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Joint diffusivity and source estimation in tokamak plasma heat

transport*

Sarah Mechhoud1, Emmanuel Witrant1, Luc Dugard1 and Didier Moreau2

Abstract— : In this work, we focus on the diffusivity and
source identification in the electron heat transport model.
This phenomenon is described by a second-order parabolic
differential equation with distributed diffusion parameter and
input. Once existence and uniqueness conditions of the heat
model solution are established, a spectral Galerkin method is
used to express this solution in the finite dimensional frame-
work. The time-space separation and the Kalman filter are
combined to simultaneously estimate the distributed variables
(diffusion coefficient and the input). Computer simulations on
both simulated and real data are provided to illustrate the

performance of the proposed technique.

I. INTRODUCTION

Distributed parameter systems (DPS) widely exist in in-

dustrial processes. These physical and chemical systems are

governed by partial differential equations (PDE) and complex

spatio-temporal nonlinear dynamics. In many situations, it

is difficult to get an accurate nominal PDE description due

to incomplete physical or chemical knowledge (unknown

system parameters, unknown disturbances...). These uncer-

tainties make the modelling problem tedious. A tokamak

is complex physical system composed of several DPS pro-

cesses. In this work, we consider heat transport. It is one

of the main issues in controlled fusion research. The heat

transport is described by a one-dimensional diffusion equa-

tion in a cylinder, where electrons and ions heat diffusivity

are distributed (time and space-varying). Several empirical

models for the diffusion coefficient in hot plasmas exist.

They depend on several conditions (tokamak dimensions,

discharge parameters and temperature profile to name a

few), but all of them assert the diffusivity dependence on

temperature gradient, magnetic and velocity shears. As a

consequence, the heat model becomes nonlinear, complex

and coupled with other variables. Another unknown quantity

is the heating energy absorbed by the particles or what we

call the source term. It depends on the power deposition pro-

files and efficiencies of the various heating systems (radio-

frequency waves and high-energy neutral beams), and is

sometimes difficult to model because of parasitic phenomena

and anomalous energy losses. To derive an experimentally-

based model, the diffusion coefficient is assumed to be an
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unknown variable and we aim to reconstruct this coefficient

and the source term using parameter identification tools.

These parameters are very important for the development

of current and pressure profile control strategies. In general,

estimating a partial differential equation (PDE) in an infinite

dimensional framework is a challenging task. We thus first

convert the PDE into a finite dimensional system. This

system can be derived using various numerical methods

like finite difference method (FDM), finite element methods

(FEM), spectral methods (SM) and others. We consider the

spectral method in the Galerkin formulation scheme. It uses

a set of global expansion functions for the approximate solu-

tion. Thus few parameters are needed to represent a smooth

approximate solution. Since the diffusion parameter and the

source term are space-time variables, each one is projected

on its appropriate finite dimensional subspace. Hence, the

PDE is converted into a set of ordinary differential equations

(ODE), which can be temporally discretized in order to

obtain a discrete-time system and to be able to choose

an appropriate identification method. Aiming to estimate

states, parameters and the source term, the problem becomes

nonlinear. One of the most well-known and trustworthy

nonlinear filters is the extended Kalman filter (EKF), based

on the linearization of the nonlinear dynamics around the

posterior/prior estimated state with the first order Taylor

series expansion. In the standard EKF, the deterministic

inputs in the model should be known. Otherwise, a high bias

is introduced into the state estimation. In [1], [2], [3], the

approach was to use a minimum-variance-unbiased (MVU)

estimator to reconstruct both states and unknown inputs

and only the MVU optimality was proven. In [4], a novel

approach that considers the unknown inputs as a part of the

state instead of disturbances was presented. By minimising

the weighted least squares objective function with respect to

an extended variable including states and unknown inputs,

the proposed filter is a more general extension of the EKF.

It guarantees, under the observability condition, the global

optimality for both state and unknown inputs estimation in

a least square sense. When there is no direct relationship

between the inputs and the outputs, the filter was named

by its authors the Extended Kalman Filter with Unknown

Inputs Without Direct Feed through (EKF-UI-WDF). For a

nonlinear problem, the EKF-UI-WDF is still a first order

linearization of the dynamics. While other filters like the

Unscented Kalman filter can approximate the nonlinearities

at least to the second order, the simplicity of the EKF’s

implementation (compared to the UKF) motivated us to

select it as a first approach.



This paper is organized as follows: Section II describes the

heat transport model in plasma, the existence and unique-

ness of the problem solution and the continuous spectral

Galerkin formulation. The identification problem formulation

and the EKF-UI-WDF application are presented in Section

III. Both simulations with computed and real measurements

data are provided to illustrate the performance of the chosen

approach. The conclusion and future work are presented in

Section IV.

II. ELECTRON HEAT TRANSPORT MODEL

Assuming the poloidal and toroidal axisymmetry, the

tokamak is considered as an infinite cylinder where space

variations occur only along the radius r (r ≤ a). Applying

the energy conservation principle, neglecting the spatio-

temporal variations of the electron density with respect to

the temperature variations and using the normalized variable

z =
r

a
, the electron heat transport model is given by the

following parabolic partial differential equation [5]:
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∂
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zχe(z, t)
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)
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τ
T (z, t) + S(z, t)

∂T

∂z
(z = 0, t) = 0; T (z = 1, t) = 0;

T (z, t = 0) = 0; z ∈ Ω; t ∈]0, tf ]

(1)

where t is the time, Ω is the interval ]0, 1[, χe is the electron

diffusion, τ(< ∞) is a damping time modelling the energy

losses, T is the electron temperature and S is the power

density absorbed by the particles from an external heating

system.

In system (1), the second and third equations represent initial

and boundary conditions, chosen to guaranty the symmetry

and boundedness of the solution near zero.

A. Existence and uniqueness of the solution

First, let us introduce these Hilbert spaces:

L2(Ω) = {f :
∫

Ω f2 ∂Ω < ∞} and its usual norm ‖.‖0,

H1
0,{1}(Ω) = {f ∈ L2(Ω) : f |1 = 0 , ∇f ∈ L2(Ω)}

endowed with the inner product (. , .) and the norm ‖ .‖1,

defined respectively as follows:
{

∀f , g ∈ (H1
0,{1}(Ω))

2 : (f, g) =
∫

Ω f g ∂Ω.

∀f ∈ H1
0,{1}(Ω) : ‖ f‖1 = ‖ f ‖0 + ‖∇f ‖0. (2)

Let Xe be a set defined as ∀x ∈ Ω, ∀ t ∈ [0, tf ]:

Xe = {f ∈ L2(0 , tf ;L
2(Ω)) : f(x, t) > c > 0}

To get the variational formulation of this problem, we first
multiply equation (1) by a test function v(z) ∈ H1

0,{1}(Ω)
and then integrate on Ω. Using the Green formula and the
boundary conditions leads to:

∫
1

0

∂T

∂t
v(z)dz = −

∫
1

0
χe(z, t)

∂T

∂z

dv

dz
dz − 1

τ

∫
1

0
T (z, t)v(z)dz

+
∫

1

0
S(z, t)v(z)dz

(3)

Let us associate with T the mapping T(t):

T : [0 , tf ] −→ H1
0,{1}(Ω)

defined by: T(t) := T (z, t)
The bilinear form b on H1

0,{1}(Ω) is given by:

b : H1
0,{1}(Ω)×H1

0,{1}(Ω) −→ R

(T, v) 7−→
∫ 1

0
χe(z, t)

∂T

∂z

dv

dz
dz

+ 1
τ

∫ 1

0 T (z, t)v(z)dz

and L is a linear form defined on L2(0, tf ;H
−1(Ω)) such

that:

∀v ∈ H1
0,{1}(Ω), L(t)(v) =

∫ 1

0

S(z, t) v(z) dz

where H−1(Ω) is the dual space of H1
0,{1}(Ω).

Equation (3) can then be written as:










d

dt
(T(t), v)− b(T(t), v) = L(t)(v); ∀v ∈ H1

0,{1}(Ω)

T(0) = T (x, 0) = 0

(4)

and it is the weak formulation of problem (1).

Theorem1: Under the previous definitions and for all χe

in Xe, τ in R
∗
+ and S in L2(0, tf ; L

2(Ω)), the system

(4) admits a unique solution in L2(0, tf ;H
1
0,{1}(Ω)).This

solution is stable with respect to the data (χe, τ, S).

Proof : First note that for the bilinear form b:

∀χe ∈ Xe, τ ∈ R
∗
+ :

|b(T, v)| ≤
(

‖χe(x, t)‖0 +
1

τ

)

‖v‖1 ‖T ‖1

from the Cauchy-Schwartz inequality and norm’s ‖.‖1 defi-

nition, |.| is the absolute value operator. Second:

∀v ∈ H1
0,{1}(Ω), ∀χe ∈ Xe : |b(v, v)| ≥ c

√

(1 + C(Ω))
‖v‖1

where C(Ω) is the Poincaré constant. Hence, the bilinear

form b is continuous and H1
0,{1}-coercive.

For the linear form L:

∀S ∈ L2(0, tf ;L
2(Ω)) : |L(t)(v)| ≤ ‖S(x, t)‖0‖v(x)‖1

then, L is continuous and using the Lax-Milgram theorem,

the results in Theorem1 are guaranteed. This concludes the

proof.

To get the classical solution of Eq.(1): T (z, t) ∈
C1(0, tf ;C

2(Ω)), the following regularity conditions have

to be fulfilled:






S ∈ C0(0, tf ; C
0(Ω))

χe ∈ C0(0, tf ;C
1(Ω))

Note that these regularity conditions are not restrictive and

are consistent with the physical properties of χe and S.



B. Spectral Galerkin formulation

Once the well-posedness of the heat model is asserted, an

approximate solution can be derived.

As mentioned in the introduction, we are working in the

Galerkin formulation framework, where the residuals of the

approximation are made orthogonal to the space of the

approximate solution. An efficient method that leads to a

low-order model is the spectral-Galerkin method. In this

technique, it is assumed that the exact solution of system (1)

can be expressed as an infinite sum of global shape functions

{wi(x)}∞i=0 multiplied by their corresponding weighting

coefficients {xi(t)}∞i=0. These shape functions are generally

chosen to form an orthonormal basis of the solution space.

Then, the approximate solution is extracted by truncating this

expression.

Consequently, for a fixed n, the finite dimensional space of

approximation Vn is given by:






Vn = span{ω1, ω2, ..., ωn}

Vn ⊂ Vn+1 et ∪Vn = H1
0,{1}(Ω)

and the restriction of T (z, t) and v(z) on Vn gives:
{

T (z, t) =
∑n

k=0 xk(t)ωk(z)
v(z) =

∑n

k=1 αkωk(z)
(5)

By substituting (5) in (4), the PDE (1) is converted into a

set of ODEs in the continuous time domain given by:






Ẋ(t) = A(t)X(t) +B(t)

X(0) = 0.
(6)

where: X(t) = [x1(t), x2(t), ..., xn(t)]
T (X ∈ R

n),
A(t) ∈ R

n×n is the matrix of dynamics, symmetric and

given by:

A(t) = −





∫

1

0
χe(z, t)ω

′2

1
(z)dz + 1

τ
...

∫

1

0
χe(z, t) ω′

1
(z) ω′

n(z)dz

.

.

.
. . .

.

.

.
∫

1

0
χe(z, t) ω′

1
(z) ω′

n(z)dz ...
∫

1

0
χe(z, t) ω

′2

n (z)dz + 1

τ





and the input vector B(t) ∈ R
n is given by:

B(t) =







∫ 1

0 S(z, t) ω1(z)dz
...

∫ 1

0
S(z, t) ωn(z)dz







The basis functions wk(x) should be carefully selected. The

most popular ones are the Fourier series, the orthogonal

polynomials and the eigenfunctions of the PDE operator.

Since the Fourier series are suited for periodic problems

(otherwise the exponential convergence is no longer

guaranteed) and the orthogonal polynomials lead to a set

of algebraic differential equations (these polynomials do

not naturally satisfy the boundary conditions), we chose the

eigenfunctions of the Laplace-Dirichlet-Neumann operator

as the basis functions of our problem. These eigenfunctions

can be seen as some modified Fourier series [6] and form

an orthonormal basis of H1
0,{1}. They are given by:

wk(x) = cos
(π

2
x (2k − 1)

)

, k = 1, 2, ..., n.

As our partial differential operator is spatio-temporal, the

generalization of the results on modified Fourier series

for aperiodic systems found in [6] is not straightforward.

Numerical simulations show that the expansion coefficients

decay like O(n−1).
To measure the error due to the approximation technique,

define the projection relative error (PRE) as:







PRE(z, t) =
Texp(z,t)−Trec(z,t)

Texp(z,t)
, z ∈ [0, 0.8]

Trec(z, t) =
∑n

i=1

(

∫ 1

0
Texp(z, t) wi(z) dz

)

wi(z)

where: Trec is the temperature profile reconstructed after

projection of the measured temperature Texp on the space

Vn. As the electron temperature model (1) does not include

the edge pedestal and plasma scrape-off phenomena, the PRE

is defined for z belonging to the interval [0, 0.8]. Fig. 1
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Fig. 1: (a) Spatio-temporal temperature Texp and its PRE

(b).

illustrates the PRE using the Tore Supra experimental data

TS 33632 with n = 20. The closer we get to the edge, the

larger is the PRE, but it is still below the 5% tolerated level.

III. JOINT DIFFUSION AND SOURCE

ESTIMATION

In this section, we focus on estimating simultaneously the

diffusion coefficient and the source term (χe and S, respec-

tively). The fundamental identification problem consists in

finding χe ∈ Xe, S ∈ L2(0, tf ;L
2(Ω)) which minimize the

following distributed least-squares criterion:

J(χe, S) =

∫ tf

0

∫ 1

0

(Texp(z, t)− T (z, t;χe;S))
2dz dt (7)

where Texp(z, t) is the experimental temperature profile and

T (z, t;χe;S) is the solution of (1). It has been proved in

[7] that, since the classical solution depends continuously on

the parameters (χe and S) due to the operator coercivity, the

approximate solution of (6) converges to the original one of

(1). Using the Ritz formulation, the estimation problem (7)

can be formulated as an approximate parameter estimation

problem given by:

Jn(χeM , SL) =

∫ tf

0

(yexp(t)− y(t;χeM ;SL))
2dt (8)



where y(t;χeM ;SL) is the output of the state space system

(6) and yexp is given by:
{

yexp(t) = [y1exp
(t), ..., ynexp

(t)]T

ykexp
(t) =

∫ 1

0
Texp(z, t) ωk(z) dz, k = 1, ..., n

(9)

The vector yexp forms the weighting coefficients coming

from the projection of the experimental profile data. {χeM }
and {SL} are parameters sequences that converge to the

parameters solution (χe, S) under the compactness condition

on the chosen parameters set (see section III in [7] for the

proof).

Since there exists sequences of orthonormal polynomials in

L2(Ω), for example the well-known Legendre polynomials,

the diffusion parameter χeM (z, t) can be expressed as fol-

lows:

χeM (z, t) =
M
∑

k=0

αk(t) pk(z) = θT (t) P (z). (10)

where {pi(z)}Mi=0 can be seen as global shape functions, and:






θT (t) = [α1(t), α2(t), ..., αM (t)] , θ ∈ R
M

P (z) = [p1(z), p2(z), ..., pM (z)]T .

The power deposition profiles that form the source term in

the heat diffusion equation can often be approximated using

a Gaussian distribution, and it is difficult to represent it

accurately using orthogonal modal functions. We thus select

the cubic B-splines functions as an expansion basis:

SL(z, t) =

L
∑

k=0

ζk(t) bk(z) = B(z) β(t). (11)

where :






β(t) = [ζ1(t), ζ2(t), ..., ζL(t)]
T , β ∈ R

L

B(z) = [b1(z), b2(z), ..., bL(z)]

The matrix A(t) defined in Section II-B then becomes:

A(θT (t)) = −θ
T (t) ⊗









∫

1

0
P (z)ω′ 2

1
(z)dz + 1

τ
· · ·

∫

1

0
P (z)ω′

1
(z)ω′

n(z)dz

.

.

.
. . .

.

.

.
∫

1

0
P (z)ω′

1
(z) ω′

n(z)dz · · ·
∫

1

0
P (z)ω′ 2

n (z)dz + 1

τ









And (6) can be written as a linear parameter-varying system:






Ẋ(t) = A(θT (t)) X(t) +D β(t), X(0) = 0

y(t) = X(t)
(12)

where D ∈ R
n×L has the following form:

D =







∫ 1

0
ω1(z) b1(z) dz · · ·

∫ 1

0
ω1(z) bL(z) dz

...
. . .

...
∫ 1

0
ωn(z) b1(z) dz · · ·

∫ 1

0
ωn(z) bL(z) dz







This approach is different from the one presented in [7],

where the authors were interested only in parameters estima-

tion and where the projection operation was done simulta-

neously in time and space. This leads to a purely nonlinear

parameter estimation problem. The main advantage of our

formulation is to deal with only time-varying coefficients.

Note that, in previous works [8],[9], where the problem was

attempted to be solved in the finite dimensional framework,

the source term was considered as a known variable.

Remark:

The initial problem which consisted in estimating distributed

parameters in an infinite dimensional system is converted,

thanks to the Ritz-Galerkin formulation, to a finite di-

mensional estimation problem. Thus, process identification

techniques developed for state space systems can be used

to estimate both θ and β of system (12). The Kalman filter

is one of the widely used estimation techniques to jointly

estimate inputs and parameters.

A. Estimation using the EKF-UI-WDF

When the system inputs are not known, the KF-UI-WDF

provides an efficient observer to reconstruct them. The

recursive solution of this filter for estimating the states

and the inputs was first derived and presented in [4]. The

problem amounts to first minimize a weighted lest-squares

objective function (without any constraint or a priori

knowledge of the inputs) with respect to the actual states

and all the inputs from the initial time to the actual instant

and then find a recursive way to do this sequentially without

consuming storage memory.

In this section the KF-UI-WDF is extended to estimate

also the parameters using the same philosophy as the EKF.

To this end, we first extend the state vector in (12) to

include the unknown parameter θ and then discretize the

time-variation. Let:

f(X(t), θ(t)) =





(I + dt ∗A(θT (k)))X(k) + dt ∗ D β(k)

θ(k)





The discrete extended model is given by:






















xext(k + 1) = f(X(t), θ(t)) +





w(k)

0





y(k) = [In 0] xext(k) + v(k) = C xext(k) + v(k).

(13)

where: x
ext

(k+1) =

(

X(k + 1)
θ(k + 1)

)

is the extended state, C =

[In 0] is the observation matrix, dt is the time step, w(k) ∈
R

n and v(k) ∈ R
n are respectively the model uncertainty and

the measurements noise vectors, assumed to be independent,

white and Gaussian. They are characterized by:

E(w) = E(v) = 0, E(w(i)wT (j)) = Wδij , (14)

E(v(i) vT (j)) = V δij , E(v(i)w
T (j)) = 0.

Based on the above representation (13)-(14), the EKF-UI-

WDF approach can be used to estimate the extended state

x̂ext(k|k) and the inputs β̂(k − 1|k) given all the observa-

tions taken up to time k. The EKF asymptotic convergence

behaviour for observable systems is proved in [10]. In [4],

the optimality conditions are analysed. The only restriction



of this filter is to impose that the dimension of the outputs is

greater than the inputs (n > L), to ensure the uniqueness

of the estimated variables and for the extended case n
should be greater or equal to m+ L where m is the length

of the parameters vector. Unfortunately, like the KF, the

limitations of this filter are the hypotheses on the model and

measurements noises and the need for a perfect knowledge

of covariance matrices W , and V . If the latter can be known

for some applications, W can never be. In this work, W is

approximated using a recursive least-squares approach [11]:

W (k) = (λ−1 − 1)Px(k|k). (15)

where λ is the forgetting factor, setting how much old

measurements can be neglected, and preventing the Kalman

gain from converging to zero.

B. Simulation and experimental results

Simulations with computed and experimental data are

carried out to evaluate the reconstruction performance of the

adopted method. In both cases, the dissipation parameter τ is

assumed to be known and constant, given by [12] empirical

model. This assumption leads to a low-order of the problem

conditioning number.

1) Illustrative example:: The simulated data is generated

using:














χe(z, t) = (0.1 + 5z + 2z2 + 4z3)1(t)(m2/s); τ = 0.05(s)

S(z, t) =
105√
2 π σ

exp

(−(z − µ)2

2 σ2

)

1(t)(MW )

z ∈ [0, 1], t ∈ [0, 1], dz = 0.05, dt = 0.01.

(16)

where the operator 1(t) indicates that χe and S are constant

in time. The choice of χe, τ and S is motivated by the

example proposed by [13]. It was assumed that the diffusion

coefficient has a monomial monotonically increasing func-

tion and the heating source undergoes a spatial Gaussian

form. These parameters were considered constant in time.

Fig. 2 shows that using a Legendre basis of minimum

admissible dimension m = 4, the approximation error of χe

is of the order of 10−15, and using a cubic B-splines basis

of order L = 10, the relative approximation error of S is

around 10−4. This led us to take n ≥ 14 for the temperature

basis.
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Fig. 2: Approximation errors of χe and S for the simulated

example

To evaluate the reconstruction performance using the EKF-

UI-WDF, the initialization of the filter was arbitrary. The

covariance matrix of the model noise W is given by (15)

with λ = 0.9, the measurements covariance noise V is set to

10−3In and the state error covariance matrix is 10 In+M .
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Fig. 3: Estimation errors of χe and S for the simulated

example
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Fig. 4: Relative estimation error of the temperature profile T
and the trace of Px(k|k) for the simulated example

From Fig. 3 and Fig. 4, the estimation of χe, S and T using

the EKF-UI-WDF is very good. The filter needs only few

iterations to converge exponentially to the original variables,

the trace of the estimation error covariance matrix is an

exponential decreasing function of time and converges to

10−3.

2) Experimental results: Tore Supra is a large tokamak

with a superconducting toroidal magnet with plasma minor

radius a = 0.72m and major radius R = 2.4m. We consider

the discharge TS 33632, where heating is mainly due to

the radio-frequency power at the Ion Cyclotron Resonant

Heating (ICRH) frequency. For the projection method, like

in Section II-B, the temperature projection basis is n = 20.

For χe and S, the bases orders are m = L = 10. Simulations

show that even if larger bases dimensions are considered the

improvement is negligible while the conditioning number

is increased. Fig. 5 presents the estimated profiles of χe

and S in the spatial validity interval (z ≤ 0.8). Both are

positive without enforcing this constraint in the Kalman filter

criterion. The EKF-UI-WDF performs well since the relative

estimation error of T in Fig. 6 converges to 10−3 on average,

the trace of Px(k|k) is decreasing and the standard deviation

converges to 0.5 eV . Integrating the estimated source term

S over the plasma volume using (17) gives the estimated
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Fig. 5: Estimated profiles of χe and S
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Fig. 6: Relative estimation error of T and the trace of

Px(k|k)

absorbed power denoted by Estimated Pe.

Estimated Pe = 6 e π2 a2 R

∫ 1

0

n(x, t)S(x, t)x dx, (17)

where e is the electron’s charge and n is the measured

electron density. The superposition of the input power

(Pe, in red dashed-line) and the absorbed estimated power

(Estimated Pe, continuous blue line) is presented in Fig.7.

The temporal power form is consistent with the estimated,

with a different magnitude probably due to energy losses

(equipartition with ions, convection, radiation).
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Fig. 7: Pe and Estimated Pe

IV. CONCLUSION

In this paper we discussed a method of estimating dis-

tributed parameters in a finite dimensional framework for

linear parabolic PDEs. First we dealt with the direct problem,

which consists in proving its well posedness and then devel-

oping an approximate solution using the spectral-Galerkin

method. Under the Ritz-Galerkin formulation, the spatio-

temporal problem was reduced to a state-space time-varying

parameter model, and then the EKF-UI-WDF was used to

estimate simultaneously the states, the parameters and the

inputs. The major difficulty is the choice of the projection

basis: a trade-off between precision and stability of the

solution has to be done. Simulation and experimental results

testified the interest of the adopted methodology. To overtake

the EKF restrictions, other filters like the UKF can be used

combined with the square-root implementation to guarantee

the stability and to fix the conditioning number problem. This

strategy will be the subject of future works.
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