state equation.

Consider the linear dynamics:

ẋ = Ax + Bu, x(t 0 ) = x 0 (8) y = Cx (9) where x ∈ R N , u ∈ R, y ∈ R M ,
and A, B, C are statespace matrices of appropriate dimension. The solution of the state-space equations writes as:

y(t) = Ce A(t-t0) x(t 0 ) + C t t0 e A(t-τ ) Bu(τ )dτ
Considering a sampling time t s and piecewise continuous inputs u(t) for t ∈ [t 0 , t f ], the discretized version is obtained as:

y(t k ) = Ce A(t k -t0) x(t 0 ) + t s C k i=0 e A(t k -ti) Bu(t i )
which equivalently writes in the matrix form:

y(t k ) = G 0 (t k )x(t 0 ) + G(t k )U (t k ) (10) where: G 0 (t k ) . = Ce A(t k -t0) ∈ R M×N G(t k ) . = t s [Ce A(t k -t0) B, Ce A(t k -t1) B, . . . , CB] U (t k ) . = [u(t 0 ), . . . , u(t k )] T ∈ R k Note that G(t k ) ∈ R M×k corresponds
to the Green's function of the LTI system. Equation ( 10) describes a linear mapping (algebraic relationship) between the vector of inputs U (t k ) and the outputs y(t k ), it can be directly used in an appropriate optimization scheme to infer U (t k ) from the measurements y m (t k ). As the size of U is larger than the size of y m , the problem is underconstrained.

Green's function for time-varying discrete systems with exogenous inputs

Consider the class of systems described by (2). In this case (e.g. for k = 1, 2, 3):

x 1 = A D,1 x 0 + B D,1 u 1 + w 1 x 2 = A D,2 A D,1 x 0 + A D,2 B D,1 u 1 + B D,2 u 2 +A D,2 w 1 + w 2 x 3 = A D,3 A D,2 A D,1 x 0 +A D,3 A D,2 B D,1 u 1 + A D,3 B D,2 u 2 + B D,3 u 3 +A D,3 A D,2 w 1 + A D,3 w 2 + w 3
and we can show (recursively) that at time t k :

y k = C k j=1 A D,k x 0 + C k i=1   k j=i+1 A D,j   B D,i u i +C k i=1   k j=i+1 A D,j   w i
Equivalently:

y k = G 0,k x 0 + G k U k + W k (11) with U k = [u 1 , . . . , u k ] T and G 0,k = C k j=1 A D,k , W k = C k i=1   k j=i+1 A D,j   w i G k = C     k j=2 A D,j   B D,1 ,   k j=3 A D,j   B D,2 , . . . , B D,k  

COST FUNCTION AND OPTIMAL DESIGN

In order to minimize the estimation error (4) we considered the regularized weighted least-squares cost function:

J(u) . = 1 2 Nproc i=1 ||y i,Nti (u) -y m,i || 2 Qi + 1 2 t f,max t0 ||u ′′ (t)|| 2 R dt (12) 
where t f,max . = max{t f,1 , . . . , t f,Nproc } is the latest measurement time (t f i being the measurement date for process i), u ′′ is the second derivative of u and ||x|| 2 Q = x T Qx is the weighted squared L 2 norm. The involved weights are such that Q i = Q T i ≥ 0 ∀i and R = R T > 0 (classical optimality conditions). The use of u ′′ as a regularization term allows us to weight the rugosity of the optimal solution, as proposed by [START_REF] Menke | Geophysical data analysis: Discrete inverse theory[END_REF] for solving geophysical problems or by [START_REF] Hastie | The Elements of Statistical Learning: Data Mining, Inference, and Prediction[END_REF] for statistical learning.

The set of admissible solutions is constrained by the discretized dynamics ( 5)-( 6). The optimization problem is directly formulated as finding the optimal time evolution u * (t) for t ∈ [t 0 , t f ] such that J(u) is minimized.

Discrete cost function

The regularization term is discretized using:

u ′′ (t k ) ≈ u(t k+1 ) -2u(t k ) + u(t k-1 ) t 2 s
The boundaries are approximated supposing a linear second order behavior calculated from the first (last) two points:

u ′′ (t 0 ) ≈ 2u ′′ (t 1 ) -u ′′ (t 2 ) u ′′ (t N ) ≈ 2u ′′ (t N -1 ) -u ′′ (t N -2 )
The dynamics (11) with initial condition (7) implies that:

y i,Nti = Ḡ0i,Nti (B Di,0 u 0 + w i,0 ) + G i,Nti U Nti + W i,Nti
where Ḡ0i,Nti . = G 0i,Nti (I -A Di,0 ) -1 . The measurements are corrected from the known exogenous inputs by defining:

ȳm,i = y m,i -Ḡ0i,Nti w i,0 -W i,Nti ∈ R Mi (13)
Note that, ideally (if

y i,Nti = y m,i ) ȳm,i = Ḡ0i,Nti B Di,0 u 0 + G i,Nti U Nti .
The continuous cost (12) can then be expressed in terms of the discretized inputs {u 0 , U k } as:

J(U ) = 1 2 Nproc i=1 || Ḡ0i,Nti B Di,0 u 0 + G i,Nti U Nti -ȳm,i || 2 Qi + t s 2 ||F Ū || 2 R ( 14 
)
where Ū .

= [u 0 U T Nt ] T , Nt = max{N t1 , . . . , N tNproc } and:

F = 1 t 2 s             2 -5 4 -1 0 • • • 0 1 -2 1 0 • • • • • • . . . 0 . . . . . . . . . . . . • • • . . . . . . . . . . . . . . . . . . . . . 0 . . . . . . • • • 0 1 -2 1 0 • • • 0 -1 4 -5 2            
The different time horizons and the inclusion of the initial condition in the input vector are handled by defining:

G i . = Ḡ0i,Nti B Di,0 × [1 0 1×Nt ] +G i,Nti × [0 Nti×1 I Nti 0 Nti×(Nt-Nti) ]
where I α is the identity matrix of size α and 0 α×β is a zero matrix of size α × β. The cost function ( 14) thus equivalently writes in the compact form:

J( Ū ) = 1 2 Nproc i=1 ||G i Ū -ȳm,i || 2 Qi + 1 2 ||F Ū || 2 R (15)
where the multiplication of the second term by t s is included in R to simplify the notation.

Optimal input

The optimization objective is formulated as finding: Ū * (t) = arg min Ū J( Ū ) and the necessary conditions for optimality are:

∂J( Ū * ) ∂ Ū = 0 and ∂ 2 J( Ū * ) ∂ Ū 2 > 0
Applying the first order optimality condition on (15) gives:

Nproc i=1 [G i Ū * -ȳm,i ] T Q i G i + Ū * T F T RF = 0 ⇔ Ū * =   F T RF + Nproc i=1 G T i Q i G i   -1 Nproc i=1 G T i Q i ȳi (16)
The second order condition for optimality is satisfied by construction as G T i Q i G i + F T RF > 0 for the indicated constraints on W i and R.

Weights selection

The weights on the estimation error are obtained from the standard deviations of the measurements σ i (j), where i = 1, . . . , N proc is the process index and j = 1, . . . , M i is the measurement index, as Q i = diag 1/σ 2 i (j) . The input weight is chosen as: R = κ 2 t s × I Nt (17) where κ is the rugosity tuning parameter. Note that the optimal solution of ( 16) depends only on κ as a free parameter.

AUTOMATIC RUGOSITY TUNING

One of the main difficulties in estimating a relevant inverse input is related to the proper weighting between the leastsquares terms, parameterized in our case with the rugosity penalty κ in (17). Several available methods based on stochastic analysis are briefly described in this section.

Data prediction versus model resolution

The underdetermined property of the problem can be addressed as a trade-off between perfect data prediction and perfect model resolution [START_REF] Menke | Geophysical data analysis: Discrete inverse theory[END_REF][START_REF] Rommelaere | Reconstructing recent atmospheric trace gas concentrations from polar firn and bubbly ice data by inverse methods[END_REF]. Based on this idea, an optimization criterion using root mean square deviations (rmsd) can be derived as follows.

Defining the aggregated Green's functions, weighted Green's functions and measured outputs as, respectively, Ḡ .

= [G T 1 . . . G T Nproc ] T , ḠQ . = [G T 1 Q 1 . . . G T Nproc Q Nproc ] and Ȳ . = [ȳ T m,1 . . . ȳT m,Nproc ]
T , the generalized inverse A GI describes the data-to-input mapping as Ū * = A GI (κ) Ȳ and is computed from ( 16)-( 17) as:

A GI (κ) . = κ 2 t s F T F + ḠQ Ḡ -1 ḠQ Similarly, defining the predicted ouputs vector as Y . = [y T 1 . . . y T Nproc ] T , the mapping between data and predicted outputs is Y = S(κ) Ȳ where S(κ) . = ḠA GI (κ). S is typically referred to as the data resolution or smoother matrix.

The data prediction error ǫ Y = Ȳ -Y = (I -S) Ȳ is included in the optimization problem by considering its root mean square deviation. The model resolution is included using the covariance matrix cov( Ū * ) = A GI cov( Ȳ )A T GI . This matrix determines the degree of error amplification induced by the mapping between data and model parameters [START_REF] Menke | Geophysical data analysis: Discrete inverse theory[END_REF]. The diagonal elements of cov( Ū * ) measure the width of the data distribution and these elements can be mapped into the output space using the Green's function. The rugosity parameter is thus determined as:

κ * = min κ rmsd( Ȳ -Y ) + rmsd( Ỹu ) (18) 
where Ỹu = Ḡ diag(cov( Ū * )) reflects the model resolution impact on the output.

Bias versus variance

The rugosity tuning can also be considered as a tradeoff between bias and variance, measured by the crossvalidation (CV) curve. Such tool is extensively used for model selection (e.g. see the survey by [START_REF] Arlot | A survey of crossvalidation procedures for model selection[END_REF] and can be calculated, in the generalized crossvalidation (GCV) form as:

GCV(κ) = 1 N data ||(I -S(κ)) Ȳ || tr(I -S(κ))/N data 2
where N data is the number of data points, || • || is the Euclidean norm on R N data and tr(•) is the trace of the matrix. The optimization problem is in this case to find κ * that minimizes the GCV.

While CV methods typically necessitate a large data set, some recent results by [START_REF] Lukas | Robust generalized cross-validation for choosing the regularization parameter[END_REF][START_REF] Lukas | Strong robust generalized crossvalidation for choosing the regularization parameter[END_REF] allow for considering small data sets and for adjusting the robustness of the criterion. The robust GCV function is given by:

RGCV(κ) = γGCV(κ) + (1 -γ)µ(κ)GCV(κ) (19)
where µ(κ) . = tr(S(κ) 2 )/N data and γ ∈ [0; 1] is the robustness parameter (small for more robust results). The problem of correlated data has been considered in [START_REF] Lukas | Strong robust generalized crossvalidation for choosing the regularization parameter[END_REF], where the RGCV is improved to the R 1 GCV by setting µ(κ) = [tr(S(κ)) -tr(S(κ) 2 )]/[N data κ] in (19).

INVERSION FOR ISOTOPIC RATIOS

6.1 Isotopic model in δ units the concentration dynamics of two isotopes (x min and x maj ) and their isotopic ratio r, for k = 1, . . . , N t :

x min,k = A Dmin x min,k-1 + B Dmin x atm min,k (20) x maj,k = A Dmaj x maj,k-1 + B Dmaj x atm maj,k (21) r k = diag(1/x maj,k )x min,k (22) 
where x min , x maj and r ∈ R N , N being the number of discretization depths used to simulate the reference model described in the Appendix, and the state-space matrices are given by an appropriate transport model (in our case by [START_REF] Witrant | A new multi-gas constrained model of trace gas nonhomogeneous transport in firn: evaluation and behavior at eleven polar sites[END_REF] for trace gas transport in firns).

The system inputs are the atmospheric concentrations x atm min (unknown) and x atm maj (known). The initial condition of the major isotope is calculated according to (7) while the one of the minor isotope results from the optimization process. The time-evolution of x maj is calculated using (21) and x atm maj . The LPV model of the ratio is obtained by combining ( 20) and ( 22) as:

r k = diag(1/x maj,k ) A Dmin x min,k-1 + B Dmin x atm min,k = A D,k r k-1 + diag(1/x maj,k )B Dmin x atm min,k (23) with A D,k . = diag(1/x maj,k )A Dmin diag(x maj,k-1 ).
From definition (1) we can use the changes of variables x atm min = (δ atm /1000 + 1) R std x atm maj ∈ R and δ k = (r k /R std -1) × 1000 ∈ R N to get, using

δ k 1000 = 1 R std A D,k r k-1 + diag(1/x maj,k )B Dmin x atm min,k -1 = A D,k δ k-1 1000 + 1 + B D,k δ atm k 1000 + 1 -1
where B D,k . = diag(x atm maj,k /x maj,k )B Dmin and 1 ∈ R N is a column vector of ones. Hence:

δ k = A D,k δ k-1 + B D,k δ atm k +10 3 (A D,k × 1 + B D,k -1) (24) 
Supposing a steady-state initial condition, it follows that:

δ 0 = (I N -A D,0 ) -1 B D,0 δ atm 0 (25) +1000 (I N -A D,0 ) -1 (A D,0 × 1 + B D,0 -1)
The δ isotopic ratio model ( 24)-( 25) is thus a LPV system (the dominant isotope being the varying parameter) that belongs to the general class of systems ( 2)-( 7). Note that a physical modeling approach based on the PDE transport model also leads to the same conclusion, as described in the Appendix.

6.2 δ 13 CH 4 atmospheric scenario estimation from firn air measurements at DE08

Our inverse scenario method is evaluated on the isotopic ratio δ 13 CH 4 of 13 CH 4 (x min ) versus 12 CH 4 (x max ) at the DE08 polar site. Atmospheric measurements for δ 13 CH 4 are available since 1978, as described by [START_REF] Francey | A history of δ 13 C in atmospheric methane from the cape grim air archive and antarctic firn air[END_REF], and we can thus evaluate the inverse method efficiency. DE08 is an ice core for which the measurements are particularly sparse. However it is considered as the most reliable site for isotopic scenario reconstruction because isotopic fractionation in firn is minimal [START_REF] Sapart | Reconstruction of the carbon isotopic composition of methane over the last 50 yr based on firn air measurements at 11 polar sites[END_REF]. Undergoing a high snow accumulation rate, the In atmosphere (δ units) Fig. 1. Efficiency of the inverse scenario strategy for δ 13 CH 4 at DE08 (all data are from [START_REF] Francey | A history of δ 13 C in atmospheric methane from the cape grim air archive and antarctic firn air[END_REF]. Left pannel: estimated scenarios (plain lines), 2 σ limit (dashed lines) and atmospheric data ('+').

Right pannel: final time distributions (plain lines) and ice core measurements ('o')

DE08 firn air covers a short period of time with a high time resolution [START_REF] Witrant | A new multi-gas constrained model of trace gas nonhomogeneous transport in firn: evaluation and behavior at eleven polar sites[END_REF].

The input estimation results are presented on Figure 1, where the estimated scenarios (top) and their corresponding final time distribution (bottom) are calculated for the different rugosity tuning strategies discussed in Section 5. The time range is set according to the drilling date (1993) and the gas transport time at DE08 (≈ 20 years). For this specific isotopic ratio/ice core combination the tuning methods are consistent and provide almost identical results (superposed curves in the figure). While the final time distributions remain in the error bars, a strong weight has been set on the rugosity by the tuning methods (due to the very limited number of measurements). The optimal rugosity values for RMSD, GCV, RGCV and R1GCV are 2850, 3772, 3808 and 4444, respectively. The robustness weight in the RGCV is set as γ = 7 × 10 -4 (based on entensive model validation on multiple sites and for multiple gases) and has to be increased up to 0.9 to observe an increased robustness (and hence an increased rugosity, which does not appear as a necessary issue in our case).

CONCLUSION

We formulated the input estimation problem for LPV systems as an inverse problem where the input/output relationship is described by a known time-varying mapping, formalized with a Green's function. This allowed us to find an analytical solution for optimal input estimation, in the least-squares sense, parameterized in terms of the input rugosity (regularization coefficient). Several stochastic methods were investigated to automatically tune this coefficient. A new LPV model was derived to describe the time-variation of isotopic ratio and our method was shown to effectively estimate the atmospheric history of chemical species from polar firn measurements. Future works will consider the accuracy and sensitivity of the automatic tuning methods when more measurements are available (e.g. in the multi-sites case). The impact of data calibration (which sometimes differ depending on the data) is also a topic of interest.

Appendix A. ISOTOPIC RATIOS IN FIRN AIR

Considering two trace gases concentrations ρ 1 and ρ 2 , the physical models are given by the trace gas model proposed in [START_REF] Witrant | A new multi-gas constrained model of trace gas nonhomogeneous transport in firn: evaluation and behavior at eleven polar sites[END_REF] as, for i = 1, 2:

where f is the volume fraction of open porosity, τ the rate of mass exchange between open and closed air networks, v the firn sinking velocity, w air the air velocity, D i the effective diffusivity, M i the gas molar mass, g the gravitational acceleration, R the ideal gas constant and T the temperature. The δ ratio definition implies that:

The resulting linear model in δ(z, t) is obtained as:

where ρ 2 acts as the varying parameter.

The upper boundary condition is δ(0, t) = δ atm (t). For the bottom boundary condition (at z = z f ), we start from the definition:

to derive:

Hence we have a non-homogeneous boundary condition: