
HAL Id: hal-00931649
https://hal.science/hal-00931649v1

Submitted on 15 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Test Generation and Evaluation from High-Level
Properties for Common Criteria Evaluations - The

TASCCC Testing Tool
Frédéric Dadeau, Kalou Cabrera Castillos, Yves Ledru, Taha Triki, German

Vega, Julien Botella, Safouan Taha

To cite this version:
Frédéric Dadeau, Kalou Cabrera Castillos, Yves Ledru, Taha Triki, German Vega, et al.. Test Gen-
eration and Evaluation from High-Level Properties for Common Criteria Evaluations - The TASCCC
Testing Tool. ICST 2013, 6th Int. Conf. on Software Testing, Verification and Validation, Testing
Tool track, Jan 2013, Luxembourg. pp.431 - 438. �hal-00931649�

https://hal.science/hal-00931649v1
https://hal.archives-ouvertes.fr


Test Generation and Evaluation from High-Level
Properties for Common Criteria Evaluations

– The TASCCC Testing Tool –

Frédéric Dadeau∗, Kalou Cabrera Castillos∗, Yves Ledru†, Taha Triki†, German Vega†, Julien Botella‡ and Safouan Taha§
∗FEMTO-ST Institute UMR 6174 - INRIA CASSIS, 16 route de Gray, F-25030 Besançon cedex, France

Email: {frederic.dadeau,kalou.cabrera}@femto-st.fr
†UJF-Grenoble 1/Grenoble-INP/UPMF-Grenoble 2/CNRS, LIG UMR 5217, F-38041, Grenoble, France

Email: {yves.ledru,taha.triki,german.vega}@imag.fr
‡Smartesting, 18 rue Alain Savary, F-25000 Besançon, France

Email: julien.botella@smartesting.com
§SUPELEC Systems Sciences - Computer Science Department, 3 rue Joliot-Curie F-91192 Gif-sur-Yvette cedex, France

Email: safouan.taha@supelec.com

Abstract—In this paper, we present a model-based testing tool
resulting from a research project, named TASCCC. This tool
is a complete tool chain dedicated to property-based testing
in UML/OCL, that integrates various technologies inside a
dedicated Eclipse plug-in. The test properties are expressed in a
dedicated language based on property patterns. These properties
are then used for two purposes. First, they can be employed to
evaluate the relevance of a test suite according to specific coverage
criteria. Second, it is possible to generate test scenarios that
will illustrate or exercise the property. These test scenarios are
then unfolded and animated on the Smartesting’s CertifyIt model
animator, that is used to filter out infeasible sequences. This tool
has been used in industrial partnership, aiming at providing
an assistance for Common Criteria evaluations, especially by
providing test generation reports used to show the link between
the test cases and the Common Criteria artefacts.

Keywords-Model-based testing, UML/OCL, property patterns,
coverage criteria, test scenarios, test reports, Common Criteria.

I. INTRODUCTION

Starting in 2009, and ending in 2012, the TASCCC project1

aimed at the assistance of the validation engineer and evalua-
tors in the complex tasks of both preparing and performing
a Common Criteria evaluation [1]. The key idea in such
evaluations is to be able to provide and exhibit evidence
that, among others, the testing phase has been extensively
performed. The project thus aimed at two goals. First, it
was intended to reduce the test generation effort by offering
a new way to automatically generate security-oriented tests.
Second, it aimed at simplifying the Common Criteria evalua-
tion process by automatically compiling relevant information
to be provided to the evaluator. The project involved three
academic partners (FEMTO-ST, LIG and SUPELEC), and four
industrial partners (Gemalto, Serma Technologies, Smartesting
and Trusted Labs).

To address these two issues, these project partners have
proposed two complementary approaches. The first approach

1funded by the French National Research Agency under grant ANR-09-
SEGI-014

aims at using test properties in order to generate model-
based test cases. These test properties are expressed using test
patterns describing temporal aspects of the system under test.
These test properties are then used either for evaluating the
relevance of a given test suite, in terms of property coverage,
or for generating new model-based test cases. The second
approach aims at producing test generation reports that relate
the test cases to the various artefacts required by the Common
Criteria evaluation. Both approaches have been implemented
in a dedicated testing tool framework, called TASCCC, which
relies on an existing model-based technology, namely the
CertifyIt tool [2] provided by the Smartesting company. This
tool takes a UML/OCL model as input and automatically
generates functional test cases using a structural coverage
criterion, based on the control-flow paths of the OCL code
within the operations.

The TASCCC prototype is an Eclipse plug-in that integrates
the various technologies provided or developed by the different
partners of the project. The workflow of the tool matches the
different workpackages of the project summarized in Fig. 1.
From the initial requirements, called Functional Security Pro-
file (FSP), the validation engineer extracts test properties that
are expressed at the model level. Such properties express the
occurrence, absence, or sequences of given events when the
system is being executed. The validation engineer then selects
the property coverage criterion he wants to apply. The tool
automatically computes test scenarios that either illustrate the
property, or check the robustness of the system, by attempting
to perform forbidden actions. The test scenarios are expressed
as regular expressions representing sequences/choices/repe-
titions of operation calls, possibly reaching specific model
states. Such scenarios then need to be unfolded and filtered
so as to eliminate sequences that would not be executable at
the model level. To do so, two complementary tools interact:
TOBIAS [3], which is in charge of unfolding the scenario
into (unverified) test cases, and the model animation engine
of CertifyIt, which is in charge of animating each test case



Fig. 1. Overview of the TASCCC process

on the UML/OCL model. If the test case can be entirely
animated on the model, it is kept in the CertifyIt test repository.
Otherwise, it is discarded. The test repository contains all the
test cases produced during the process. It can be exported in a
dedicated XML format that provides all the test cases and
their characteristics (steps, expected results, covered model
artefacts, etc.). This test suite can then be concretized into
test scripts to be run on the system under test. In addition, the
test suite can be exploited to produce test generation reports
that will be used for the Common Criteria evaluations. These
reports include traceability information to link test cases with
the initial functionalities and properties involved.

This paper describes, and illustrates on the tool, these differ-
ent steps as follows. Section II briefly explains the UML/OCL
models we consider and introduces a running example that will
be used to illustrate the various possibilities of the tool. Then,
Section III describes the test property description language, ex-
plains its semantics and gives the associated property coverage
criteria that are implemented within the tool. Section IV shows
the two usages of these coverage criteria: the evaluation of an
existing test suite, and the generation of test cases, involving
the coupling of the TOBIAS tool and the animation engine of
CertifyIt. The production of test reports and their relationship
with the Common Criteria artefacts is given in Section V.
Finally, Section VI summarizes the features of the tool.

II. UML/OCL MODELS – RUNNING EXAMPLE

This section introduces the UML/OCL subset that is con-
sidered, along with a running example.

A. Considered Subset of UML/OCL

The UML models we consider are those supported by the
CertifyIt test generation tool, developed by the Smartesting
company. This tool automatically produces model-based tests
from a UML model [4] with OCL code describing the
behaviors of the operations. CertifyIt does not consider the

whole UML notation as input and relies on a subset named
UML4MBT which considers class diagrams, to represent the
data model, augmented with an imperative form of OCL
constraints [5], to describe the dynamics of the system. It also
requires the initial state of the system to be represented by an
object diagram. Finally, a statechart diagram can be used to
complete the description of the system dynamics.

Regarding modelling, some restrictions apply on the class
diagram model and OCL constraints. The system under test
(SUT) has to be modeled by a single class, which carries
all the operations representing the control points provided by
the SUT. CertifyIt does not allow inheritance, nor stereotypes
like abstract or interface on the classes. Objects can not be
created when executing the model. As a consequence, the
object diagram, representing the initial state, has to provide
all the possible class instances, possibly isolated (i.e., not
associated to the SUT object or any other object) to specify
that they are not supposed to exist at the initial state.

OCL provides the ability to navigate the model, select
collections of objects and manipulate them with universal/ex-
istential quantifiers to build first-order logic expressions. Re-
garding the OCL semantics, UML4MBT does not consider the
third logical value undefined that is part of the classical OCL
semantics. All expressions have to be valuated at run time in
order to be evaluated. CertifyIt interprets OCL expressions
with a strict semantics, and raises execution errors when
encountering null pointers. The overall objective is to take
advantage of an executable UML/OCL model. Indeed, the test
cases are produced by animating the model according to a
given test scenario. Before describing this process, we first
introduce our running example.

B. Running Example

The running example we consider represents a web appli-
cation, called eCinema, that makes it possible, for registered
and authenticated users, to buy tickets for the movies played in



Fig. 2. Class diagram of the eCinema application

the cinema. The UML class diagram is depicted in Fig. 2. The
ECinema class represents the system under test and provides
its API. The User class represents the user that can be
registered and/or connected to the application. Once connected
the user can buy tickets associated to a given Movie.

The behavior of the operations is expressed using OCL
code. Figure 3 shows the OCL code of the login operation
that authenticates the user after having checked its login
and password. This operation is written in a defensive style,
meaning that its precondition is always true. The postcondition
thus contains all the possible execution results, that may be
correct, or incorrect for any reason.

Notice that code branches are annotated with special tags,
starting with @REQ or @AIM and identifying specific behaviors
of the operation. In the CertifyIt test generator, such annota-
tions are used to trace the initial requirements. When a test
is computed it is thus possible to know which path in the
code has been activated and which of these requirements are
covered.

In practice the UML/OCL test model has to be designed
using the Rational Software Architect from IBM [6], for which
Smartesting provides a plug-in, that makes it possible to export
the model in the CertifyIt format. Once the model is designed,
it can be used as an input to the TASCCC prototype.

context login(in_name,in_password)::effect:
---@REQ: ACCOUNT_MNGT/LOG
if in_name = USER_NAMES::INVALID_USER then

---@AIM: LOG_Empty_User_Name
message= MSG::EMPTY_USERNAME

else
if not all_registered_users->exists(name=in_name) then

---@AIM: LOG_Invalid_User_Name
message= MSG::UNKNOWN_USER_NAME_PASSWORD

else
let user_found : User = all_registered_users

->any(name = in_name) in
if user_found.password = in_password then

---@AIM: LOG_Success
self.current_user = user_found and
message = MSG::WELCOME

else
---@AIM: LOG_Invalid_Password
message = MSG::WRONG_PASSWORD

endif
endif

endif

Fig. 3. OCL code of the login operation

III. TEST PROPERTY DESIGN USING PATTERNS

This section describes the test property language, named
Temporal OCL [7], that acts as an overlay to the standard OCL
constraints to express temporal properties on the system.

A. Syntax and Semantics

The property description language is a temporal extension
of OCL. It relies on the proposal of Dwyer et al. [8] in
which a temporal property is a temporal pattern that is applied
in a scope. Thus, the user can define a temporal property
choosing a pattern and a scope among a list of predefined
schemas. The scopes are defined from events and delimit the
impact of the pattern. The patterns are defined from events
and state properties to characterize execution sequences that
are correct. The state properties and the event are described
from OCL expressions. This language and its semantics are
detailed in [9].

There are two kinds of events. Events denoted by
becomesTrue(oclExpr), where oclExpr is a boolean
OCL expression, represent a change in the truth value of
a given predicate. This event is satisfied by an operation
call when the property oclExpr evaluates to false before
the operation call, and to true after the call. The other
kind of event is denoted by isCalled(op, pre, post,
{tags}) and represents operation calls. In this expression, op
designates an operation. pre and post are OCL predicates
respectively representing a precondition and a postcondition.
Finally, tags represent a set of tags that can be activated by
the operation call. Such an event is satisfied on a transition
when the operation op is called from a source state satisfying
the precondition pre and leading to a target state satisfying
the postcondition post and executing a path of the control
flow graph of the operation op which is marked by at least
one tag of the set of tags denoted {tags}.
There are five temporal patterns: (i) always oclExpr
means that state property oclExpr is satisfied by any
state. (ii) never E means that event E never occurs.
(iii) eventually E means that event E eventually occurs
in a state in the future. This pattern can be suffixed by a bound
which specifies how many occurrences are expected (at least/at
most/exactly k times). (iv) E1 (directly) precedes E2

means that event E1 (directly) precedes event E2. (v) E1

(directly) follows E2 means that event E2 is (directly)
followed by event E1.

There are five scopes that can apply to a temporal pattern
P : (a) P globally means that P must be satisfied on any
state. (b) P before E means that P must be satisfied before
the first occurrence of E. (c) P after E means that P must
be satisfied after the first occurrence of E. (d) P between
E1 and E2 means that P must be satisfied between any
occurrence of E1 followed by an occurrence of E2. (e) P
after E1 unless E2 means that P must be satisfied
between any occurrence of E1 followed by an occurrence of
E2 and even after an occurrence of E1 that is not followed
by an occurrence of E2.



We illustrate this language by formalizing a property of our
running example. We want to express an access control policy
that states that only authenticated users can successfully buy
tickets. We thus express three properties:

Property 1. “Before logging on the system, it is not possible
to buy a ticket”
never isCalled(buyTicket(), {@AIM:BUY_Success})
before isCalled(login(), {@AIM:LOG_Success})

Property 2. “After logging out and before logging in again it
is not possible to buy a ticket”
never isCalled(buyTicket(), {@AIM:BUY_Success})
after isCalled(logout(), {@AIM:LOG_Logout})
unless isCalled(login(), {@AIM:LOG_Success})

Property 3. “A ticket purchase may happen when the user is
connected”
eventually isCalled(buyTicket(),{@AIM:BUY_Success})
at least 0 times
between isCalled(login(), {@AIM:LOG_Success})
and isCalled(logout(), {@AIM:LOG_Logout})

A Temporal OCL editor has been designed during the
project2. This editor provides classical features such as syntax
highlighting and auto-completion based on the elements from
the UML model (operation names, class attributes, etc.) and
OCL syntax (collection operators, etc.) useful for writing OCL
predicates.

B. Property Automata and Coverage Criteria

The semantics of the property pattern language is described
as a labelled transition system that expresses the satisfaction
of the property. Once the property is loaded, it is automatically
translated into an equivalent automaton whose transitions are
labelled by events that occur on the system, originating from
the textual property.

For example, Figure 4 represents the automaton
associated to Property 1 described previously. On this
figure, transition E0 represents the isCalled(login(),
{@AIM:LOG_Success}) event, while transition E2
represents the isCalled(buyTicket(),
{@AIM:BUY_Success}) event. These two transitions
are called α-transitions, as they are labelled with events that
originate from the property. On the opposite, Σ-transitions
match the complementary events. This automaton contains
one final state (state 2 denoted by a double circle) that is
reached once the scope is over (once a successful login has
been performed). It also presents an error state (state X) that
is reached when the forbidden sequence is performed.

This formalism makes it possible to define coverage criteria.
Intuitively, one can guess that classical coverage criteria (all-
nodes, all-edges, all-k-paths) are not relevant here, since

2A standalone editor is also available from the author’s personal web page:
http://wwwdi.supelec.fr/taha/temporalocl/

Fig. 4. Property 1 Automaton Fig. 5. Property 3 Automaton

(i) all nodes are not necessarily reachable (if we assume
that the model satisfies the property, then the error states
are unreachable), (ii) all transitions are not of equal signif-
icance (Σ-transitions are not really interesting, contrary to
α-transitions, as they only represent internal actions of the
system that are used to activate α-transitions), and (iii) k-
path coverage should make a distinction between the loops
in the scope/pattern part of the automaton and the reflexive
Σ-transitions. We thus introduce dedicated coverage criteria.

1) Nominal Coverage Criteria: We now define the 4 nom-
inal coverage criteria that we consider, adapted from classical
automata coverage criteria. We illustrate these criteria on the
automaton depicted in Fig. 5 which represents Property 3.
In this figure, event E0 represents a successful login, event
E2 represents a logout, and E3 represents a successful ticket
purchase.
α-transitions coverage consists in covering the α-

transitions of the property automaton. On the example, this
coverage makes it possible to produce/identify test cases that
perform the following sequence E0 . . . E3 . . . E2.
α-transition-pairs coverage consists in covering relevant

pairs of α-transitions on the automaton. The considered pairs
depend on the considered scope/pattern combination. On
the example, relevant α-transition-pairs will be (E0,E3) and
(E3,E2).
k-pattern coverage consists in performing k iterations of

the part of the automaton that corresponds to the property pat-
tern. On the example, this consists in iterating the E3 transiton
without exiting the surrounding scope. Such a criterion may
not be applicable if the pattern is not repeatable (e.g. never or
eventually . . . at most).
k-scope coverage consists in performing k iterations con-

sisting in entering and exiting the scope of the property and
activating an α-transition of the pattern when possible. On
the example, this coverage makes it possible to cover path
containing E0 (. . . E2 . . . E0 . . . )* E2.

2) Robustness Coverage Criterion: The four previous cov-
erage criteria make it possible to illustrate a given property.
However, their relevance for some combination of scope/pat-
tern is arguable. Indeed, if we consider Property 1, whose
automaton is given in Fig. 4, that states the absence of a given



event, it is not possible to illustrate such property using the
above-mentioned criteria. The only applicable criterion is the
α-transition coverage that will only target transition 0

E0→ 2
(the other two transitions are not considered since they lead to
an error state). Nevertheless, it would be relevant to check that
it is not possible to successfully buy a ticket before logging
on the system, by forcing the purchase (without expecting it
to succeed), and terminating with a successful login.

In order to highlight such test sequences on the automaton,
we have defined a robustness criterion that acts as follows.
First, the automaton is modified so that the error state becomes
the only final state of the automaton. Second, the event
labelling a transition leading to this state is weakened, so as to
make it enabled on the model. In order to weaken the event,
the tool automatically performs some mutations on the event,
which can be classified into two categories:
• Modification/Deletion of the predicates in the pre/post

states of the event
• Modification/Deletion of the tags described in the event.
On our example of Property 1, we apply a tag dele-

tion mutation, which rewrites isCalled(buyTicket(),
{@AIM:BUY_Success} to isCalled(buyTicket()).

Then, the robustness criterion requires a test to cover
the mutated transition and then reach the final state of the
automaton to be satisfied.

These coverage criteria can be used at two purposes: evalu-
ating the coverage of an existing test suite, or generating test
cases. These two features are now described.

IV. EXPLOITING THE TEST COVERAGE CRITERIA

We present in this section how the previously described
coverage criteria are used in the TASCCC prototype.

A. Evaluation of an existing Test Suite

The first idea is to exploit these coverage criteria to check
that an existing test suite satisfies them, fully or partly. The
tool proceeds as follows. The test cases are replayed on
the UML/OCL model, using the CertifyIt animation engine,
while the exploration of the property automaton is done in
parallel. Each event that is matched activates a corresponding
transition in the automaton. In some cases, it is possible
that the exploration of the automaton reaches the error state,
meaning that the property is violated. In this case, the error can
be in the model, meaning that it does not respect the property,
but it may also be the property that is incorrectly specified.
Once the test suite has been fully executed, the tool generates
a test coverage report.

Figure 6 shows the content of a web page produced to
evaluate the nominal coverage of a given property by a test
suite. This page contains global statistics about the coverage of
the property, and then provides a detailed view of the property
coverage for each test case. Green lines indicate that the test
case reached a final state of the automaton, while grey lines
indicate that the test case was inconclusive (w.r.t. the property),

Fig. 6. Nominal Property Coverage Measure Report

Fig. 7. Robustness Property Coverage Measure Report

i.e. that it ended without reaching a final or error state. Finally,
red lines indicate a detected violation of the property.

When performing a robustness coverage measure, a similar
web page is obtained, as shown in Fig. 7. This latter presents
and summarizes, for the considered property, the applicable
mutations and the resulting modified automata, along with a
summary of their coverage by the test suite. For each modified
automaton, a web page similar to the one given in Fig. 6, is
also generated.

B. Test Scenario Generation and Unfolding

When the coverage of a property by the existing test
suite is not satisfactory, the validation engineer may produce



Fig. 8. Test Generation Report

additional test cases to increase the coverage objective he
wants to achieve.

In that sense, the tool can generate dedicated test scenarios
that, once unfolded and instantiated on the UML model,
will produce abstract test cases satisfying the considered
coverage criterion. The generated test scenarios are expressed
in TSLT, the Test Schema Language for TOBIAS. TSLT
proposes a human-readable high-level format in which the
validation engineer can write test schemas. These schema
describe sequences of operations, choices between sequences,
iterations of sequences, along with state predicates describing
intermediate states that must be reached by the test cases once
unfolded and executed.

On Property 1, the test scenario generator, for robustness
test cases, will produce a scenario such as

(Σ− {E0, E2′}) ∗ . E2′ . (Σ− {E0}) ∗ . E0

in which E2′ represents the mutated E2 event. In practice,
the (Σ − {. . .})∗ expressions will be replaced by a choice
between the different operations, representing the considered
events, except those appearing in the restriction. In addition,
the ∗ iteration operator has to be instantiated to a reasonable
value. Once exported in TSLT, all the events are instantiated
to operation calls.

The TOBIAS combinatorial tool is then used to unfold such
a regular expression. The resulting test sequences are then
played on the model, using the CertifyIt animation engine.
If a test sequence is not feasible, the test case is discarded.
Infeasible sequences may arise for different reasons at some
point of the scenario execution. First, it is possible that the
expected operation precondition is not satisfied. Second, the
requested operation behavior may not be activated. Third,
the operation may result in a state that does not fulfil the
expected postcondition. Fourth, and finally, the expected state
may not be reached. Unfolding a scenario can lead to a huge
number of candidate test cases. For example, a robustness
scenario created from Property 1 counts 1.89 billion test cases
and it would take too much time to animate every test case.
Therefore, an incremental evaluation algorithm has been used
to discard all test cases corresponding to the same prefix as
soon as this prefix fails [3]. Using this incremental evaluation,

the tool can select the 126 valid test cases out of 1.89 billion
candidates, in less than 4 minutes on a standard PC.

If a test sequence is feasible, meaning that it can be
animated entirely, then it is kept in the CertifyIt test repository,
enriching the existing test suite. The test suite can then be
exported into a specific XML test file that contains all the
information regarding the test cases (steps, expected output
results, covered requirements, etc.).

V. TEST REPORT GENERATION

The last feature of the TASCCC tool aims at helping the
validation engineers (resp. the Common Criteria evaluators)
to prepare (resp. perform) an evaluation of their product.
According to the Common Criteria standard [1], the valida-
tion engineer is requested to associate to each test case the
following artefacts:
• the TSFI (TOE –Target Of Evaluation– Security Func-

tional Interface) namely the operations of the system
containing sequences of actions (e.g. the buyTicket
command can be seen as a TSFI).

• the actions of a TSFI representing informal steps of the
operation execution (e.g. for the buyTicket TSFI, we
may have an action specified as “the application shall
check the authentication of the user”).

• the SFR (Security Functional Requirements) associated
to each action. They specify high level security functions
that may be provided by the system. (e.g. the previous
action can be associated to an access control SFR, such as
FDP ACC.1 “the TSF shall allow the buyTicket operation
for a authenticated user”).

In the current practices, the link between these elements is
provided in the design document, meaning that the validation
engineer asserts that the test covers such SFR, but no further
evidence is provided. The TASCCC tool proposes to exploit
additional informations to draw a strong and indisputable
relationship between the tests and these artefacts.

The connection with the model is made through the actions,
that are associated to @AIM and @REQ tags in the OCL
code of the operations. On the example, the action describ-
ing the verification of the user’s authentication is ensured
by two sets of tags {@AIM:Login First Mandatory}, which



Fig. 9. Main Frame of the TASCCC Prototype

captures the error case when the user is not registered, and
{@AIM:BUY Success} which captures the nominal case,
happening when the user is actually authenticated. In practice,
the definition of the TSFI/actions/SFR is made in a text file,
using a simple key–value format, that is used to describe these
artefacts, and their relationships.

By exploiting this information and the test suite repository,
the TASCCC tool makes it possible to automatically create a
test generation report, that provides all elements of information
requested by the Common Criteria evaluator. Figure 8 gives an
overview of the information available in the Common Criteria
report. The web page presents, for each TSFI, the set of
associated actions, and, for each action, the SFR to which
they relate. Finally, test cases are displayed in front of each
action they cover.

VI. SUMMARY OF THE TASCCC TESTING TOOL

This paper has presented the tool prototype resulting from
the TASCCC project, funded by the French National Research
Agency. This prototype integrates, in a dedicated Eclipse plug-
in, various technologies for property-based testing, relying on
a UML/OCL model. The main frame of the tool is represented
in Figure 9. The editor view (center of the frame) makes it
possible to edit the various files involved in the process: (i) the
TSFI/actions/SFR description, (ii) the TOCL properties, and
(iii) the TSLT scenarios.

The plug-in provides a dedicated view, called Traceability
view (bottom-left corner of the frame) which displays the
artefacts that are associated to a given project, namely the
description of the TSFI/actions/SFR, the existing test suites,
the properties defined by the validation engineer, and the
existing test scenarios. This view provides the main commands
that make it possible to:

• measure the coverage of a given test suite. When exe-
cuted, the wizard asks the user to choose the property he
wants to measure and the kind of coverage criteria that
have to be considered (nominal or robustness). Finally,
the user is asked to provide the directory in which the
coverage measure report will be generated.

• produce a test scenario from a given property. The wizard
asks the user the coverage criterion he wants to apply
to generate the test scenario. When produced, the test
scenario keeps track of the originating test property and
the coverage criteria that was applied.

• generate the TSLT file for a given scenario. This file may
then be edited, before running TOBIAS coupled with the
CertifyIt animator to unfold the scenario and instantiate
the test cases.

• create a test generation report for a given test suite. The
wizard requires the user to provide the output directory.
By taking into account the TSFI/actions/SFR mapping
associated to the project, the tool produces the test
generation report.

It is important to notice that the two approaches that
are implemented within the TASCCC tool can be used
independently. This prototype has been applied on an
industrial case study of GlobalPlatform, a next-generation
operating system for smart cards, provided by Gemalto. The
first feedbacks from both the validation engineers of Gemalto
and the Common Criteria evaluators are very positive on the
benefits of the tool w.r.t. their validation/evaluation activities.

The TASCCC tool differs from existing UML/OCL-based
testing tools. For example, HOL-TestGen [10] proposes
to decompose the OCL code using DNF to produce the
test targets. The approach proposed in [11] relies on a



search-based solver for OCL expressions used to generate
object test data. Similarly, the tool proposed in [12] combines
mutation and constraint solving. These tools mainly focus on
building test data from object oriented specifications in OCL.
However, none of them takes into account the dynamics of
the system, as done in our approach.

Finally, there exists a couple of limitations of the tool. First,
the property language that we have defined is an extension of
Dwyer’s property patterns. As such, in the original paper, the
authors have shown that such a language was able to capture
92% of the properties one may want to express on a system.
However, the language does not make it possible to describe
scopes or patterns that may involve sequences of events (e.g.
A follows B follows C). To overcome this issue, it could
be possible to extend the property language syntax. Such
an extension would not be problematic since the language
constructs are used to derive an automaton from which the
rest of the treatment is realized. A second limitation concerns
the scalability of the tool. Even though it is possible to
handle and animate very large models (several dozens of
megabytes), there is still a combinatorial explosion induced
by the scenarios themselves, even if smart filtering techniques
are implemented in the tool. To overcome this issue, the user
still has the possibility to instantiate some or all parts of
the scenario (e.g. by reducing the domain of the operation
parameters or by replacing unspecified operation calls) by
editing the TSLT code produced by the tool. In practice, these
two limitations did not prevent the application of the tool on
an the industrial case study used in the TASCCC project.

Please visit https://vimeo.com/53210102 to watch a demo.

REFERENCES

[1] “Common Criteria for Information Technology Security Evaluation,
version 3.1,” CCRA, Tech. Rep. CCMB-2009-07-001, july 2009.

[2] “Smartesting CertifyIt Test Generator,” http://www.smartesting.com/.
[3] T. Triki, Y. Ledru, L. du Bousquet, F. Dadeau, and J. Botella, “Model-

based filtering of combinatorial test suites,” in FASE’2012, 15th Int.
Conf. on Fundamental Approaches to Software Engineering, ser. LNCS,
J. de Lara and A. Zisman, Eds., vol. 7212, Tallinn, Estonia, Mar. 2012,
pp. 439–454.

[4] F. Bouquet, C. Grandpierre, B. Legeard, F. Peureux, N. Vacelet, and
M. Utting, “A subset of precise UML for model-based testing,” in A-
MOST’07, 3rd int. Workshop on Advances in Model Based Testing.
London, United Kingdom: ACM Press, Jul. 2007, pp. 95–104.

[5] J. Warmer and A. Kleppe, The Object Constraint Language Second
Edition: Getting Your Models Ready for MDA. Addison-Wesley, 2003.

[6] D. Leroux, M. Nally, and K. Hussey, “Rational Software Architect: A
tool for domain-specific modeling,” IBM Systems Journal, vol. 45, no. 3,
pp. 555–568, 2006.

[7] B. Kanso and S. Taha, “Temporal Constraint Support for OCL,” in
Proceedings the 5th International Conference on Software Language
Engineering - SLE2012, ser. LNCS 7745, K. Czarnecki and G. H. (Eds.),
Eds. Dresden, Allemagne: Springer, 2013, pp. 83–103.

[8] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property
specifications for finite-state verification,” in ICSE’99: Proceedings
of the 21st international conference on Software engineering. Los
Alamitos, CA, USA: IEEE Computer Society Press, 1999, pp. 411–420.

[9] K. Cabrera Castillos, F. Dadeau, J. Julliand, and S. Taha, “Measuring
test properties coverage for evaluating UML/OCL model-based tests,”
in ICTSS’11, 23-th IFIP Int. Conf. on Testing Software and Systems, ser.
LNCS, B. Wolff and F. Zaidi, Eds., vol. 7019. Paris, France: Springer,
Nov. 2011, pp. 32–47.

[10] A. D. Brucker, M. P. Krieger, D. Longuet, and B. Wolff, “A specification-
based test case generation method for UML/OCL” in Proceedings of the
2010 international conference on Models in software engineering, ser.
MODELS’10. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 334–348.

[11] S. Ali, M. Iqbal, A. Arcuri, and L. Briand, “A search-based OCL
constraint solver for model-based test data generation,” in Quality
Software (QSIC), 2011 11th International Conference on, july 2011,
pp. 41 –50.

[12] B. Aichernig and P. Salas, “Test case generation by OCL mutation
and constraint solving,” in Quality Software, 2005. (QSIC 2005). Fifth
International Conference on, sept. 2005, pp. 64 – 71.


